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III. Methods
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I. Motivation
• Loading of seismogenic zone and production of arc-magmas driven 
    by ductile deformation and metamorphic reactions at plate interface
• Seismic anisotropy can illuminate subduction zone structure and link 
    deep processes to geological hazards at the surface
• Constraining the seismic anisotropy of mafic blueschists, a key 
    constituent of subducting slabs, will improve imaging of the 
    subduction zone interface  
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II. Materials
• 14 mafic blueschists
    from 8 exhumed
    subduction terranes
• 9 epidote blueschists
• 5 lawsonite blueschists
• Variable mineralogies
    spanning a broad
    range of the blueschist
    facies P-T conditions
• Samples display diverse
    deformation histories
    preserved as lineation,
    foliation, and crystallo-
    graphic preferred 
    orientation (CPO)
• Kinematically oriented
    thin sections prepared
    (foliation normal/
    lineation parallel) for
    EBSD analysis

Blueschists show strong seismic anisotropy (up to 20%), scaling with glaucophane abundance & fabric 
strength. This suggests potential for improved imaging of subducting slabs with receiver functions.  
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P-Wave Seismic Anisotropy of Mafic Blueschist Samples
AVp Symmetry

Seismic velocity patterns show 
2 symmetry types

1. Fast-axis symmetry: Vpmax
parallel to lineation, plane of
slow velocities normal to 
lineation. Type-IV glaucophane
CPO 

AVp    Glaucophane CPO

AVp    Glaucophane CPO

2. Slow-axis symmetry: Vpmin
  normal to foliation, fast 
  velocities in foliation plane.
  Type-I glaucophane CPO 

IV. Results and Discussion

Top: Seismic anisotropy in Vp (AVp %) of samples in order of increasing anisotropy. Samples with fast-axis 
symmetry display AVp up to ~10%, slow-axis symmetry for samples with AVp ~10-20%. Bottom: sample 
composition in order of increasing anisotropy. Samples ~80% or greater highly anisotropic phases

Seismic anisotropy versus modal abundance of glaucophane, epidote, lawsonite, and
phengite. AVp % increases with increasing glaucophane abundance, but is diluted by
increasing fractions of epidote or lawsonite. No AVp trend with increasing phengite

AVp % versus Modal Abundance
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AVp % versus Fabric Strength (pfJ-Index)
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AVp % vs CPO for each crystallographic axis (measured as pfJ-Index) for glaucophane
epidote, and lawsonite. AVp shows strongest increase with CPO in glaucophane [100] 
and [010] axes, only weakly increases with epidote and lawsonite fabric strength

Rock-Recipe Modeling
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AVp for gln/ep 2-phase models show
monotonic increase with glaucophane
abundance. Vp max/min consistently
oriented due to complementary CPOs
in glaucophane and epidote

AVp for gln/lws 2-phase models show
concave profile with min ~20-40%
glaucophane. Symmetry of anisotropy
(Vp max/min direction) changes at min
due to antithetical gln/lws CPOs

• Mafic blueschists display a broad range of p-wave seismic
anisotropy, ranging from AVp = 6.8 - 19.9% in epidote 
blueschists and AVp = 1.5 - 10.3% in lawsonite blueschists. 

• Blueschist anisotropy is largely governed by glaucophane,
increasing with both glaucophane modal abundance and 
CPO-strength.

• Increasing epidote/lawsonite dilutes bulk anisotropy; this effect 
is most pronounced in lawsonite due to antithetical fast/slow 
Vp-directions in lawsonite CPO versus glaucophane CPO.

• Blueschist anisotropy develops largely from ductile deformation 
and CPO formation in glaucophane by dislocation creep, active 
in glaucophane throughout blueschist stability field.

V. Key Takeaways
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Lawsonite Blueschist GB15-02A (Catalina Schist, CA)
Peak P-T estimate: 0.7-1.0 GPa, 200-300°C
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Epidote Blueschist CY107 (Tinos, GR)
Peak P-T estimate: 1.52-1.97 GPa, 468-510°C
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Glaucophane Deformation Microstructures

Misorientation to mean orientation maps (top L, R) show misorientation 
gradients, subgrain boundaries, and bulging recrystallization structures.
Misorientation distributions (bottom) differ from untextured distribution 
(red curve), with higher frequency of low angle boundaries in neighboring
grain-pairs (subgrain boundary recrystallization). The microstructural
evidence is consistent with CPO-formation by climb-accommodated
dislocation creep throughout blueschist stability field
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