Applications of ongoing GPS deployments for Cascadia seismic hazards assessment

Tim Melbourne Central Washington University Interseismic

Deformation

Four levels of GPS Data Analyses

Nearfield deformation from April 1997 creep event

Spatial inversion of geodetic data:

$$R(\mathbf{x},\lambda) = \left\|\sum^{-1/2} (\mathbf{A}\mathbf{x} - \mathbf{b})\right\|^2 + \lambda^{-2} \left\|\nabla^2 \mathbf{x}\right\|^2$$

b data
x slip
A Green's fns
λ misfit/roughness
Σ data covariance

Mw=6.4;max=1.6cm

Mw=6.6;max=2cm

Mw=6.6;max=1.9cm 0 <u>S lip</u>4cm

Mw=6.8;max=3.5

Mw=6.4;max=1.6cm 0 Slip 4cm

km 0 50

Slip

Central Oregon and Northern California

Real-time GPS Data available for tsunami warning systems

New Plate Boundary Observatory GPS deployments

~150-~190 non-PBO GPS deployments

PANGA 2002

Stations processed by CWU- 2005 (plus 450 PBO)

By end of next year:250+ cGPS instrumentsVariable monumentationCurrent interseismic strain:Puget/forearc hazardsYFB N-S convergenceSSE moment budgetsReal-time data feeds-tsunami apps

