Autonomous Extraction of Millimeter-scale Deformation in InSAR Time Series Using Deep Learning
Bertrand Rouet-Leduc
Los Alamos National Laboratory
- Date & Time
- Location
- Online-only seminar via Microsoft Teams
- Host
- Colin Pennington
- Summary
Systematically characterizing slip behaviours on active faults is key to unraveling the physics of tectonic faulting and the interplay between slow and fast earthquakes. Interferometric Synthetic Aperture Radar (InSAR), by enabling measurement of ground deformation at a global scale every few days, may hold the key to those interactions. However, atmospheric propagation delays often exceed ground deformation of interest despite state-of-the art processing, and thus InSAR analysis requires expert interpretation and a priori knowledge of fault systems, precluding global investigations of deformation dynamics. Here we show that a deep auto-encoder architecture tailored to untangle ground deformation from noise in InSAR time series autonomously extracts deformation signals, without prior knowledge of a fault's location or slip behaviour. Applied to InSAR data over the North Anatolian Fault, our method reaches 2 mm detection, revealing a slow earthquake twice as extensive as previously recognized.
In a second example of the application of the method, we will show some preliminary results on the San Andreas Fault, where numerous small slow slip events are detected. We will further explore the generalization of our approach to inflation/deflation-induced deformation.