

I. Motivation

- Loading of seismogenic zone and production of arc-magmas driven by ductile deformation and metamorphic reactions at plate interface • Seismic anisotropy can illuminate subduction zone structure and link
- deep processes to geological hazards at the surface • Constraining the seismic anisotropy of mafic blueschists, a key constituent of subducting slabs, will improve imaging of the

II. Materials

- 14 mafic blueschists from 8 exhumed subduction terranes
- 9 epidote blueschists
- 5 lawsonite blueschists
- Variable mineralogies spanning a broad range of the blueschist facies P-T conditions
- Samples display diverse deformation histories preserved as lineation, foliation, and crystallographic preferred orientation (CPO)
- Kinematically oriented thin sections prepared (foliation normal/ lineation parallel) for EBSD analysis

III. Methods

Seismic Anisotropy of Mafic Blueschists: Constraints from Exhumed Rock-Record with Implications for the Subduction Interface

Jason N. Ott¹, Cailey B. Condit¹, Rachel Bernard², Vera Schulte-Pelkum³, and Matej Pec⁴

¹Department of Earth and Space Sciences, University of Washington, Seattle WA ²Geology Department, Amherst College, Amherst MA ³Cooperative Institute for Research in Environmental Sciences and Department of Geological Sciences, University of Colorado, Boulder CO ⁴Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge MA

Blueschists show strong seismic anisotropy (up to 20%), scaling with glaucophane abundance & fabric strength. This suggests potential for improved imaging of subducting slabs with receiver functions.

IV. Results and Discussion

Acknowledgements: Funding for this work is provided by the National Science Foundation Division of Earth Science (NSF Molecular Analysis Facility, which is supported in part by funds from the Molecular Engineering & Sciences Institute, the Clean Darrel S Cowan, Donna Whitney, Kayleigh Harvey, and Joshua