Seismic Network Operations

IU KMBO

Kilima Mbogo, Kenya

IU KMBO commences operations on: 1995,260

Country Flag
Host: University of Nairobi
Latitude: -1.127
Longitude: 37.252
Elevation: 1950
Datalogger: Q330
Broadband: STS-1VBB_w/E300
Accelerometer: FBA_ES-T_EpiSensor_Accelerometer
Telemetry Status at the NEIC: No Data In More Than 24 Hours
Station Photo Station Photo Station Photo 

Vault Condition: The vault is at the end of a 40 meter concrete lined tunnel dug into a mountain side. A dehumidifier is installed. The pier is attached to the bedrock.

Site Geology: Gneiss

Location CodeChannel CodeInstrumentFlagsSample RateDipAzimuthDepth
10BH1Streckeisen STS-2 High-gainCG40.000.001.0020.00
00BH1Streckeisen STS-1VBB w/E300CG20.000.000.0020.00
10BH2Streckeisen STS-2 High-gainCG40.000.0091.0020.00
00BH2Streckeisen STS-1VBB w/E300CG20.000.0090.0020.00
10BHZStreckeisen STS-2 High-gainCG40.00-90.000.0020.00
00BHZStreckeisen STS-1VBB w/E300CG20.00-90.000.0020.00
10HH1Streckeisen STS-2 High-gainTG100.000.001.0020.00
10HH2Streckeisen STS-2 High-gainTG100.000.0091.0020.00
10HHZStreckeisen STS-2 High-gainTG100.00-90.000.0020.00
20HN1Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.000.0020.00
20HN2Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.0090.0020.00
20HNZKinemetrics FBA ES-T EpiSensor AccelerometerTG100.00-90.000.0020.00
31LDOCI/PAS pressure sensorCW1.000.000.000.00
10LH1Streckeisen STS-2 High-gainCG1.000.001.0020.00
00LH1Streckeisen STS-1VBB w/E300CG1.000.000.0020.00
10LH2Streckeisen STS-2 High-gainCG1.000.0091.0020.00
00LH2Streckeisen STS-1VBB w/E300CG1.000.0090.0020.00
10LHZStreckeisen STS-2 High-gainCG1.00-90.000.0020.00
00LHZStreckeisen STS-1VBB w/E300CG1.00-90.000.0020.00
20LN1Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.000.0020.00
20LN2Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.0090.0020.00
20LNZKinemetrics FBA ES-T EpiSensor AccelerometerCG1.00-90.000.0020.00
10VH1Streckeisen STS-2 High-gainCG0.100.001.0020.00
00VH1Streckeisen STS-1VBB w/E300CG0.100.000.0020.00
10VH2Streckeisen STS-2 High-gainCG0.100.0091.0020.00
00VH2Streckeisen STS-1VBB w/E300CG0.100.0090.0020.00
10VHZStreckeisen STS-2 High-gainCG0.10-90.000.0020.00
00VHZStreckeisen STS-1VBB w/E300CG0.10-90.000.0020.00
00VM1Streckeisen STS-1VBB w/E300CH0.100.000.0020.00
00VM2Streckeisen STS-1VBB w/E300CH0.100.000.0020.00
10VMUStreckeisen STS-2 High-gainCH0.100.000.0020.00
10VMVStreckeisen STS-2 High-gainCH0.100.000.0020.00
10VMWStreckeisen STS-2 High-gainCH0.100.000.0020.00
00VMZStreckeisen STS-1VBB w/E300CH0.100.000.0020.00
PDF, All
Image Unavailable

PDF, Last Month
Image Unavailable

PDF, Month
Image Unavailable

PDF, Current Week
Image Unavailable

PDF, Year
Image Unavailable

Heliplot
Image Unavailable
Latency
Image Unavailable

Availability, Year
Image Unavailable

Availability, Since 1972
Image Unavailable

Availability, 2 Month
Image Unavailable

As part of the annual calibration process, the USGS runs a sequence that includes a random, a step, and several sine wave calibrations.  The USGS analyzes the random binary calibration signal in order to estimate the instrument response.  The figures below show the results from the analysis of the most recent processed calibration at the station.

We use an iterative three-step method to estimate instrument response parameters (poles, zeros, sensitivity and gain) and their associated errors using random calibration signals. First, we solve a coarse non-linear inverse problem using a least squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a non-linear parameter estimation problem to obtain the least squares best-fit Laplace pole/zero/gain model. Third, by applying the central limit theorem we estimate the errors in this pole/zero model by solving the inverse problem at each frequency in a 2/3rds-octave band centered at each best-fit pole/zero frequency. This procedure yields error estimates of the 99% confidence interval.

LocChanCal DateEpoch-SpanGradeAmp Nominal Error (dB)Amp Best Fit Error (dB)Phase Nominal Error (degree)Phase Best Fit Error (degree)SensorCal Type
00BH12014:1382014:134 to No Ending TimeA0.0164540.0126550.125350.20544STS1VBBE3Random
00BH12010:120 2010:105 to No Ending TA0.0231270.00854820.150690.17793 STS1VBBE3Random
00BH22010:118 2010:105 to No Ending TA0.0241250.0105930.14080.20253 STS1VBBE3Random
00BHZ2010:118 2010:105 to No Ending TA0.0185640.00864690.137170.18099 STS1VBBE3Random
10BHZ2010:120 2010:105 to No Ending TA0.0167150.0145770.0912870.10173 STS-2-HGRandom
00BH22014:1382014:134 to No Ending TimeA0.016140.00928290.146370.088324STS1VBBE3Random
00BHZ2014:1382014:134 to No Ending TimeA0.0171850.0087740.140080.11941STS1VBBE3Random
10BHZ2014:1392014:134 to No Ending TimeA0.0165960.0142050.0868260.11949STS-2-HGRandom
  1. Current Issues
    Lowered long-period response for ?H1 STS-1 channels. The ?H1 STS-1 channel started experiencing harmonic oscillations in early December 2011. There may be a loss of vacuum on the STS-1 channels and water getting into the vault. Vault repair work is being planned. LN2 channel appears to be bad.
  2. 2010-04-22
    Upgraded to Q330 digitizer.