- Earthquake Engineering Issues for the US
- Earthquake Engineering Issues for the Pacific Northwest
- Key Issue for Both: Minimizing Changes in Resulting Design Values, Unless Warranted

Earthquake Engineering Issues for the US

- NERHP Provisions and ASCE 7-10 Uses:
 - "Risk-targeted" Maximum Considered Earthquake (MCE_R) Ground Motion Spectral Response Acceleration maps and associated design parameters
- Targeting Uniform Risk of Collapse
 - 1% in 50 year collapse risk
- Calculated Assuming a Generic Collapse Fragility with:
 - 10% collapse probability given MCE ground motions

Calculating MCE_R Ground Motions Calculated Iteratively by Combining:

Building Fragility Curves defined by Project '07

GM Hazard Curves (e.g., from USGS)

Earthquake Engineering Issues for the US

- Risk-targeted Spectral Response Accelerations
 for:
 - Functional Level EQ
 - Service Level EQ
- Maximum Direction Spectral Response
 Accelerations

Earthquake Engineering Issues for the US

- Multiple-point Spectrum (up to 10 seconds, if possible), including:
 - TL
 - Near source ground motions
- Updated Site Amplification Factors
- Basin Effects for Multiple Locations

- Existing and New, hypothesized Fault Updates
- Approximate 50-year Probabilities

- PNW Basin Effects (Seattle, Everett, etc.)
- CSZ Attenuation Relationships and Their Impact
 on Design Values

- Update on CSZ Durations and Their Effect on Building Performance
 - Work together to develop a meaningful design parameter
- CSZ Ground Motion Records for use in Nonlinear Response History Analysis