Publications by Topic
- Bartlow, N., Lockner, D., and Beeler, N., Laboratory triggering of stick-slip events by oscillatory loading in the presence of pore fluid with implications for physics of tectonic tremor, J. Geophy. Res., 117, B11411, 2012.
- Beeler, N., Constructing constitutive relationships for seismic and aseismic fault slip, Pure Appl. Geophy., 166, 1775-1798, 2009.
- Beeler, N. M., A. Thomas, R. Bürgmann, and D. Shelly, Inferring fault rheology from low-frequency earthquakes on the San Andreas, J. Geophys. Res. Solid Earth, 118, 5976-5990, doi:10.1002/2013JB010118, 2013.
- Beeler, N. M., and S. H. Hickman, Direct measurement of asperity contact growth in quartz at hydrothermal conditions, J. Geophys. Res. Solid Earth, 120, doi: 10.1002/2014JB011816, 2015.
- Beeler, N. M., E. Roeloffs, and W. McCausland, Re-estimated effects of deep episodic slip on the occurrence and probability of great earthquakes in Cascadia, Bulletin of the Seismological Society of America, 104, 128-144, 2014.
- Beeler, N. M., T. Tullis, J. Junger, B. Kilgore, and D. Goldsby, Laboratory constraints on models of earthquake recurrence, J. Geophys. Res. Solid Earth, 119, 8770-8791, doi:10.1002/2014JB011184, 2014.
- Beeler, N., Kilgore, B., McGarr, A., Fletcher, J., Evans, J., and Baker, S.R., Observed source parameters for dynamic rupture with non-uniform initial stress and relatively high fracture energy, Structural Geology DOI:10.1016/j.jsg.2011.11.013, 2012.
- Beeler, N.M., Inferring earthquake source properties from laboratory observations and the scope of lab contributions to source physics, in Earthquakes: Radiated energy and earthquake physics, eds. Abercrombie, McGarr, Kanamori, and Di Toro, Geophysical Monograph 170, 350 pp, 2006.
- Beeler, N.M., Laboratory-observed faulting in intrinsically and apparently weak materials: strength, seismic coupling, dilatancy, and pore fluid pressure, in The Seismogenic Zone of Subduction Thrust Faults, ed. T. Dixon and C. Moore, Columbia University Press, 2007.
- Beeler, N.M., Review of the physical basis of laboratory-derived relations for brittle failure and their implications for earthquake occurrence and earthquake nucleation, Pure App. Geophy., 161, 1853-1876, 2004.
- Beeler, N.M., and D.A. Lockner, Why earthquakes correlate weakly with the solid Earth tides: Effects of periodic stress on the rate and probability of earthquakes, J. Geophys. Res., 108 (B8), doi: 10.1029/2001JB001518, 2003.
- Beeler, N.M., and Hickman, S.H., A note on contact stress and closure in models of rock joints and faults, Geophy. Res. Lett., 28(4), 607-610, 2001.
- Beeler, N.M., and Hickman, S.H., Stress-induced, time-dependent fracture closure at hydrothermal conditions, J. Geophy. Res., 109, doi:10.1029/2002JB001782, 2004.
- Beeler, N.M., G. Di Toro, and S. Nielsen, Earthquake source properties from pseudotachylite, Bulletin of the Seismological Society of America, 106, 2764-2776, 2016.
- Beeler, N.M., G. Hirth, A. Thomas, and R. Bürgmann, Effective stress, friction, and deep crustal faulting, J. Geophys. Res. Solid Earth, 121, 1040–1059, doi:10.1002/2015JB012115, 2016.
- Beeler, N.M., Hirth, G., Tullis, T.E., Webb, C.H., On the depth extent of coseismic rupture, Bull. Seismological Society of America, 108(2), 761–780, 2018.
- Beeler, N.M., Lockner, D.L., and Hickman, S.H., A simple stick-slip and creep-slip model for repeating earthquakes and its implication for microearthquakes at Parkfield, Bull. Seis. Soc. Am., 91(6), 1797-1804, 2001.
- Beeler, N.M., McLaskey, G.C., Lockner, D., and Kilgore, B., Near-fault velocity spectra from laboratory failures and their relation to natural ground motion, J. Geophys. Res., 125, e2019JB017638. https://doi.org/10.1029/2019JB017638, 2020.
- Beeler, N.M., Simpson, R.W., Hickman, S.H., and Lockner, D.A., Pore fluid pressure, apparent friction, and Coulomb failure, J. Geophys. Res., 105(B11), 25533-25542, 2000.
- Beeler, N.M., T.E. Tullis, A. K. Kronenberg, and Reinen , L.A., The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments, J. Geophys. Res., 112, B07310, doi:10.1029/2005JB003772, 2007.
- Beeler, N.M., T.E. Tullis, and D. L Goldsby, Constitutive relationships and physical basis of fault strength due to flash-heating, J. Geophys. Res., 113, B01401, doi:10.1029/2007JB00498, 2008.
- Beeler, N.M., Thomas, A., Burgmann, R., and Shelly, D., Constraints on friction, dilatancy, diffusivity, and effective stress from lowfrequency earthquake rates on the deep San Andreas Fault, J. Geophys. Res. Solid Earth, 123, 583–605, 2018.
- Beeler, N.M., Tullis, T.E., Blanpied, M.L., and Weeks, J.D., Frictional behavior of large displacement experimental faults, J. Geophys. Res., 101(B4), 8697-8715, 1996.
- Beeler, N.M., Wong, T.-f., and Hickman, S.H., On expected relationships between apparent stress, static stress drop, effective shear fracture energy, and efficiency, Bull. Seis. Soc. Am., 93, 1381-1389, 2003.
- Blanpied, M., Lockner, D., and Byerlee, J., Frictional slip of granite at hydrothermal conditions, J. Geophy. Res., 100 (B7), 13045-133064, 1995.
- Boulton, C., Barth, N.C., Moore, D.E., Lockner, D.A., Townend, J., and Faulkner, D.R., Frictional properties and 3-D stress analysis of the southern Alpine Fault, New Zealand, Journal of Structural Geology, 114, 43-54, doi:10.1016/j.jsg.2018.06.003, 2018.
- Boulton, C., Moore, D., Lockner, D., Toy, V., Townsend, J., and Sutherland, R., Frictional properties of exhumed fault gouges in DFDP-1 core, Alpine fault, New Zealand, Geopys. Res. Lett., 41, doi:10.1002/2013GL058236, 2014.
- Byerlee, J., Friction of rocks, Pure App. Geophy., 166, 615-625, 1978.
- Byerlee, J., Friction, overpressure and fault normal compression, Geophy. Res. Lett., 17, (12), 2109-2112, 1990.
- Byerlee, J.D., Brittle-ductile transition in rocks, J. Geophys. Res., 73(14), 4741- 4750, 1968.
- Byerlee, J.D., Frictional characteristics of granite under high confining pressure, J. Geophys. Res., 72(14), 3639-3648, 1967.
- Byerlee, J.D. and Brace, W.F., Stick slip, stable sliding, and earthquakes- Effect of rock type, pressure, strain rate, and stiffness, J. Geophys. Res., 73(18), 6031-6037, 1968.
- Byerlee, J.D., and Lockner, D.A., Acoustic emission during fluid injection in rock, in Proceedings, First Conference on Acoustic Emission/Microseismic Activity in Geological Structures and Materials, edited by H. R. Hardy and F. W. Leighton, pp. 87-98, Trans Tech Publications, Clausthal-Z, Germany, 1977.
- Chang, J., Lockner, D., and Reches, Z., Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments, Science, 338, 101-104, 2012.
- Constable, S., Lu, R., Kannberg, P., Stern, L., Du Frane, W., Roberts, J., In-situ and laboratory evidence for high electrical anisotropy in marine gas hydrate, Fire in the Ice – Methane Hydrate News, Vol. 20, Issue 1, p.1-4, 2020.
- David, C., J. et al., KG2B: a collaborative benchmarking exercise for estimating the permeability of the Grimsel granodiorite - Part 1: measurements, pressure dependence and pore-fluid effects, Geophysics Journal International, 215, 799-824, 2018.
- David, C., J. et al., KG2B: a collaborative benchmarking exercise for estimating the permeability of the Grimsel granodiorite - Part 2: modeling, microstructures and complementary data, Geophysics Journal International, 215, 825-843, 2018.
- Dieterich, J.H., A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99(B2), 2601-2618, 1994.
- Dieterich, J.H., A model for the nucleation of earthquake slip, In: S. Das, J. Boatwright and C.H. Scholz (eds.), Earthquake Source Mechanics, Am. Geophys. Un. M. Ewing Vol. 6, Geophys. Monogr., 37, 37-47, 1986.
- Dieterich, J.H., Constitutive properties of faults with simulated gouge, in: N.L. Carter, M. Friedman, J.M. Logan and D.W. Sterns (eds.), Mechanical Behavior of Crustal Rocks, Am. Geophys. Un. Monogr., 24, 103-120, 1981.
- Dieterich, J.H., Earthquake nucleation on faults with rate-and state-dependent strength, In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (eds.), Earthquake Source Physics and Earthquake Precursors, Tectonophysics, 211, 115-134, 1992.
- Dieterich, J.H., Modeling of rock friction 1. Experimental results and constitutive equations, J. Geophy. Res., 84(B5), 2161-2168, 1979.
- Dieterich, J.H., Modeling of rock friction 2. Simulation of preseismic slip, J. Geophy. Res., 84(B5), 2169-2175, 1979.
- Dieterich, J.H., Nucleation and triggering of earthquake slip: effect of periodic stresses, Tectonophysics, 144, 127-139, 1987.
- Dieterich, J.H., Potential for geophysical experiments in large scale tests, Geophys. Res. Lett., 8(7), 653-656, 1981.
- Dieterich, J.H., Preseismic Fault Slip and Earthquake Prediction, Journal of Geophysical Research, 83(B8), 3940-3948, 1978.
- Dieterich, J.H., Time-dependent friction and the mechanics of stick-slip, Pure Appl. Geophy., 116, 790-806, 1978.
- Dieterich, J.H., Time-dependent friction in rocks, J. Geophys. Res., 77(20), 3690-3697, 1972.
- Dieterich, J.H., and Conrad, G., Effect of humidity on time- and velocity-dependent friction in rocks, J. Geophys. Res., 89(B6), 4196-4202, 1984.
- Dieterich, J.H., and Kilgore, B.D., Direct observation of frictional contacts: New insights for state-dependent properties, PAGEOPH, 143, no. 1/2/3, 283-302, 1994.
- Dieterich, J.H., and Kilgore, B.D., Imaging surface contacts: power law contact distributions and stresses in quartz, calcite, glass and acrylic plastic, Tectonophysics, 256, 219-239, 1996.
- Dieterich, J.H., and Kilgore, B.D., Implications of fault constitutive properties for earthquake prediction, Proc. Natl. Acad. Sci. USA, 93, 3787-3794, 1996.
- Du Frane, W.L., Stern, L.A., Constable, S., Weitemeyer, K.A., Smith, M., and Roberts, J.J., Electrical properties of methane hydrate plus sediment mixtures, J. Geophys. Research, Vol. 120 (7), 4773-4783, 2015.
- Durham, W.B., Golding, N., Stern, L.A., Pathare, A., Goldsby, D.L, and Prior, D.J., The importance of particulate texture to the flow strength of ice + dust, 46th Lunar and Planetary Science Conference paper 2800, 2015.
- Farough, A., Moore, D.E., Lockner, D.A., and Lowell, R.P., Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study, Geochemistry, Geophysics, Geosystems, 17, 44-55, doi:10.1002/2015GC005973, 2016.
- Golding, N., Durham, W.B., Prior, D., Plastic faulting in ice, J. Geophysical Research, 125, issue 5, 2020.
- Goldsby, D.L., Qi., C., Werts, T.A., Stern, L.A., Durham, W.B., and Pathare, A., The influence of particles on the rheological behavior of ice, 48th Lunar and Planetary Science Conference paper 2923, 2017.
- He, C., Wong, T.-f., and Beeler, N., Scaling of stress drop with recurrence interval and loading velocity for laboratory-derived fault strength relations, J., Geophy., Res., 108, 2037, 2003.
- Hirth, G. and N. M. Beeler, The role of fluid pressure on frictional behavior at the base of the seismogenic zone, Geology, 43, 3, 223-226, doi:10.1130/G36361.1, 2015.
- Jang, J., Cao, S., Stern, L., Jung, J, and Waite, W., Impact of pore fluid chemistry on fine-grained sediment fabric and compressibility, J. Geophys. Research, Vol. 123, issue 7, 5495-5514, 2018.
- Jang, J., Cao, S.C., Stern, L.A., Waite, W.F., Jung, J., and Lee, J.Y., Potential freshening impacts on fines migration and pore-throat clogging during gas hydrate production: 2-D micromodel study with diatomaceous UBGH2 sediments, J. Marine and Petroleum Geology, Vol. 116, 104244, 2020.
- Jang, J., Dai, S., Yoneda, J., Waite, W., Stern, L., Boze, L-G., Collett, T., Kumar, P., Pressure core analysis of geomechanical and fluid flow properties of seals associated with gas hydrate-bearing reservoirs in the Krishna-Godavari Basin, offshore India, J. Marine and Petroleum Geology, Vol. 108, 537-550, 2019b.
- Jang, J., Waite, W., and Stern, L.A. , Gas hydrate petroleum systems: what constitutes the "seal"?, Interpretation, Vol. 8, No. 2, p. T231–T248, 2020.
- Jang, J., Waite, W., Stern, L., Collett, T., and Kumar, P., Physical property characteristics of gas hydrate-bearing reservoir and associated seal sediments collected during NGHP-02 in the Krishna-Godavari Basin, in the offshore of India, J. Marine and Petroleum Geology, Vol. 108, p.249-271, 2019a.
- Kilgore, B. D., McGarr, A., Beeler, N. M., and Lockner, D. A., Earthquake Source Properties From Instrumented Laboratory Stick-Slip, AGU Monograph, Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture, edited by M. Y. Thomas, T. M. Mitchell and H. S. Bhat, pp. 151-169, John Wiley & Sons, Washington, D.C. and Hoboken, doi:10.1002/9781119156895, 2017.
- Kilgore, B., Beeler, N.M., Lozos, J., and Oglesby, D., Rock friction under variable normal stress, J. Geophys. Res., 122, doi:10.1002/2017JB014049, 2017.
- Kilgore, B., Lozos, J., Beeler, N., and Oglesby, D., Laboratory observations of fault strength in response to changes in normal stress, J. App. Mechanics, 79, 031007-1, 2012.
- Kilgore, B.D., A wideband magnetoresistive sensor for monitoring dynamic fault slip in laboratory fault friction experiments, Sensors, 17, 2790, doi:10.3390/s17122790, 2017.
- Kilgore, B.D., and Dieterich, J.H., Velocity dependent friction of granite over a wide range of conditions, Geophy. Res. Lett., 20, no. 10, 903-906, 1993.
- Kolawole, F., C. Johnston, B. Morgan, J. Chang, K. Marfurt, D. Lockner, Z. Reches and B. Carpenter, The susceptibility of Oklahoma’s basement to seismic reactivation, Nature Geoscience, 12, doi: 10.1038/s41561-019-0440-5, 2019.
- Lindh, A., Lockner, D., and Lee, W., Velocity anomalies: an alternative explanation, Bull. of the Seism. Soc. of Amer., 68(3), 721-734, 1978.
- Linker M.F. and Dieterich J.H. , Effects of variable normal stress on rock friction: Observations and constitutive equations, J. Geophys. Res., 97, B4, 4923-4940 doi:10.1029/92JB00017, 1992.
- Lockner, D., and Byerlee, J., Acoustic emission and fault formation in rocks, in Proceedings, First Conference on Acoustic Emission/Microseismic Activity in Geological Structures and Materials, edited by H. R. Hardy and W. F. Leighton, pp. 99-107, Trans Tech Publications, Clausthal-Zellerfeld, Germany, 1977.
- Lockner, D., and Evans, B., Densification of quartz powder and reduction of conductivity at 700°C, J. Geophys. Res., 100(B7), 13,081-013,092, 1995.
- Lockner, D., Byerlee, J., Kuksenko, V., Ponomarev, A., and Sidorin, A., Quasi-static fault growth and shear fracture energy in granite, Nature, 350(6313) 39-42, 1991.
- Lockner, D., Johnson, M., and Byerlee, J., A mechanism to explain the generation of earthquake lights, Nature, 302(5903), 28-33, 1983.
- Lockner, D.A., A generalized law for brittle deformation of Westerly granite, J. Geophys. Res., 103, 5107-5123, 1998.
- Lockner, D.A., The role of acoustic emission in the study of rock fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30, 883-899, 1993.
- Lockner, D.A., and Beeler, N.M., Premonitory slip and tidal triggering of earthquakes, J. Geophys. Res., 104, 20133-120151, 1999.
- Lockner, D.A., and Beeler, N.M., Rock Failure and Earthquakes - Chapter 32, International Handbook of Earthquake and Engineering Seismology, edited by W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger, pp. 505-537 (plus appendix on CD-ROM), Academic Press, Amsterdam, 2002.
- Lockner, D.A., and Beeler, N.M., Stress-induced anisotropic poroelasticity response in sandstone, Electronic Proc. 16th ASCE Engin. Mech. Conf., U. Washington, Seattle, WA, 2003.
- Lockner, D.A., and Byerlee, J.D., Acoustic emission and creep in rock at high confining pressure and differential stress, Bull. of the Seismological Society of Amer., 67, 247-258, 1977.
- Lockner, D.A., and Byerlee, J.D., Changes in complex resistivity during creep in granite, Pure and Appl. Geophys., 124, 659-676, 1986.
- Lockner, D.A., and Byerlee, J.D., Complex resistivity measurements of confined rocks, J. Geophys. Res., 90, 7837-7847, 1985.
- Lockner, D.A., and Byerlee, J.D., Complex resistivity of fault gouge and its significance for earthquake lights and induced polarization, Geophys. Res. Lett., 12, 211-214, 1985.
- Lockner, D.A., and Byerlee, J.D., Development of fracture planes during creep in granite, in Proceedings, Second Conference on Acoustic Emission/Microseismic Activity in Geological Structures and Materials, edited by H. R. Hardy and W. F. Leighton, pp. 11-25, Trans-Tech Publications, Clausthal-Zellerfeld, Germany, 1980.
- Lockner, D.A., and Byerlee, J.D., Fault growth and acoustic emissions in confined granite, J. Appl. Mech. Rev., 45(3), S165-S173, 1992.
- Lockner, D.A., and Byerlee, J.D., Hydrofracture in Weber sandstone at high confining pressure and differential stress, J. Geophys. Res., 82, 2018-2026, 1977b.
- Lockner, D.A., and Byerlee, J.D., Precursory AE patterns leading to rock fracture, in Proceedings, Fifth Conference on Acoustic Emission/Microseismic Activity in Geological Structures and Materials, edited by H. R. Hardy, pp. 45-58, Trans Tech Publications, Clausthal-Zellerfeld, Germany, 1995.
- Lockner, D.A., and Okubo, P.G., Measurements of frictional heating in granite, J. Geophys. Res., 88, 4313-4320, 1983.
- Lockner, D.A., and Stanchits S.A., Undrained poroelastic response of sandstones to deviatoric stress change, J. Geophys. Res., 107 (B12), 2353, doi:10.1029/2001JB001460, 2002.
- Lockner, D.A., B.D. Kilgore, N.M. Beeler, and D.E. Moore, The transition from frictional sliding to shear melting in laboratory stick-slip experiments, AGU Monograph, Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture, edited by M. Y. Thomas, T. M. Mitchell and H. S. Bhat, pp. 105-130, John Wiley & Sons, Washington, D.C. and Hoboken, doi:10.1002/9781119156895, 2017.
- Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A., and Sidorin, A., Observation of quasistatic fault growth from acoustic emissions, Fault Mechanics and Transport Properties of Rocks, Academic Press, Ltd., 1992.
- Lockner, D.A., Byerlee, J.D., Kuksenko, V.S., and Ponomarev, A.V., Stick slip, charge separation and decay, Pure and Appl. Geophys., 124, 601-608, 1986.
- Lockner, D.A., H. Tanaka, H. Ito, R. Ikeda, K. Omura, and H. Naka, Geometry of the Nojima fault at Nojima-Hirabayashi, Japan - I. A simple damage structure inferred from borehole core permeability, Pure Appl. Geophys., 166, doi 10.1007/s00024-00009-00515-00020, 2009.
- Lockner, D.A., Hickman, S., Byerlee, J.D., Kuksenko, V., Ponomarev, A., Sidorin, A., and Khakaev, B., Laboratory-determined permeability of cores from the Kola superdeep well, USSR, Geophys. Res. Lett., 18(5), 881-884, doi:10.1029/91GL00782, 1991.
- Lockner, D.A., Morrow, C.A., Moore, D.E., and Hickman, S.H., Low strength of deep San Andreas fault gouge from SAFOD core, Nature, doi:10.1038/nature09927, 2011.
- Lockner, D.A., Naka, H., Tanaka, H., Ito, H., and Ikeda, R., Permeability and strength of core samples from the Nojima fault of the 1995 Kobe earthquake, Proceedings, International Workshop on the Nojima Fault Core and Borehole Data Analysis, Nov. 22-23, 1999, Tsukuba, Japan, edited by H. Ito, K. Fujimoto, H. Tanaka and D. Lockner, 2000.
- Lockner, D.A., Walsh, J.B., and Byerlee, J.D., Changes in seismic velocity and attenuation during deformation of granite, J. Geophys. Res., 82, 5374-5378, 1977.
- Lu, R., Stern, L., Du Frane, W., Pinkston, J., Constable, S., Electrical conductivity of methane hydrate with pore fluids; new results from the lab, Fire in the Ice – Methane Hydrate News, Vol. 18, issue 1, pp. 7-11. IP-097528, 2018.
- Lu, R., Stern, L.A., Du Frane, W.L., Pinkston, J.C., Constable, S., The effect of brine on the electrical properties of methane hydrate, J. Geophysical Research, Solid Earth. Vol. 124, p. 10,877-10,892, 2019.
- Mastin, L.G., M. Lisowski, E. Roeloffs, and N.M. Beeler, Improved constraints on the estimated size and volatile content of the Mount St. Helens magma system from the 2004-2008 history of dome growth and deformation, Geophys. Res. Lett., 36(L20304), doi:10.1029/2009GL039863, 2009.
- McLaskey, G. C., and D. A. Lockner, Calibrated acoustic emission system records M -3.5 to M -8 events generated on a saw-cut granite sample, Am. Rock Mech. Ass. 15-204, 2015.
- McLaskey, G. C., and D. A. Lockner, Preslip and cascade processes initiating laboratory stick slip, J. Geophys. Res. Solid Earth, 119, 6323-6336, doi:10.1002/2014JB011220, 2014.
- McLaskey, G. C., B. D. Kilgore, and N. M. Beeler, Slip-pulse rupture behavior on a 2 m granite fault, Geophys. Res. Lett., 42, doi:10.1002/2015GL065207, 2015.
- McLaskey, G. C., D. A. Lockner, B. D. Kilgore, and N. M. Beeler, A Robust Calibration Technique for Acoustic Emission Systems Based on Momentum Transfer from a Ball Drop, Bulletin of the Seismological Society of America, 105(1), 257-271, doi: 10.1785/0120, 2015.
- McLaskey, G., and Kilgore, B., Foreshocks during the nucleation of stick-slip instability, J. Geophy. Res., 118, 2982-2997, doi:10.1002/jgrb.50232, 2013.
- McLaskey, G., Kilgore, B., Lockner, D., and Beeler, N., Laboratory generated M-6 earthquakes, Pure Appl. Geopys., doi: 10.1007/s00024-013-0772-9, 2014.
- McLaskey, G.C., and D.A. Lockner, Shear failure of a granite pin traversing a sawcut fault, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 110, 97-110, 2018.
- Mighani, S., Lockner, D.A., Kilgore, B., and Evans, B.J., Role of Fault Gouge during Interaction between Hydraulic Fracture and a Pre-existing Fracture, Amer. Rock Mechanics Assoc., 52nd US Rock Mechanics/Geomechanics Symposium, extended abstract, IP-095559, 2018.
- Mighani, S., Lockner, D.A., Kilgore, B.D., Sheibani, F., and Evans B.J., Interaction Between Hydraulic Fracture and a Preexisting Fracture under Triaxial Stress Conditions, Soc. Pet. Eng. J., IP-095560, doi:10.2118/189901-MS, 2018.
- Moore, D., Comparative mineral chemistry and textures of SAFOD fault gouge and damage-zone rocks, J. Struc. Geo., 68, 82-96, 2015.
- Moore, D., and Byerlee, J., Comparative geometry of the San Andreas fault, California, and laboratory fault zones, Bull. Geol. Soc. Am., 103, 762-744, 1991.
- Moore, D., and Byerlee, J., Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California, Tectonophysics, 211, 305-316, 1992.
- Moore, D., and Byerlee, J., Textural development of clayey and quartzofeldspathic fault gouges relative to their sliding behavior, Phys. Chem. Earth, 17, 1-9, 1989.
- Moore, D., and Lockner, D., Chemical controls on fault behavior: Weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system, J. Geophy. Res., 118, 1-13, doi:10.1002/jgrb.50140, 2013.
- Moore, D., and Lockner, D. , Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals, J. Geophys. Res., 109, B03401, 2004.
- Moore, D., and Lockner, D., Frictional strengths of talc-serpentine and talc-quartz mixtures, J. Geophy. Res., 116, B01403, doi:10.1029/2010JB007881, 2011.
- Moore, D., and Lockner, D., The role of microcracking in shear-fracture propagation in granite, J. Structural Geology, 17(1), 95-114, 1995.
- Moore, D., and Rymer, M., Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD), J. Structural Geology, 38, 51-60, 2012.
- Moore, D., and Rymer, M. , Talc-bearing serpentinite and the creeping section of the San Andreas fault, Nature, 448, doi:10.1038/nature06064, 2007.
- Moore, D., E., Morrow, C.A., and Byerlee, J.D. , High-temperature permeability and groundwater chemistry of some Nevada Test Site Tuffs, Journal of Geophysical Research, 91(B2), 2163-2171, 1986.
- Moore, D., Hickman, S., Lockner, D., and Dobson, P. , Hydrothermal minerals and microstructures in the Silangkitang geothermal field along the Great Sumatra fault zone, Sumatra, Indonesia, Bull. Geol. Soc. Am., 113, 1179-1192, 2001.
- Moore, D., Lockner, D., Shengli, M., Summers, R., Byerlee, J., Strengths of serpentinite gouges at elevated temperatures, J. Geophy. Res., 102(B7), 14787-14801, 1997.
- Moore, D., Lockner, D., Summers, R., Shengli, M., and Byerlee, J., Strength of chrysotile-serpentinite gouge under hydrothermal conditions: Can it explain a weak San Andreas fault?, Geology, 24(11), 1041-1044, 1996.
- Moore, D., Lockner, D., Tanaka, H., Iwata, K., The coefficient of friction of chrysotile gouge at seismogenic depths, Int. Geology Review, 1-14, 2004.
- Moore, D., Ma, J., Summers, R, and Byerlee, J., The effect of pore pressure and heating time on the strength and sliding stability of a serpentinite gouge, in Proc. 25th Symp. Rock Mech., 312-319, 1984.
- Moore, D., Summers, R., and Byerlee, J., Deformation of granite during triaxial friction tests, in Mechanics of Jointed and Faulted Rock, H. Rossmanith, ed., Proc. Int. Conf. Mechanics of Jointed Rock, Vienna, 1990.
- Moore, D., Summers, R., and Byerlee, J. , Relationship between textures and sliding motion of experimentally deformed fault gouge: Application to fault zone behavior, in Key Questions in Rock Mechanics, Proc. 29th Symp., Cundall, Sterling and Starfield, ed, 1988.
- Moore, D., Summers, R., and Byerlee, J. , Sliding behavior and deformation textures of heated illite gouge, J. Structural Geol., 11, 329-342, 1989.
- Moore, D., Summers, R., and Byerlee, J., Strengths of clay and non-clay fault gouges at elevated temperatures and pressures, 24th Symp. on Rock Mech., C. Mathewson, ed., 489-500, 1983.
- Moore, D., Summers, R., and Byerlee, J. , The effects of sliding velocity on the frictional and physical properties of heated fault gouge, Pure Appl. Geophy, 124(1/2), 1986.
- Moore, D.E., and Lockner, D.A., Comparative deformation behavior of minerals in serpentinized ultramafic rock: Application to the slab-mantle interface in subduction zones, International Geology Review, 49, 401-415, 2007.
- Moore, D.E., and Lockner, D.A., Crystallographic controls on the frictional strengths of layered-structured minerals, (poster), 2004.
- Moore, D.E., and Lockner, D.A., Friction of the smectite clay montmorillonite: A review and interpretation of data, in The Seismogenic Zone of Subduction Thrust Faults, T. H. Dixon and C. Moore, eds., Margins Theoretical and Experimental Earth Science Series, vol. 2, Columbia University Press, pp. 317-345, 2007.
- Moore, D.E., and Lockner, D.A., Interpreting the frictional behavior of the smectite clay montmorillonite, American Geophysical Union (poster), 2004.
- Moore, D.E., and Lockner, D.A., Solid solution processes and the frictional strength of heated brucite, American Geophysical Union (poster), 2005.
- Moore, D.E., and Lockner, D.A., Talc friction in the temperature range 25°-400°C: Relevance for fault-zone weakening, Tectonophysics, 449, 120-132, 2008.
- Moore, D.E., D.A. Lockner, H. Ito, R. Ikeda, H. Tanaka, and K. Omura, Geometry of the Nojima fault at Nojima-Hirabayashi, Japan - II. Microstructures and their implications for permeability and strength, Pure Appl. Geophys., 166, doi 10.1007/s00024-00009-00513-00022, 2009.
- Moore, D.E., Lockner, D.A., and Byerlee, J.D., Reduction of permeability in granite at elevated temperatures, Science, 265, 1558-1561, doi:10.1126/science.265.5178.1558, 1994.
- Moore, D.E., Lockner, D.A., and Hickman, S., Hydrothermal frictional strengths of rock and mineral samples relevant to the creeping section of the San Andreas Fault, Journal of Structural Geology, 89, 153-167, doi:10.1016/j.jsg.2016.06.005, 2016.
- Moore, D.E., Lockner, D.A., and Ponce, D.A., Anomalously low strength of serpentine sheared against granite and implications for creep on the Hayward and Calaveras faults, Proceedings, 3rd Conference on earthquake hazards in the eastern San Francisco Bay Area: Science, Hazard, Engineering and Risk, edited by K. Knudsen and others, Oct. 22-24, 2008 Cal. State U. East Bay, 2010.
- Moore, D.E., Lockner, D.A., Ito, H. and Ikeda, R., Correlation of Deformation Textures with Laboratory Measurements of Permeability and Strength of Nojima Fault Zone Core Samples, Proceedings, International Workshop on the Nojima Fault Core and Borehole Data Analysis, Nov. 22-23, 1999, Tsukuba, Japan, edited by H. Ito, K. Fujimoto, H. Tanaka and D. Lockner, 2000.
- Moore, D.E., Lockner, D.A., Kilgore, B.D., and Beeler, N.M., Gallery of melt textures developed in Westerly granite during high-pressure triaxial friction experiments, U. S. Geological Survey Open-File Report, 2016-1059, 75 p., http://dx.doi.org/10, 2016.
- Moore, D.E., Lockner, D.A., Tanaka, H., and Iwata, K., The coefficient of friction of chrysotile gouge at seismogenic depths, International Geology Review, 16, 385-398. (Republished in the collection, W. G. Ernst, ed., 2004, Serpentine and Serpentinites: Mineralogy, Petrology, Geochemistry, Ecology, Geophysics, and Tectonics: Geological Society of America International Book Seri, 2004.
- Moore, D.E., Morrow, C.A., and Byerlee, J.D., Chemical reactions accompanying fluid flow through granite held in a temperature gradient, Geochemica et Cosmochemica Acta, 47, 445, 1983.
- Moore, D.E., Morrow, C.A., and Byerlee, J.D., Use of swelling clays to reduce permeability in fractured rock, Geophysical Research Letters, 9(9), 1009-1012, 1982.
- Moore, D.E., Rymer, M.J., McLaughlin, R.J., and Lienkaemper, J.J., Mineralogy of faults in the San Andreas system that are characterized by creep, EOS, Tran. Am. Geophy. Un., Fall Meeting (poster), 2011.
- Morrow, C. and Byerlee, J.D. , Permeability of rock samples from Cajon Pass, California, Geophysical Research Letters, 15(9), 1033-1036, 1988.
- Morrow, C., and Byerlee, J. , Experimental studies of compaction and dilatancy during frictional sliding on faults containing gouge, Journal of Structural Geology, 11(7), 815-825, 1989.
- Morrow, C., and Byerlee, J., Frictional sliding and fracture behavior of some Nevada Test Site Tuffs, Rock mechanics in productivity and protection, Proceedings 25th Symposium on Rock Mechanics, Dowding and Singh, eds., 467-474, 1984.
- Morrow, C., and Byerlee, J. , Permeability of core samples from Cajon Pass Scientific Drillhole: Results from 2100 to 3500 m depth, Journal of Geophysical Research, 97(B4), 5145-5151, 1992.
- Morrow, C., Lockner, D., and Okubo, C., Mechanical properties of simulated Mars materials- gypsum-rich sandstones and lapilli tuff, U.S. Geological Survey Open-File Report, 2013-1242, 2013.
- Morrow, C., Lockner, D., Hickman, S., Rusanov, B., and Röckel, T. , Effects of lithology and depth on the permeability of core samples from the Kola and KTB drillholes, Journal of Geophysical Research, 99(B4), 7263-7274, 1994.
- Morrow, C., Lockner, D., Moore, D., and Byerlee, J., Permeability of granite in a temperature gradient, J. Geophys. Res., 86, 3002-3008, doi:10.1029/JB086iB04p03002, 1981.
- Morrow, C., Lockner, D., Moore, D., and Hickman, S., Deep permeability of the San Andreas fault from San Andreas Fault at Depth (SAFOD) core samples, J. Struc. Geo., http://dx.doi.org/10.1016/j.jsg.2013.09.009, 2013.
- Morrow, C., Lockner, D.A., and Hickman, S., Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD, Journal of Geophysical Research, 120(12), 8240-8258, doi:10.1002/2015JB012214, 2015.
- Morrow, C., Moore, D., and Byerlee, J. , Permeability and pore fluid chemistry of the Bullfrog Tuff in a temperature gradient, Proceedings, 24th U.S. Symposium on Rock Mechanics, C. Mathewson, ed., 819-828, 1983.
- Morrow, C., Moore, D., and Byerlee, J., Permeability changes in crystalline rocks due to temperature: Effects of mineral assemblage, Materials Research Society Proceedings, 44, 467-474, 1985.
- Morrow, C., Zhang Bo-Chong, and Byerlee, J. , The effective pressure law for the permeability of Westerly Granite under cyclic loading, Journal of Geophysical Research, 91(B3), 3870-3876, 1986.
- Morrow, C.A., Permeability of Deep Drillhole Core Samples, Proceedings, International Workshop on the Nojima Fault Core and Borehole Data Analysis, Nov. 22-23, 1999, Tsukuba, Japan, edited by H. Ito, K. Fujimoto, H. Tanaka and D. Lockner, 2000.
- Morrow, C.A., and Byerlee, J.D. , A Note on the Frictional Strength of Laumontite from Cajon Pass, California, Geophysical Research Letters, 18(2), 211-214, 1991.
- Morrow, C.A., and Lockner, D.A., Hayward Fault Rocks: Porosity, Density and Strength Measurements, U.S. Geological Survey Open-File Report 01-421, 2001.
- Morrow, C.A., and Lockner, D.A. , Permeability and porosity of the Illinois UPH 3 drillhole granite and a comparison with other deep drillhole rocks, Journal of Geophysical Research, 102(B2), 3067-3075, 1997.
- Morrow, C.A., and Lockner, D.A. , Permeability differences between surface-derived and deep drillhole core samples, Geophy. Res. Let., 21(19), 2151-2154, 1994.
- Morrow, C.A., and Lockner, D.A., Physical properties of two core samples from well 34-9RD2 at the Coso Geothermal Field, California, U.S. Geological Survey Open-File Report 2006-1230, 2006.
- Morrow, C.A., D.E. Moore, and D.A. Lockner, Frictional strength of wet and dry montmorillonite, J. Geophys. Res. Solid Earth, 122, doi:10.1002/2016JB013658, 2017.
- Morrow, C.A., J.O. Kaven, D.E. Moore, and D.A. Lockner, Physical properties of sidewall cores from Decatur, Illinois, U.S. Geological Survey Open-File Report 2017-1094, 21 p., 2017.
- Morrow, C.A., Lockner, D.A., Moore, D.E., and Hickman, S.H., Permeability, electrical resistivity and frictional strength of SAFOD fault gouge and damage zone rocks, EOS, Tran. Am. Geophy. Un., Fall Meeting (poster), 2011.
- Morrow, C.A., Moore, D.E. and Lockner, D.A., Permeability reduction in granite under hydrothermal conditions, J. Geophys. Res., 106(B12), 30,551-530,560, doi:10.1029/2000JB000010, 2001.
- Morrow, C.A., Moore, D.E., and Byerlee, J.D., Permeability and pore fluid chemistry of the Topopah Spring Member of the Paintbrush Tuff, Nevada Test Site, in a temperature gradient - Application to nuclear waste storage, Materials Research Society Symposium Proceedings, 26, 883-890, 1984.
- Morrow, C.A., Moore, D.E., and Lockner, D.A., Dependence of frictional strength on compositional variations of Hayward Fault rock gouges, U.S. Geological Survey Open-File Report, 2010-1184, 2010.
- Morrow, C.A., Moore, D.E., and Lockner, D.A., The effect of mineral bond strength and adsorbed water on fault gouge frictional strength, Geophy. Res. Lett., 27, no. 6, 815-818, 2000.
- Morrow, C.A., Radney, B., and Byerlee, J., Frictional strength and the effective pressure law of montmorillonite and illite clays, Fault Mechanics and Transport Properties of Rocks, Academic Press, Ltd, 1992.
- Morrow, C.A., Shi, L.Q., and Byerlee, J.D. , Permeability and strength of San Andreas fault gouge, Geophysical Research Letters, 8(4), 325-328, 1981.
- Morrow, C.A., Shi, L.Q., and Byerlee, J.D. , Permeability of fault gouge under confining pressure and shear stress, Journal of Geophysical Research, 89(B5), 3193-3200, 1984.
- Morrow, C.A., Shi, L.Q., and Byerlee, J.D. , Strain hardening and strength of clay-rich fault gouges, Journal of Geophysical Research, 87(B8), 6771-6780, 1982.
- Morrow, C.A., Solum, J., Tembe, S., Lockner, D., and Wong, T.-f., Using drill cutting separates to estimate the strength of narrow shear zones at SAFOD, Geophy. Res. Lett., 34, L11301, doi:10.1029/2007GL029665, 2007.
- Nagata, K., Kilgore, B., Beeler, N., and Nakatani, M., High-frequency imaging of elastic contrast and contact area with implications for naturally observed changes in fault properties, JGR DOI: 10.1002/2014JB011014, 2014.
- Ponomarev, A., Lockner, D., Stroganova, S., Stanchits, S., and Smirnov, V., Oscillating load-induced acoustic emission in laboratory experiment, in: de Rubeis, V., et al. (eds.), Synchronization and Triggering: from Fracture to Earthquake Processes, GeoPlanet: Earth and Planetary Sciences 1, DOI 10.1007/978-3-642-12300-9_9, Springer-Verlag, Berlin, 2010.
- Proctor, B., and D.A. Lockner, Pseudotachylyte increases the post-slip strength of faults, Geology, 44(12), 1003-1006, 2016.
- Proctor, B., Lockner, D.A., Kilgore, B.D., Mitchell, T.M., & Beeler, N.M., Direct evidence for fluid pressure, dilatancy, and compaction affecting slip in isolated faults, Geophysical Research Letters, 47, e2019GL086767. https://doi.org/10.1029/2019GL086767, 2020.
- Proctor, B., Lockner, D.A., Kilgore, B.D., Mitchell, T.M., & Beeler, N.M., Direct evidence for fluid pressure, dilatancy, and compaction affecting slip in isolated faults - SUPPORTING INFORMATION, Geophysical Research Letters, 47, e2019GL086767. https://doi.org/10.1029/2019GL086767, 2020.
- Proctor, B.P., Lockner, D.A., Lowenstern, J.B., and Beeler, N.B., Conversion of wet glass to melt at lower seismogenic zone conditions: Implications for pseudotachylyte creep, Geophy. Res. Lett., 44, 10,248-10,255, 2017.
- Qi, C., Stern, L., Durham, W., Pathare, A., Goldsby, D., Inhibition of grain boundary sliding creep in fine-grained ice by inter-granular particles: Implications for planetary ice masses, Geophysical Research Letters, Vol. 45, p.12,757-12,765, 2018.
- Saffer, D., Lockner, D., and McKiernan, A., Effects of smectite to illite transformation on the frictional strength and sliding stability of intact marine mudstones, Geophy. Res., Lett., 39, L11304, 2012.
- Savage, J., Lockner, D., and Byerlee, J., Failure in laboratory fault models in triaxial tests, J. Geohy. Res., 101, 22215-22224, 1996.
- Scott, David R., Lockner, D.A., Byerlee, J D., and Sammis, C.G., Triaxial Testing of Lopez Fault Gouge at 150 MPa Mean Effective Stress, PAGEOPH, Vol. 142, No. 3/4, 1994.
- Solum, J.G., Hickman, S.H., Lockner, DA., Moore, D.E., van der Pluijm, B.A., Schleicher, A.M., and Evans, J.P., Mineralogical characterization of protolith and fault rocks from the SAFOD main hole, Geophy. Res. Lett., 33, L21314, 2006.
- Stanchits, S.A., D.A. Lockner, and Ponomarev, A.V., Anisotropic changes in P-wave velocity and attenuation during deformation and fluid infiltration of granite, Bull. Seis. Soc. Amer., 93 (4), 1803-1822, 2003.
- Summers, R., and Byerlee, J., Summary of results of frictional sliding studies at confining pressures up to 6.98 kb in selected rock materials, U.S. Geological Survey Open-File Report 77-142, 129 pp., 1977.
- Tembe, S., D. Lockner, and T.-f. Wong, Constraints on the stress state of the San Andreas fault with analysis based on core and cuttings from San Andreas Observatory at Depth (SAFOD) drilling phases I and II, J. Geophys. Res., 114, B11401, doi: 10.1029/2008JB005883, 2010.
- Tembe, S., D. Lockner, and T.-f. Wong, Correction to "Constraints on the stress state of the San Andreas fault with analysis based on core and cuttings from San Andreas Observatory at Depth (SAFOD) drilling phases I and II", J. Geophys. Res., 115, B03418, doi: 10.1029/2009JB000818, 2009.
- Tembe, S., D.A. Lockner, and T.-f. Wong, Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite and montmorillonite, J. Geophys. Res., 115, B03416, doi: 10.1029/2009JB006383, 2010.
- Tembe, S., Lockner, D.A., Solum, J.G., Morrow, C.A., Wong, T.-f., and Moore, D.E., Frictional strength of cuttings and core from SAFOD drillhole phases 1 and 2, Geophy. Res. Lett., 33, L23307, doi:10.1029/2006GL027626, 2006.
- Thomas, A.M., Beeler, N.M., Bletery, Q., Burgmann, R., and Shelly, D.R., Using low-frequency earthquake families on the San Andreas Fault as deep creepmeters, J. Geophys. Res. Solid Earth, 123, 457–475, 2018.
- Thomas, A.M., R. Burgmann, D.R. Shelly, N.M. Beeler and M.L. Rudolph, Tidal sensitivity of low frequency earthquakes near Parkfield, CA: Implications for fault mechanics within the brittle-ductile transition, J. Geophys. Res., 117, B05301, doi:10.1029/2011JB009036, 2012.
- Thompson, B., Young, R., and Lockner, D., Premonitory acoustic emission and stick-slip in natural and smooth-faulted Westerly granite, J. Geophy. Res., 114,B02205, 2009.
- Vaughan, P.J., Moore, D.E., Morrow, C.A., and Byerlee, J.D. , The role of cracks in progressive permeability reduction during flow of heated aqueous fluids through granite, Journal of Geophysical Research, 91(B7), 7517-7530, 1986.
- Vernik, L., Hickman, S., Lockner, D., and Rusanov, M., Ultrasonic velocities in cores from the Kola superdeep well and the nature of subhorizontal seismic reflections, J. Geophys. Res., 99(B12), 24,209-224,219, doi:10.1029/94JB01236, 1994.
- Vernik, L., Lockner, D.A., and Zoback, M.D., Anisotropic strength of some typical metamorphic rocks from the KTB pilot hole, Germany, Scientific Drilling, 3, 153-160, 1992.
- Weeks, J. D., D. A. Lockner, and Byerlee, J.D., Changes in b-value during movement on cut surfaces in granite, Bull. of the Seismological Society of Amer., 68, 333-341, 1978.