Seismic Network Operations

IU NWAO

Narrogin, Australia

IU NWAO commences operations on: 1991,329

Country Flag
Host: Geoscience Australia
Latitude: -32.928
Longitude: 117.239
Elevation: 380
Datalogger: Q330
Broadband: KS-54000
Accelerometer: FBA_ES-T_EpiSensor_Accelerometer
Telemetry Status at the NEIC: Last Data In Less Than 10 Minutes
Station Photo Station Photo Station Photo 

Vault Condition: Borehole

Site Geology: Seismometer is located on the Pre-Cambrian shield known as Yilgarn block which consists of granite and granite gneiss. The age of the granite is about 2500m years. The site is in the south-west corner of the block, 230 km from the southern boundary and coast, and 130 km from the western boundary which is the Darling Fault. Site is 150 km from the west coast.

Location CodeChannel CodeInstrumentFlagsSample RateDipAzimuthDepth
00VMZGeotech KS-54000 Borehole SeismometerCH0.100.000.00105.00
00VM2Geotech KS-54000 Borehole SeismometerCH0.100.000.00105.00
00VM1Geotech KS-54000 Borehole SeismometerCH0.100.000.00105.00
00VHZGeotech KS-54000 Borehole SeismometerCG0.10-90.000.00105.00
00VH2Geotech KS-54000 Borehole SeismometerCG0.100.00169.00105.00
00VH1Geotech KS-54000 Borehole SeismometerCG0.100.0079.00105.00
00LHZGeotech KS-54000 Borehole SeismometerCG1.00-90.000.00105.00
00LH2Geotech KS-54000 Borehole SeismometerCG1.000.00169.00105.00
00LH1Geotech KS-54000 Borehole SeismometerCG1.000.0079.00105.00
00BHZGeotech KS-54000 Borehole SeismometerCG20.00-90.000.00105.00
00BH2Geotech KS-54000 Borehole SeismometerCG20.000.00169.00105.00
00BH1Geotech KS-54000 Borehole SeismometerCG20.000.0079.00105.00
10VMVStreckeisen STS-2 Standard-gainCH0.100.000.000.00
10VMUStreckeisen STS-2 Standard-gainCH0.100.000.000.00
10VHZStreckeisen STS-2 Standard-gainCG0.10-90.000.000.00
10VH2Streckeisen STS-2 Standard-gainCG0.100.0090.000.00
10VH1Streckeisen STS-2 Standard-gainCG0.100.000.000.00
10LHZStreckeisen STS-2 Standard-gainCG1.00-90.000.000.00
10VMWStreckeisen STS-2 Standard-gainCH0.100.000.000.00
10LH2Streckeisen STS-2 Standard-gainCG1.000.0090.000.00
10LH1Streckeisen STS-2 Standard-gainCG1.000.000.000.00
10HHZStreckeisen STS-2 Standard-gainTG100.00-90.000.000.00
10HH2Streckeisen STS-2 Standard-gainTG100.000.0090.000.00
10HH1Streckeisen STS-2 Standard-gainTG100.000.000.000.00
10BHZStreckeisen STS-2 Standard-gainCG40.00-90.000.000.00
10BH2Streckeisen STS-2 Standard-gainCG40.000.0090.000.00
10BH1Streckeisen STS-2 Standard-gainCG40.000.000.000.00
20LNZKinemetrics FBA ES-T EpiSensor AccelerometerCG1.00-90.000.000.00
20LN2Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.0090.000.00
20LN1Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.000.000.00
20HNZKinemetrics FBA ES-T EpiSensor AccelerometerTG100.00-90.000.000.00
20HN2Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.0090.000.00
20HN1Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.000.000.00
30LDOlower quality chip sensor in Setra boxCW1.000.000.000.00
31LDOCI/PAS pressure sensorCW1.000.000.000.00
PDF, All
Image Unavailable

PDF, Last Month
Image Unavailable

PDF, Month
Image Unavailable

PDF, Current Week
Image Unavailable

PDF, Year
Image Unavailable

Heliplot
Image Unavailable
Latency
Image Unavailable

Availability, Year
Image Unavailable

Availability, Since 1972
Image Unavailable

Availability, 2 Month
Image Unavailable

As part of the annual calibration process, the USGS runs a sequence that includes a random, a step, and several sine wave calibrations.  The USGS analyzes the random binary calibration signal in order to estimate the instrument response.  The figures below show the results from the analysis of the most recent processed calibration at the station.

We use an iterative three-step method to estimate instrument response parameters (poles, zeros, sensitivity and gain) and their associated errors using random calibration signals. First, we solve a coarse non-linear inverse problem using a least squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a non-linear parameter estimation problem to obtain the least squares best-fit Laplace pole/zero/gain model. Third, by applying the central limit theorem we estimate the errors in this pole/zero model by solving the inverse problem at each frequency in a 2/3rds-octave band centered at each best-fit pole/zero frequency. This procedure yields error estimates of the 99% confidence interval.

LocChanCal DateEpoch-SpanGradeAmp Nominal Error (dB)Amp Best Fit Error (dB)Phase Nominal Error (degree)Phase Best Fit Error (degree)SensorCal Type
00BHZ2014:1192011:120 to No Ending TimeA0.0186470.00837110.0588960.1164254000Random
00BH22014:1192011:120 to No Ending TimeA0.0102320.00763250.0637380.08178954000Random
00BH12014:1192011:120 to No Ending TimeA0.00944170.00715560.0623550.08107154000Random
10BHZ2014:1202011:120 to No Ending TimeA0.0155140.0142720.0789760.10022STS-2-SGRandom
  1. Current Issues
    High noise on the LN1 Episensor component.
  2. 2011-05-02
    Upgraded to Q330 digitizer.
  3. 2010-09-27
    Maintenance trip. KS54000 fixed.
  4. 2009-11-06
    KS54000 is no longer functioning.