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Figure. (top left) Probability distribution functions 
for the best-fitting Nankai trail. Grey lines are 20km 
contours from Slab 2.0. (bottom left) Observed, 
modeled, and residual baseline rate changes for the 
best-fitting trial for Nankai. (bottom right) 
Comparison of the best-fitting backslip distribution 
to the Yokota et al. (2016) interseismic coupling 
estimate.
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Preliminary results for the propagation rate 
at Cascadia are shown in the two figures to 
the right.

The slip rate profiles shown on the left are 
from cross sections of the deep transition 
zone shown on the right.

The purple and red cross sections around 
43-46°N have the highest propagation rates. 

The green profiles are closer to constant 
resistive stress.

This work aims to improve assessment of earthquake and tsunami hazard at 
subduction zones.

We are trying to better estimate the 
spatial distribution of the fully 
coupled or “locked” zone because:

 the length and width determine 
 the overall size of an earthquake,

 the updip extent has implications 
 for tsunami generation, and

 the downdip slip has implications 
 for more intense ground shaking 
 near populations.

We also want to estimate the spatial distribution and shape of the shallow and 
deep transitional creep zones.

There is a spectrum of slip behaviors observed at subduction zones including: 
coseismic slip, postseismic slip, slow slip, and  steady creep.

Figure. A subduction zone in cross section showing an 
idealized view of the fully coupled or “locked” zone (solid red) 
and the transitional creep zones (dashed red).

Figure. Schematic of the Cascadia subduction 
zone with the boundaries that the inversion solves 
for shown in red (top of locked), blue (bottom of 
locked), and green (bottom of deep transition).

Figure. Illustration of various slip rate profiles using 
the Bruhat & Segall (2017) equation. A slip rate of 0 is 
fully coupled and a slip rate of 1 is fully creeping. The 
different colored lines represent different propagation 
rates of the creep front.

Figure. (a) Tectonic setting of the Nankai 
subduction zone showing locations of 
tremor (Obara et al., 2010), episodic 
short-term SSEs (Nishimura et al., 2013), 
long-term SSEs (Hirose et al., 2010; 
Kobayashi, 2017; Ozawa, 2017; Ozawa et 
al., 2016; Takagi et al., 2015), the inferred 
partially and strongly interseismically 
coupled regions (Yokota et al., 2016), and 
the coseismic slip region for the 1944/46 
earthquakes (Sagiya & Thatcher, 1999). 
White contour lines represent slab depth at 
Nankai in 20 km increments (Hayes et al., 
2012). Cross-sections A-A’ and B-B’ are for 
slip budget estimates in Figure 6. (b) 
Tectonic setting of the Cascadia subduction 
zone showing locations of tremor (Bartlow, 
2020), episodic short-term SSEs (Bartlow, 
2020), estimated coseismic slip region for 
the 1700 earthquake (Wang et al., 2013), 
and the inferred interseismic coupling 
ratio (Lindsey et al., 2021). White contour 
lines represent slab depth at Cascadia in 
20 km increments (Hayes et al., 2018).

Figure. Yokota et al. (2016) interseismic coupling estimate for Nankai, Japan shown in 
shades of red. Dark red indicates areas that are fully coupled. This is an example of a slip 
inversion where it is difficult to delineate the bottom or top edge of the fully coupled zone.

Details about the inversion:
 Markov chain Monte Carlo inversion of interseismic baseline rate changes for the node depths that define:
  the upper boundary of the fully coupled zone (red line in Figure)
  the lower boundary of the fully coupled zone (blue line in Figure), and
  the lower boundary of the deep transitional creep zone (green line in Figure).

Fully Coupled Zone
 The traditional “backslip” model
 of Savage (1983) is used, where
 slip deficit is modeled with 
 imposed slip in the opposite
 sense of long-term motion.

 A patch is defined as fully 
 coupled if the backslip rate 
 equals 1.

 Thus, that patch is not slipping 
 in the interseismic period.

Shallow Transitional 
Creep Zone
 Cannot assume the trench is
 fully creeping.
 
 Boundary element calculation to
 estimate stressing rate on a
 patch based on the backslip rate
 of the other patches.

 Similar to Lindsey et al. (2021).

Deep Transitional Creep Zone
 Define the deep transition zone 
 distribution from fully coupled to fully
 creeping using Bruhat & Segall (2017)
 equation  13d.

 Inversion solves for propagation rate
 (ȧ) at each node.

Fit to data

The observed (left), 
modeled (middle), 
and residual 
(right), baseline 
rate changes for 
our best fitting 
Cascadia trial. 

Comparison to other 
models

Our best-fitting backslip distribution 
compared to Schmalzle et al. (2014) 
and Pollitz & Evans (2017) locking 
estimates. 

Deeper locking between 46-48°N 
and shallow locking between 
43.5-46°N are common features of 
all estimates.

Figure. Probability distribution functions for the best-fitting Cascadia trial. Grey lines 
are 20km contours from Slab 2.0.

Nankai

Cascadia

Interseismic 
velocities are 
projected onto 
baselines connecting 
the GNSS stations.

The rate changes of 
these baselines are 
inverted for 
interseismic 
coupling.

This method removes 
the need to estimate 
the contribution of rigid 
body motion to the velocity field.

The Cascadia field came from Rob 
McCaffrey.

The Nankai field came from Yokota 
et al. (2016).

Numerical simulations indicate that slow slip events can evolve into megathrust 
rupture. It is important to know the spatial relationship of the slow slip zone and 
the fully coupled zone when assessing seismic hazard.

Slip inversions that employ smoothing make 
it difficult to assess where the downdip and 
updip edge of the fully coupled, transitional 
creep, and slow slip zones are located. 

The method presented here helps to address 
this limitation.
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Figure. Viscoelastic cycle and elastic models of horizontal and vertical velocity data at Cascadia 
(Johnson, in prep). a) Vertical data at Cascadia. b) 2D model c) results for the horizontal and vertical, 
viscoelastic and elastic. Viscoelasticity is critical for matching the vertical data and improves the fit to 
horizontal data.

Next Steps

  Incorporate elastic heterogeneity

  Viscoelastic cycle modeling

  Develop a similar inversion for slow slip zone using
  long-term average slow slip velocities

Conclusions

  There appears to be a gap between the
  bottom of the fully coupled zone and the
  top of the deep transition zone at 
  Cascadia.

  The bottom of the fully coupled zone is
  right next to the top of the deep transition
  zone at Nankai.

  The slow slip zone seems to be fully 
  contained within the transition zone at
  Nankai and Cascadia.

  Results are very preliminary, but the
  creep front appears to be propagating 
  towards the bottom of the locked zone in
  southern Washington and northern
  Oregon.

  Elastic only inversions seem to match
  similar non-probabilistic inversions. It is
  likely viscoelasticity will improve fit, 
  especially to vertical data.
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