Constraining the state of locking of Northern Cascadia megathrust using long-term offshore borehole fluid pressure monitoring

Tianhaozhe Sun¹, Earl Davis¹, Martin Heesemann², Keir Becker³, and Angela Schlesinger²

¹Pacific Geoscience Centre, Geological Survey of Canada ²Ocean Networks Canada, University of Victoria

³Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami

U1364A site location and CORK observatory configuration

Borehole fluid pressure monitoring as a geodetic tool

No pressure transients despite large dynamic stressing

Date A lack of pressure transients/offsets indicates no dynamic triggering of slip (McGuire et al., 2018), in sharp **contrast with** Hikurangi, Nankai, Costa Rica, etc. (Wallace, 2020; Araki et al., 2017; Davis et al., 2015).

Determining the "detection threshold" based on pressure noise-floor level

- Based on probability theory, we can use $(\mu-3\sigma, \mu+3\sigma)$ to exclude the range of "extremely unlikely"
- μ +3 σ represents a **detection threshold** of **0.08 kPa** (equivalent to 16 nanostrain)

Determining the "resolvable slip" based on simple dislocation modeling

Determining the "resolvable slip" based on simple dislocation modeling

• Thanks! Questions?

With the heterogeneous upper-plate rigidity, the slip is more effective in generating volumetric strain.

Our conclusion is hence further strengthened.

Examples of fluid pressure transients recorded by similar CORK observatories at other subduction margins

