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Here we compare Direct Green’s Function seismograms on a spherically symmetric reference model with the
corresponding analytic solutions on a homogeneous full space. The reference model is a homogeneous sphere of
radius 300 km with κ0 = 50 GPa, µ0 = 30 GPa, and ρ0 = 3000 kg m−3. We synthesize the seismic wavefield using
512 complex-valued frequencies ω′ just below the real axis (ω′ = ω − iγ) with a maximum real-part of 2π/∆t Hz
(∆t = 0.07 sec) and a maximum spherical harmonic degree of 3000. The source and observation-point depths are
19 km and 29 km, respectively.

A Cartesian coordinate system is erected such that the z−axis passes through the pole of the spherical model.
A point source with a step function time dependence is placed at 20 km depth on the z−axis, and a receiver is
placed at offset r from the z−axis as measured from the source. For the Direct Green’s Function, the velocity of
a given component is given by the time derivative of eqn 37 of Friederich and Dalkolmo (1995) with an acausal
frequency filter consisting of a cosine taper between the corner frequency and twice the corner frequency. For an
isotropic source with the diagonal elements of the moment tensor equal to M(t) = M0H(t), the analytic solution
for vector displacement in a homogeneous full space is the Stokes solution given by eqn (4.29) of Aki and Richards
(1980), which in the frequency domain takes the form
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where vp =
√

(κ+ (4/3)µ)/ρ and ω′ = ω − iγ. For a shear dislocation on a vertical plane, the non-zero moment
tensor components are Mxy = Myx = M0H(t), where x and y are horizontal coordinates. For a receiver offset from
the source a distance r in the x−direction, the analytic solution for the transverse-component displacement in the
frequency domain is again derived from eqn (4.29) of Aki and Richards (1980):
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where vs =
√

(µ)/ρ. Attenuation in the homogeneous full space is simulated by perturbing seismic wave velocities
by an amount proportional to the bulk and shear anelasticities Q−1κ and Q−1β , e.g. eqns (9.57)-(9.60) of Dahlen and
Tromp (1998).

For an isotropic source, Figures 1a show a comparison between the Direct Green’s Function and analytic velocity
at source-receiver distances from 10 to 40 km using Qβ = 25 and Qκ = 2.5 × Qβ at a reference frequency of 1
Hz. The good agreement indicates that the Direct Green’s Function accurately simulates P-wave propagation and
attenuation. Small-amplitude arrivals long after the P-wave pulse are reflections off the free surface.

Figures 1b shows a comparison between the Direct Green’s Function and analytic solution for transverse-
component velocity using Qβ = 25. These comparisons indicate that S-wave propagation and attenuation are
well replicated by the Direct Green’s Function. The first term in eqn 2 represents the S-wave pulse, which domi-
nates in the far field. Eqn 2 predicts that in the near field, a small amount of energy arrives at the P-wave velocity
ahead of the S-wave pulse, and this feature is also replicated in the mode sum. Figure 2 shows the same comparison
with Qβ = Qκ =∞

In these examples, the source-receiver incidence angle varies from 0 (for offsets of 10 km) to 76◦ (for offsets of 40
km), showing that the Direct Green’s Function method is handling both vertical and horizontal wave propagation.
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Figure 1: Comparison between Direct Green’s Functrion and analytic velocity seismograms obtained for the indi-
cated source types and source-receiver offsets (section 2.5). A corner frequency ωr = 2π × 1.43 rad/sec is used. (a)
Isotropic source, Qβ = 25, Qκ = 2.5×Qβ . (b) Shear dislocation, Qβ = 25.
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Figure 2: Comparison between Direct Green’s Functrion and analytic velocity seismograms obtained for the indi-
cated source types and source-receiver offsets (section 2.5). A corner frequency ωr = 2π × 1.43 rad/sec is used. (a)
Isotropic source, Qβ =∞, Qκ =∞. (b) Shear dislocation, Qβ =∞.
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