Seismic Network Operations


Cathedral Cave, Missouri, USA

IU CCM commences operations on: 1989,209

Country Flag
Host: St. Louis University
Latitude: 38.056
Longitude: -91.245
Elevation: 222
Datalogger: Q330
Broadband: STS-1VBB_w/E300
Accelerometer: FBA_ES-T_EpiSensor_Accelerometer
Telemetry Status at the NEIC: Last Data In Less Than 10 Minutes
Station Photo Station Photo Station Photo Station Photo 

Vault Condition: The seismograph station is located in Cathedral Cave in the Onondaga Cave State Park in Missouri. This is a large cave open to tourists. Temperature and humidity are stable. Seismometers are on concrete pads attached to bedrock.

Site Geology: Located in upper Cambrian and lower Ordovician Gasconade Dolomite. Thick bedded cherty dolomite ranges from 50-70 meters.

Location CodeChannel CodeInstrumentFlagsSample RateDipAzimuthDepth
20LNZKinemetrics FBA ES-T EpiSensor AccelerometerCG1.00-90.000.0051.00
20HNZKinemetrics FBA ES-T EpiSensor AccelerometerTG100.00-90.000.0051.00
10VHZStreckeisen STS-2.5CG0.10-90.000.0051.00
10LHZStreckeisen STS-2.5CG1.00-90.000.0051.00
10HHZStreckeisen STS-2.5TG100.00-90.000.0051.00
10BHZStreckeisen STS-2.5CG40.00-90.000.0051.00
00VHZStreckeisen STS-1VBB w/E300CG0.10-90.000.0051.00
00LHZStreckeisen STS-1VBB w/E300CG1.00-90.000.0051.00
00BHZStreckeisen STS-1VBB w/E300CG20.00-90.000.0051.00
31LDOCI/PAS pressure sensorCW1.000.000.0051.00
30LDOlower quality chip sensor in Setra boxCW1.000.000.0051.00
20LN2Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.0090.0051.00
20LN1Kinemetrics FBA ES-T EpiSensor AccelerometerCG1.000.000.0051.00
20HN2Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.0090.0051.00
20HN1Kinemetrics FBA ES-T EpiSensor AccelerometerTG100.000.000.0051.00
10VMWStreckeisen STS-2.5CH0.100.000.0051.00
10VMVStreckeisen STS-2.5CH0.100.000.0051.00
10VMUStreckeisen STS-2.5CH0.100.000.0051.00
10VH2Streckeisen STS-2.5CG0.100.0090.0051.00
10VH1Streckeisen STS-2.5CG0.100.000.0051.00
10LH2Streckeisen STS-2.5CG1.000.0090.0051.00
10LH1Streckeisen STS-2.5CG1.000.000.0051.00
10HH2Streckeisen STS-2.5TG100.000.0090.0051.00
10HH1Streckeisen STS-2.5TG100.000.000.0051.00
10BH2Streckeisen STS-2.5CG40.000.0090.0051.00
10BH1Streckeisen STS-2.5CG40.000.000.0051.00
00VMZStreckeisen STS-1VBB w/E300CH0.100.000.0051.00
00VM2Streckeisen STS-1VBB w/E300CH0.100.000.0051.00
00VM1Streckeisen STS-1VBB w/E300CH0.100.000.0051.00
00VH2Streckeisen STS-1VBB w/E300CG0.100.0090.0051.00
00VH1Streckeisen STS-1VBB w/E300CG0.100.000.0051.00
00LH2Streckeisen STS-1VBB w/E300CG1.000.0090.0051.00
00LH1Streckeisen STS-1VBB w/E300CG1.000.000.0051.00
00BH2Streckeisen STS-1VBB w/E300CG20.000.0090.0051.00
00BH1Streckeisen STS-1VBB w/E300CG20.000.000.0051.00
PDF, All
Image Unavailable

PDF, Last Month
Image Unavailable

PDF, Month
Image Unavailable

PDF, Current Week
Image Unavailable

PDF, Year
Image Unavailable

Image Unavailable
Image Unavailable

Availability, Year
Image Unavailable

Availability, Since 1972
Image Unavailable

Availability, 2 Month
Image Unavailable

As part of the annual calibration process, the USGS runs a sequence that includes a random, a step, and several sine wave calibrations.  The USGS analyzes the random binary calibration signal in order to estimate the instrument response.  The figures below show the results from the analysis of the most recent processed calibration at the station.

We use an iterative three-step method to estimate instrument response parameters (poles, zeros, sensitivity and gain) and their associated errors using random calibration signals. First, we solve a coarse non-linear inverse problem using a least squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a non-linear parameter estimation problem to obtain the least squares best-fit Laplace pole/zero/gain model. Third, by applying the central limit theorem we estimate the errors in this pole/zero model by solving the inverse problem at each frequency in a 2/3rds-octave band centered at each best-fit pole/zero frequency. This procedure yields error estimates of the 99% confidence interval.

LocChanCal DateEpoch-SpanGradeAmp Nominal Error (dB)Amp Best Fit Error (dB)Phase Nominal Error (degree)Phase Best Fit Error (degree)SensorCal Type
00BH22013:1632012:166 to No Ending TimeA0.017540.00860050.137660.18275STS1VBBE3Random
00BH12013:1632012:166 to No Ending TimeA0.016920.00902340.136610.12725STS1VBBE3Random
00BHZ2013:1632012:166 to No Ending TimeA0.0168260.00903320.135840.13072STS1VBBE3Random
  1. 2012-06-14
    The STS-2.5 and Episensor were both replaced due to noise issues.
  2. 2011-10-05
    New fiber connection installed and station is back online.
  3. 2011-07-20
    Upgraded to Q330 digitizer