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This work aims to improve assessment of earthquake and tsunami hazard at Details about the inversion: shallow transition
subduction zones.
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® Markov chain Monte Carlo inversion of interseismic baseline rate changes for the node depths that define:

seismogenic zone

acoretionary o the upper boundary of the fully coupled zone (red line in Figure)

wedge

® We are trying to better estimate the
spatial distribution of the fully

trench o the lower boundary of the fully coupled zone (blue line in Figure), and
coupled or “locked” zone because:

/

/

o the lower boundary of the deep transitional creep zone (green line in Figure).

O the length and width determine

the overall size of an earthquake, Fully Coupled Zone

® The traditional “backslip” model
of Savage (1983) is used, where
slip deficit is modeled with
imposed slip in the opposite
sense of long-term motion.

Deep Transitional Creep Zone

® Define the deep transition zone
distribution from fully coupled to fully
creeping using Bruhat & Segall (2017)
equation 13d.

o the updip extent has implications
for tsunami generation, and

o the downdip slip has implications

for more intense groun d shakin g Figure. A subduction zone in cross section showing an

idealized view of the fully coupled or “locked” zone (solid red)
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Our best-fitting backslip distribution
compared to Schmalzle et al. (2014)
and Pollitz & Evans (2017) locking
estimates.

® The slip rate profiles shown on the left are
from cross sections of the deep transition
zone shown on the right.
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@ Slip inversions that employ smoothing make T St s f et P
it difficult to assess where the downdip and S TN e @® The purple and red cross sections around
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updip edge of the fully coupled, transitional | 43-46°N have the highest propagation rates.

creep, and slow slip zones are located.
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Deeper locking between 46-48°N
and shallow locking between

. 43.5-46°N are common features of = N N
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® The method presented here helps to address
this limitation.
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Figure. Yokota et al. (2016) interseismic coupling estimate for Nankai, Japan shownin N3 o
shades of red. Dark red indicates areas that are fully coupled. This is an example of a slip
inversion where it is difficult to delineate the bottom or top edge of the fully coupled zone.

— Results Conclusions & Next Steps

shallow transition deep transition

Conclusions Next Steps

probability

There appears to be a gap between the 1 Incorporate elastic heterogeneity
bottom of the fully coupled zone and the

top of the deep transition zone at 2 Viscoelastic cycle modeling
Cascadia.

slow slip zone

@ Interseismic
velocities are %
projected onto 3B5T
baselines connecting 2/
the GNSS stations. 345]

34

Figure. (top left) Probability distribution functions
for the best-fitting Nankai trail. Grey lines are 20km
contours from Slab 2.0. (bottom left) Observed,
modeled, and residual baseline rate changes for the
best-fitting trial for Nankai. (bottom right)
Comparison of the best-fitting backslip distribution
to the Yokota et al. (2016) interseismic coupling
estimate.

Develop a similar inversion for slow slip zone using
The bottom of the fully coupled zone is long-term average slow slip velocities
right next to the top of the deep transition
zone at Nankai.

@® The rate changes of
these baselines are
inverted for oy
Interseismic i —
coupling.

Figure. Viscoelastic cycle and elastic models of horizontal and vertical velocity data at Cascadia
(Johnson, in prep). a) Vertical data at Cascadia. b) 2D model c) results for the horizontal and vertical,

The slow Sllp zone seems to be flllly ﬁis;:ic;ilrelfs(a 21;;1 elastic. Viscoelasticity is critical for matching the vertical data and improves the fit to

contained within the transition zone at | | _
. . a. c. viscoelastic cycle model - elastic model
Nankai and Cascadia. | . } -
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Results are very preliminary, but the T _ -\ :
creep front appears to be propagating : ' i
towards the bottom of the locked zone in
southern Washington and northern
Oregon.

@® This method removes Cascadia
the need to estimate o velocities | o beline rate changes (mm/yr)
the contribution of rigid ¥ 10 mmiyr '
body motion to the velocity field. ' |
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@ The Cascadia field came from Rob
McCaffrey.

vertical vertical
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Elastic only inversions seem to match
similar non-probabilistic inversions. It is
likely viscoelasticity will improve fit,
especially to vertical data.

@® The Nankali field came from Yokota
et al. (2016).
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