New methods in engineering geophysics: distributed acoustic sensing and machine learning

Eileen Martin

Virginia Tech

Date & Time
Location
Online-only seminar via Microsoft Teams
Summary

Geotechnical engineers have noted that in many places there is significant variability in the near surface over much shorter spatial scales than what is measured by traditional techniques. Over the past decade new seismic sensing technologies such as distributed acoustic sensing have enabled continuous, high-density seismic acquisition over long distances. The ability to install cables quickly or to plug into existing telecommunications infrastructure have enabled engineering geophysics around infrastructure and in urban areas. Further lowering costs, these low-labor acquisitions have been analyzed with passive seismic methods for near-surface imaging and earthquake engineering. While data are now incredibly easy to acquire, processing these data has been a challenge both due to large data volumes (multi-terabyte per day) and due to challenging noise environments in urban areas. New algorithms including machine learning are increasingly required to analyze these data. These new techniques will be discussed in the context of several recent experiments with applications in earthquake engineering and near-surface geohazards.

Closed captions are typically available a few days after the seminar. To turn them on, press the ‘CC’ button on the video player. For older seminars that don’t have closed captions, please email us, and we will do our best to accommodate your request.

Video Podcast