Seismic Network Operations
IU ANMO
Albuquerque, New Mexico, USA
IU ANMO commences operations on: 1989,241
Host:  US Geological Survey 

Latitude:  34.946 
Longitude:  106.457 
Elevation:  1820 
Datalogger:  Q330 
Broadband:  KS54000 
Accelerometer:  FBA_EST_EpiSensor_Accelerometer 
Telemetry Status at the NEIC:  Last Data In Less Than 10 Minutes 
Vault Condition: On 30 Oct 1992 the very shortperiod seismometers (Geotech Model GS13) were relocated in a surface vault approximately 100 meters distant from the borehole. The seismometers are located on a concrete floor poured on top of exposed granite rock. Vault is covered with about 1 meter of earth. Temperature and humidity are stable, however, strong winds cause high frequency background noise. Prior to this time the very shortperiod system was located in the vault which was used for the ALQ seismograph system. Please note that the coordinates and elevation for this vault are slightly different. This information can be found in the listing for station
Site Geology: Pensylvanian and later sediments overlying a peneplained PreCambrian complex of metasediments and granitic intrusives. Borehole is drilled through 6 meters of alluvial overburden and 94 meters of fractured granite.
Location Code  Channel Code  Instrument  Flags  Sample Rate  Dip  Azimuth  Depth 

10  BH1  CMG3TB  CG  40.00  0.00  243.00  57.00 
00  BH1  KS54000  CG  20.00  0.00  328.00  145.00 
10  BH2  CMG3TB  CG  40.00  0.00  333.00  57.00 
00  BH2  KS54000  CG  20.00  0.00  58.00  145.00 
10  BHZ  CMG3TB  CG  40.00  90.00  0.00  57.00 
00  BHZ  KS54000  CG  20.00  90.00  0.00  145.00 
60  HDF  Validyne Infrasound  CG  100.00  0.00  0.00  0.00 
10  HH1  CMG3TB  TG  100.00  0.00  243.00  57.00 
10  HH2  CMG3TB  TG  100.00  0.00  333.00  57.00 
10  HHZ  CMG3TB  TG  100.00  90.00  0.00  57.00 
20  HN1  FBA EST EpiSensor Accelerometer  TG  100.00  0.00  0.00  0.00 
20  HN2  FBA EST EpiSensor Accelerometer  TG  100.00  0.00  90.00  0.00 
20  HNZ  FBA EST EpiSensor Accelerometer  TG  100.00  90.00  0.00  0.00 
30  LDO  Vaisala PTA 427 Microbarograph  CW  1.00  0.00  0.00  0.00 
40  LFZ  Applied Physics Systems Model 113 sb fluxgate  CG  1.00  0.00  0.00  0.00 
10  LH1  CMG3TB  CG  1.00  0.00  243.00  57.00 
00  LH1  KS54000  CG  1.00  0.00  328.00  145.00 
10  LH2  CMG3TB  CG  1.00  0.00  333.00  57.00 
00  LH2  KS54000  CG  1.00  0.00  58.00  145.00 
10  LHZ  CMG3TB  CG  1.00  90.00  0.00  57.00 
00  LHZ  KS54000  CG  1.00  90.00  0.00  145.00 
20  LN1  FBA EST EpiSensor Accelerometer  CG  1.00  0.00  0.00  0.00 
20  LN2  FBA EST EpiSensor Accelerometer  CG  1.00  0.00  90.00  0.00 
20  LNZ  FBA EST EpiSensor Accelerometer  CG  1.00  90.00  0.00  0.00 
50  LWD  RM Young 5603B Wind Direction Indicator  CG  1.00  0.00  0.00  0.00 
50  LWS  RM Young 5603B Wind Speed Indicator  CG  1.00  0.00  0.00  0.00 
10  VH1  CMG3TB  CG  0.10  0.00  243.00  57.00 
00  VH1  KS54000  CG  0.10  0.00  328.00  145.00 
10  VH2  CMG3TB  CG  0.10  0.00  333.00  57.00 
00  VH2  KS54000  CG  0.10  0.00  58.00  145.00 
10  VHZ  CMG3TB  CG  0.10  90.00  0.00  57.00 
00  VHZ  KS54000  CG  0.10  90.00  0.00  145.00 
10  VM1  CMG3TB  CH  0.10  0.00  0.00  57.00 
00  VM1  KS54000  CH  0.10  0.00  0.00  145.00 
10  VM2  CMG3TB  CH  0.10  0.00  0.00  57.00 
00  VM2  KS54000  CH  0.10  0.00  0.00  145.00 
10  VMZ  CMG3TB  CH  0.10  0.00  0.00  57.00 
00  VMZ  KS54000  CH  0.10  0.00  0.00  145.00 
PDF, Last Month
PDF, Last Year
PDF, Month
PDF, Current Week
PDF, Year
Availability, Since 1972
Availability, 2 Month
As part of the annual calibration process, the USGS runs a sequence that includes a random, a step, and several sine wave calibrations. The USGS analyzes the random binary calibration signal in order to estimate the instrument response. The figures below show the results from the analysis of the most recent processed calibration at the station.
We use an iterative threestep method to estimate instrument response parameters (poles, zeros, sensitivity and gain) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a localminimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least squares bestfit Laplace pole/zero/gain model. Third, by applying the central limit theorem we estimate the errors in this pole/zero model by solving the inverse problem at each frequency in a 2/3rdsoctave band centered at each bestfit pole/zero frequency. This procedure yields error estimates of the 99% confidence interval.
Loc  Chan  Cal Date  EpochSpan  Grade  Amp Nominal Error (dB)  Amp Best Fit Error (dB)  Phase Nominal Error (degree)  Phase Best Fit Error (degree)  Sensor  Cal Type 

10  BHZ  2012:073  2011:287 to No Ending Ti  A  0.013481  0.01012  0.067051  0.076487  CMG3TB  Random 
10  BH2  2012:073  2011:287 to No Ending Ti  A  0.014502  0.0086306  0.075638  0.091107  CMG3TB  Random 
10  BH1  2012:073  2011:287 to No Ending Ti  A  0.012855  0.0084345  0.073546  0.084404  CMG3TB  Random 
00  BHZ  2012:072  2011:049 to No Ending Ti  A  0.0080733  0.0060504  0.068392  0.056793  54000  Random 
00  BH2  2012:072  2011:049 to No Ending Ti  A  0.0062416  0.0062408  0.065587  0.065819  54000  Random 
00  BH1  2012:072  2011:049 to No Ending Ti  A  0.0075012  0.0063634  0.066339  0.079048  54000  Random 

20080630Upgraded to Q330 digitizer.