Extracting Heat from the Earth – Why does Micro-mechanics Matter?

Ingrid Tomac

UC San Diego

Date & Time
Building 3, Rambo Auditorium
Jack Norbeck

Geothermal energy extraction via Enhanced Geothermal Systems (EGS) is being explored at the pilot level, but still faces technical challenges related to hydraulic fracturing of rock, as well as placement of proppant into rough fractures to maintain a stable aperture for successful long-term operation. This presentation focuses on the role of micro-mechanical analyses in gaining a better understanding of the complex, coupled behavior associated with EGS development. The particular micro-mechanics tool used in this study is the Discrete Element Method (DEM). First, the Bonded Particle Model (BPM) in DEM is used to simulate granite behavior and hydraulic fracturing. The BPM was improved to investigate hydro-thermo-mechanical fracturing processes by implementing a novel convective-conductive heat transport model. Second, DEM coupled with Computational Fluid Dynamics (DEM-CFD) is used to study horizontal proppant flow and transport in narrow fracture zones and proppant settling in a narrow rough granite fracture. A new particle contact model was implemented into DEM-CFD to account for the effects of the fluid lubrication force on particle collisions and the dissipation of particle kinetic energy.

Novel contributions to the understanding of EGS formation using these micro-mechanical analyses in DEM will be presented, along with validation using recent laboratory results. First, a new understanding of hydraulic fracturing of rock will be presented, including the effects of fracturing fluid properties on fracture shape, branching, and secondary fracture formation, and the effects of a temperature difference between the fracturing fluid and surrounding rock on fracture initiation and propagation. Second, a new understanding of the effect of frequent particle collisions on flow and transport of granular slurry (mixtures of proppant and viscous fluid) will be presented. A particularly interesting finding is that in high viscosity fluid, particles remain in close vicinity form agglomerates. Fluid may flow around these agglomerates in rough fractures, which may lead to clogging or settling before reaching the desired location.

Closed captions are typically available a few days after the seminar. To turn them on, press the ‘CC’ button on the video player. For older seminars that don’t have closed captions, please email us, and we will do our best to accommodate your request.

Video Podcast