Seismic Network Operations

IU GNI

Garni, Armenia

IU GNI commences operations on: 1991,191

Country Flag
Host: National Survey for Seismic Protection
Latitude: 40.148
Longitude: 44.741
Elevation: 1609
Datalogger: Q330
Broadband: STS-1VBB_w/E300
Accelerometer: FBA_ES-T_EpiSensor_Accelerometer
Telemetry Status at the NEIC: No Data In More Than 24 Hours
Station Photo Station Photo Station Photo 

Vault Condition: Vault is located 250 meters inside a mountain with approximately 60 meters of overburden. Seismometers are in a small room along side the tunnel and are mounted on piers. The piers are not isolated from the floor, but the floor is attached to bedrock. Entrance to the tunnel is through a building built into the hillside.

Site Geology: Alternating beds of basalt and tuff.

Location CodeChannel CodeInstrumentFlagsSample RateDipAzimuthDepth
10VMWTrillium 240 broad bandCH0.100.000.00100.00
10VMVTrillium 240 broad bandCH0.100.000.00100.00
10VMUTrillium 240 broad bandCH0.100.000.00100.00
10VHZTrillium 240 broad bandCG0.10-90.000.00100.00
10VH2Trillium 240 broad bandCG0.100.0090.00100.00
10VH1Trillium 240 broad bandCG0.100.000.00100.00
10LHZTrillium 240 broad bandCG1.00-90.000.00100.00
10LH2Trillium 240 broad bandCG1.000.0090.00100.00
10LH1Trillium 240 broad bandCG1.000.000.00100.00
10HHZTrillium 240 broad bandTG100.00-90.000.00100.00
10HH2Trillium 240 broad bandTG100.000.0090.00100.00
10HH1Trillium 240 broad bandTG100.000.000.00100.00
10BHZTrillium 240 broad bandCG40.00-90.000.00100.00
10BH2Trillium 240 broad bandCG40.000.0090.00100.00
10BH1Trillium 240 broad bandCG40.000.000.00100.00
00VMZStreckeisen STS-1VBB w/E300CH0.100.000.00100.00
00VM2Streckeisen STS-1VBB w/E300CH0.100.000.00100.00
00VM1Streckeisen STS-1VBB w/E300CH0.100.000.00100.00
00VHZStreckeisen STS-1VBB w/E300CG0.10-90.000.00100.00
00VH2Streckeisen STS-1VBB w/E300CG0.100.0090.00100.00
00VH1Streckeisen STS-1VBB w/E300CG0.100.000.00100.00
00LHZStreckeisen STS-1VBB w/E300CG1.00-90.000.00100.00
00LH2Streckeisen STS-1VBB w/E300CG1.000.0090.00100.00
00LH1Streckeisen STS-1VBB w/E300CG1.000.000.00100.00
00BHZStreckeisen STS-1VBB w/E300CG20.00-90.000.00100.00
00BH2Streckeisen STS-1VBB w/E300CG20.000.0090.00100.00
00BH1Streckeisen STS-1VBB w/E300CG20.000.000.00100.00
20LNZKinemetrics FBA ES-T EpiSensor AccelerometerCG1.00-90.000.00100.00
20LN2Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.0090.00100.00
20LN1Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.000.00100.00
20HNZKinemetrics FBA ES-T EpiSensor AccelerometerTG100.00-90.000.00100.00
20HN2Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.0090.00100.00
20HN1Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.000.00100.00
31LDOCI/PAS pressure sensorCW1.000.000.000.00
PDF, All
Image Unavailable

PDF, Last Month
Image Unavailable

PDF, Month
Image Unavailable

PDF, Current Week
Image Unavailable

PDF, Year
Image Unavailable

Heliplot
Image Unavailable
Latency
Image Unavailable

Availability, Year
Image Unavailable

Availability, Since 1972
Image Unavailable

Availability, 2 Month
Image Unavailable

As part of the annual calibration process, the USGS runs a sequence that includes a random, a step, and several sine wave calibrations.  The USGS analyzes the random binary calibration signal in order to estimate the instrument response.  The figures below show the results from the analysis of the most recent processed calibration at the station.

We use an iterative three-step method to estimate instrument response parameters (poles, zeros, sensitivity and gain) and their associated errors using random calibration signals. First, we solve a coarse non-linear inverse problem using a least squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a non-linear parameter estimation problem to obtain the least squares best-fit Laplace pole/zero/gain model. Third, by applying the central limit theorem we estimate the errors in this pole/zero model by solving the inverse problem at each frequency in a 2/3rds-octave band centered at each best-fit pole/zero frequency. This procedure yields error estimates of the 99% confidence interval.

LocChanCal DateEpoch-SpanGradeAmp Nominal Error (dB)Amp Best Fit Error (dB)Phase Nominal Error (degree)Phase Best Fit Error (degree)SensorCal Type
10BHZ2010:282 2010:280 to No Ending TA0.013760.00749230.106150.084687 TR240Random
00BH12010:281 2010:280 to No Ending TA0.0133730.00887170.105210.119 STS1VBBE3Random
00BH22010:281 2010:280 to No Ending TA0.0152390.00874390.10770.14528 STS1VBBE3Random
00BHZ2010:281 2010:280 to No Ending TA0.0164260.0111720.127440.18885 STS1VBBE3Random
00BHZ2014:0782012:053 to No Ending TimeA0.0193850.0111070.183360.19091STS1VBBE3Random
00BH22014:0782012:053 to No Ending TimeA0.0230220.00819410.160010.17597STS1VBBE3Random
00BH12014:0782012:053 to No Ending TimeA0.0258760.0138410.181950.08491STS1VBBE3Random
10BHZ2014:0792012:053 to No Ending TimeA0.0103340.007650.137010.088497TR240Random
  1. Current Issues
    STS-1 components show LP pulsing.
  2. 2010-10-15
    Upgraded to Q330 digitizer.