Seismic Network Operations

IU ANMO

Albuquerque, New Mexico, USA

IU ANMO commences operations on: 1989,241

Country Flag
Host: US Geological Survey
Latitude: 34.946
Longitude: -106.457
Elevation: 1820
Datalogger: Q330
Broadband: KS-54000
Accelerometer: FBA_ES-T_EpiSensor_Accelerometer
Telemetry Status at the NEIC: Last Data In Less Than 10 Minutes
Station Photo Station Photo Station Photo 

Vault Condition: On 30 Oct 1992 the very short-period seismometers (Geotech Model GS-13) were relocated in a surface vault approximately 100 meters distant from the borehole. The seismometers are located on a concrete floor poured on top of exposed granite rock. Vault is covered with about 1 meter of earth. Temperature and humidity are stable, however, strong winds cause high frequency background noise. Prior to this time the very short-period system was located in the vault which was used for the ALQ seismograph system. Please note that the coordinates and elevation for this vault are slightly different. This information can be found in the listing for station

Site Geology: Pensylvanian and later sediments overlying a peneplained Pre-Cambrian complex of metasediments and granitic intrusives. Borehole is drilled through 6 meters of alluvial overburden and 94 meters of fractured granite.

Location CodeChannel CodeInstrumentFlagsSample RateDipAzimuthDepth
60HDFValidyne InfrasoundCG100.000.000.000.00
50LWSRM Young 5603B Wind Speed IndicatorCG1.000.000.000.00
50LWDRM Young 5603B Wind Direction IndicatorCG1.000.000.000.00
40LFZApplied Physics Systems Model 113 sb fluxgateCG1.000.000.000.00
20LNZFBA ES-T EpiSensor AccelerometerCG1.00-90.000.000.00
20LN2FBA ES-T EpiSensor AccelerometerCG1.000.0090.000.00
20LN1FBA ES-T EpiSensor AccelerometerCG1.000.000.000.00
10VHZCMG3-TBCG0.10-90.000.0057.00
10VH2CMG3-TBCG0.100.00333.0057.00
10VH1CMG3-TBCG0.100.00243.0057.00
10LHZCMG3-TBCG1.00-90.000.0057.00
10LH2CMG3-TBCG1.000.00333.0057.00
10LH1CMG3-TBCG1.000.00243.0057.00
10BHZCMG3-TBCG40.00-90.000.0057.00
10BH2CMG3-TBCG40.000.00333.0057.00
10BH1CMG3-TBCG40.000.00243.0057.00
00VHZKS-54000CG0.10-90.000.00145.00
00VH2KS-54000CG0.100.0058.00145.00
00VH1KS-54000CG0.100.00328.00145.00
00LHZKS-54000CG1.00-90.000.00145.00
00LH2KS-54000CG1.000.0058.00145.00
00LH1KS-54000CG1.000.00328.00145.00
00BHZKS-54000CG20.00-90.000.00145.00
00BH2KS-54000CG20.000.0058.00145.00
00BH1KS-54000CG20.000.00328.00145.00
10VMZCMG3-TBCH0.100.000.0057.00
10VM2CMG3-TBCH0.100.000.0057.00
10VM1CMG3-TBCH0.100.000.0057.00
00VMZKS-54000CH0.100.000.00145.00
00VM2KS-54000CH0.100.000.00145.00
00VM1KS-54000CH0.100.000.00145.00
30LDOVaisala PTA 427 MicrobarographCW1.000.000.000.00
20HNZFBA ES-T EpiSensor AccelerometerTG100.00-90.000.000.00
20HN2FBA ES-T EpiSensor AccelerometerTG100.000.0090.000.00
20HN1FBA ES-T EpiSensor AccelerometerTG100.000.000.000.00
10HHZCMG3-TBTG100.00-90.000.0057.00
10HH2CMG3-TBTG100.000.00333.0057.00
10HH1CMG3-TBTG100.000.00243.0057.00
PDF, All
Image Unavailable

PDF, Last Month
Image Unavailable

PDF, Last Year
Image Unavailable

PDF, Month
Image Unavailable

PDF, Current Week
Image Unavailable

PDF, Year
Image Unavailable

Heliplot
Image Unavailable
Latency
Image Unavailable

Availability, Year
Image Unavailable

Availability, Since 1972
Image Unavailable

Availability, 2 Month
Image Unavailable

As part of the annual calibration process, the USGS runs a sequence that includes a random, a step, and several sine wave calibrations.  The USGS analyzes the random binary calibration signal in order to estimate the instrument response.  The figures below show the results from the analysis of the most recent processed calibration at the station.

We use an iterative three-step method to estimate instrument response parameters (poles, zeros, sensitivity and gain) and their associated errors using random calibration signals. First, we solve a coarse non-linear inverse problem using a least squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a non-linear parameter estimation problem to obtain the least squares best-fit Laplace pole/zero/gain model. Third, by applying the central limit theorem we estimate the errors in this pole/zero model by solving the inverse problem at each frequency in a 2/3rds-octave band centered at each best-fit pole/zero frequency. This procedure yields error estimates of the 99% confidence interval.

LocChanCal DateEpoch-SpanGradeAmp Nominal Error (dB)Amp Best Fit Error (dB)Phase Nominal Error (degree)Phase Best Fit Error (degree)SensorCal Type
10BHZ2012:073 2011:287 to No Ending TiA0.0134810.010120.0670510.076487 CMG3-T-BRandom
10BH22012:073 2011:287 to No Ending TiA0.0145020.00863060.0756380.091107 CMG3-T-BRandom
10BH12012:073 2011:287 to No Ending TiA0.0128550.00843450.0735460.084404 CMG3-T-BRandom
00BHZ2012:072 2011:049 to No Ending TiA0.00807330.00605040.0683920.056793 54000Random
00BH22012:072 2011:049 to No Ending TiA0.00624160.00624080.0655870.065819 54000Random
00BH12012:072 2011:049 to No Ending TiA0.00750120.00636340.0663390.079048 54000Random
  1. 2008-06-30
    Upgraded to Q330 digitizer.