From earthquake catalogs to hazard: an overview of the seismicity-derived component of the hazard calculation AND questions and discussion about earthquake catalogs for 2014 NSHM update

Morgan Moschetti, Mark Petersen and Chuck Mueller
USGS - Golden, CO
2014 NSHM update, IMW workshop
6/14/2012
USGS hazard model: Western US

Shallow Seismicity (d < 35 km)
1) Declustered catalog $M_W \geq 4$
2) Completeness:
 - Coastal CA: 1933, 1900, 1850
 - Other WUS: 1963, 1930, 1850
3) $b = 0.80$
4) 10^a grids (spatial distribution seismicity rates):
 - Coastal CA
 - Extensional WUS
 - Non-extensional WUS
 Adjust for mag uncertainty
 Background “floor” (five zones)
5) 50-km smoothing (+ anisotropic in CA)
 $M_{\text{max}} = 7.0$ mostly, < 7.0 near faults

Ground motion
- Crustal: NGA (out to 200 km)
- Subduction: various
- Site condition $V_{s30} = 760\text{m/s}$

Faults
- IMW: ~ 300 crustal faults
- PNW: crustal + megathrust
- CA: UCERF/WGCEP
Distribution for $M_{\text{char}} \geq 6.5$
Distribution for dip: 40, 50, 60 deg
67% char + 33% GR for CA,IMW

Deep Seismicity
- Geodetic Sources
USGS hazard model: Western US

Shallow Seismicity (d < 35 km)
1) Declustered catalog $M_W \geq 4$
2) Completeness:
 - Coastal CA: 1933, 1900, 1850
 - Other WUS: 1963, 1930, 1850
3) $b = 0.80$
4) 10^a grids (spatial distribution seismicity rates):
 - Coastal CA
 - Extensional WUS
 - Non-extensional WUS
 - Adjust for mag uncertainty
 - Background “floor” (five zones)
5) 50-km smoothing (+ anisotropic in CA)
 - $M_{max} = 7.0$ mostly, < 7.0 near faults

Faults
- IMW: ~ 300 crustal faults
- PNW: crustal + megathrust
- CA: UCERF/WGCEP
Distribution for $M_{char} \geq 6.5$
Distribution for dip: 40, 50, 60 deg
67% char + 33% GR for CA,IMW

Ground motion
- Crustal: NGA (out to 200 km)
- Subduction: various
- Site condition $V_{s30} = 760\text{ m/s}$

Deep Seismicity
- Geodetic Sources

Geodetic Sources
- Faults
 - IMW: ~ 300 crustal faults
 - PNW: crustal + megathrust
 - CA: UCERF/WGCEP
 - Distribution for $M_{char} \geq 6.5$
 - Distribution for dip: 40, 50, 60 deg
 - 67% char + 33% GR for CA,IMW

- Ground motion
 - Crustal: NGA (out to 200 km)
 - Subduction: various
 - Site condition $V_{s30} = 760\text{ m/s}$

- Deep Seismicity
 - Geodetic Sources
USGS hazard model: Western US

Faults
- IMW: ~ 300 crustal faults
- PNW: crustal + megathrust
- CA: UCERF/WGCEP

Distribution for $M_{\text{char}} \geq 6.5$
Distribution for dip: 40, 50, 60 deg
67% char + 33% GR for CA, IMW

Shallow Seismicity ($d < 35 \text{ km}$)
1) Declustered catalog $M_W \geq 4$
2) Completeness:
 - Coastal CA: 1933, 1900, 1850
 - Other WUS: 1963, 1930, 1850
3) $b = 0.80$
4) 10^a grids (spatial distribution seismicity rates):
 - Coastal CA
 - Extensional WUS
 - Non-extensional WUS
 - Adjust for mag uncertainty
 - Background “floor” (five zones)
5) 50-km smoothing (+ anisotropic in CA)
 $M_{\text{max}} = 7.0$ mostly, < 7.0 near faults

Ground motion
Crustal: NGA (out to 200 km)
Subduction: various
Site condition $V_{s30} = 760 \text{ m/s}$

Deep Seismicity
Geodetic Sources
2008 WUS declustered catalog

Source catalogs in preference order:

Pancha et al (2006): ~200 eqks, M_w 4.8+, 1868-1999 (M_w estimates; recommended @ 2006 wksp)

CGS (Felzer&Cao,2007): ~2100 eqks, M_w & m_L 4+, 1769-2006 (preferred over Pancha in UCERF zone)

Stover, Reagor & Algermissen: ~150 eqks, mag 4+, 1917-1985 (includes many smaller eqks than Stover & Coffman)

PDE: ~550 eqks, mag 4+, 1961-2006 (used for updates)

DNAG: ~150 eqks, mag 4+, 1877-1981

* (we are considering adding the Herrmann Mw catalog)
WUS catalog processing & “agrid”

1) convert magnitude to M_w (as needed; use published rules for active-tectonic regions)
2) concatenate, sort, remove duplicates
3) decluster (G&K) and delete non-tectonic eqks
4) analyze: completeness & b
5) Calculate “agrid”
 - adjust for mag uncertainty
 - smooth (gaussian, 50 km correlation length)
 - include background floor
WUS declustered catalog $M \geq 4$, 1850-2011 (exclude eqks in Coastal CA zone, offshore northern CA, Gulf of CA)
For comparison: IMW test zone
WUS declustered catalog M≥4, 1850-2011

$b = 0.801$
Process for calculating a grids \((10^a\) values\):

- Calculate total number of M4+ earthquakes in 0.1-by-0.1 degree grid cells.
- Calculate cumulative seismicity rate \((10^A)\).
Process for calculating agrids (10^a values)

- Calculate total number of M4+ earthquakes in 0.1-by-0.1 degree grid cells
- Calculate cumulative seismicity rate (10^A)
- Modify rates to account for completeness levels (Weichert method)
- Convert from cumulative to incremental seismicity (10^a)
- Spatially smooth 10^a values
Process for calculating agrids (10^a values)

- Calculate total number of M4+ earthquakes in 0.1-by-0.1 degree grid cells
- Calculate cumulative seismicity rate (10^A)
- Modify rates to account for completeness levels (Weichert method)
- Convert from cumulative to incremental seismicity (10^a)
- Spatially smooth 10^a values

**10^a values represent annual rate of M0 earthquake for each grid cell **
Laterally-variable seismicity rates (agrids) for the smoothed-gridded seismic hazard calculation

- Background model: Use catalog to calculate \(10^a \) for GR distribution.
Issues with earthquake catalogs

✓ Catalog mix
 - Should NSHM 2014 update include more local and regional catalogs? (local knowledge vs. loss of regional/national magnitude consistency)
 - Role of ANSS/PDE catalog?
 - M_W for all moderate eqks (Herrmann)?
 - Utah earthquake catalog (Arabasz)
 - Treatment of Pancha et al. catalog

✓ Non-tectonic and anomalous eqks: We currently delete some Utah coal mining events. Are there more we should know about (at the M4 level)? Are there any issues with induced seismicity? How to model?

✓ Regionalize completeness & b-value analysis?

✓ Corrections for mag uncertainty?

✓ Implementation of background “floor” – 1/3 weighting on adaptive seismicity rate floor value?
Issues with earthquake catalogs

☑ Catalog mix
 • Should NSHM 2014 update include more local and regional catalogs? (local knowledge vs. loss of regional/national magnitude consistency)
 • Role of ANSS/PDE catalog?
 • M_W for all moderate eqks (Herrmann)?
 • Walter Arabasz – Utah earthquake catalog
 • Treatment of Pancha et al. catalog

☑ Non-tectonic and anomalous eqks: We currently delete some Utah coal mining events. Are there more we should know about (at the M4 level)? Are there any issues with induced seismicity? How to model?

☑ Regionalize completeness & b-value analysis?

☑ Corrections for mag uncertainty?

☑ Implementation of background “floor” – 1/3 weighting on adaptive seismicity rate floor value?
Identification of non-tectonic earthquakes

- Special studies & published listings. Examples:
 - Mining-related seismicity (e.g., Colorado; Kirkham & Rogers, ColoradoGS Bulletin, 2000)
 - Fluid injection at Paradox Valley, CO (Ake)

- Ad hoc inquiries about specific events

- Explosion flag in PDE listing
Issues with earthquake catalogs

- Catalog mix
 - Should NSHM 2014 update include more local and regional catalogs? (local knowledge vs. loss of regional/national magnitude consistency)
 - Role of ANSS/PDE catalog?
 - M_W for all moderate eqks (Herrmann)?
 - Walter Arabasz – Utah earthquake catalog
 - Treatment of Pancha et al. catalog

- Non-tectonic and anomalous eqks: We currently delete some Utah coal mining events. Are there more we should know about (at the M4 level)? Are there any issues with induced seismicity? How to model?

- Corrections for mag uncertainty?
- Regionalize completeness & b-value analysis?
- Implementation of background “floor” – 1/3 weighting on adaptive seismicity rate floor value?
CA: uncertainty for (mostly) m_L (from K Felzer’s work)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972-present</td>
<td>~ 0.1</td>
</tr>
<tr>
<td>1932-1971</td>
<td>~ 0.2</td>
</tr>
<tr>
<td>1850-1931</td>
<td>~ 0.3</td>
</tr>
</tbody>
</table>

CEUS: uncertainty for “observed” M_w

| Time Period | $\sigma \left[M | M_{obs} \right]$ |
|-----------------|-------------------------------------|
| 1920–1959 | 0.30 |
| 1960–1975 | 0.15 |
| 1975–1984 | 0.125 |
| 1985–present | 0.10 |

From CEUS-SSC (Chapter 3), citing Johnston (1996) and Harvard M_w catalog
Issues with earthquake catalogs

✓ Catalog mix
 • Should NSHM 2014 update include more local and regional catalogs? (local knowledge vs. loss of regional/national magnitude consistency)
 • Role of ANSS/PDE catalog?
 • \(M_W \) for all moderate eqks (Herrmann)?
 • Walter Arabaz – Utah earthquake catalog
 • Treatment of Pancha et al. catalog

✓ Non-tectonic and anomalous eqks: We currently delete some Utah coal mining events. Are there more we should know about (at the M4 level)? Are there any issues with induced seismicity? How to model?

✓ Corrections for mag uncertainty?

✓ Regionalize completeness & \(b \)-value analysis?

✓ Implementation of background “floor” – 1/3 weighting on adaptive seismicity rate floor value?
Implementation of background floor for seismicity rates

- Floor seismicity rate calculated from M4 events within tectonic regions
- Adaptive (1/3) weighting to floor value applied where smoothed seismicity rates fall below floor value