CHARLESTON, S.C.

Fig 6.1.2–4 CEUS SSC report

CHARLESTON RECENT PUBLICATIONS

- Marple, R.T., 2011, Comment on the companion articles "Finding faults in the Charleston area, South Carolina: 1. Seismological data" by I. Dura-Gomez, I., and P. Talwani and "Finding faults in the Charleston area, South Carolina: 2. Complementary data" by P. Talwani, and I. Dura-Gomez: Seismological Research Letters, v. 82, p. 599-605.
- Talwani, P., 2011, Response to "Comment on the Companion Articles 'Finding Faults in the Charleston Area, South Carolina: 1. Seismological Data' by I. Durá-Gómez and P. Talwani and 'Finding Faults in the Charleston Area, South Carolina: 2. Complementary Data' by P. Talwani and I. Durá-Gómez" by R. Marple: Seismological Research Letters, v. 82, p. 606-608.
- Talwani, P., Hasek, M., Gassman, S., Doar, W. R., III, and Chapman, A., 2011, Discovery of a Sand Blow and Associated Fault in the Epicentral Area of the 1886 Charleston Earthquake: Seismological Research Letters, v. 82, no. 4, p. 589–598.
- Chapman, M.C., and Beale, J.N., 2010, On the geologic structure at the epicenter of the 1886 Charleston, South Carolina, earthquake: *Bulletin of the Seismological Society of America*, v. 100, no. 3, pp. 1010–1030.
- Dura-Gomez, I., and Talwani, P., 2009, Finding faults in the Charleston area, South Carolina: 1. Seismological data: *Seismological Research Letters*, v. 80, no. 5, pp. 883–900.
- Talwani, P., and Dura-Gomez, I., 2009, Finding faults in the Charleston Area, South Carolina: 2. Complementary data, *Seismological Research Letters*, v. 80, no. 5, pp. 901–919.
- Chapman, M.C., and Beale, J.N., 2008, Mesozoic and Cenozoic faulting imaged at the epicenter of the 1886 Charleston, South Carolina earthquake: *Bulletin of the Seismological Society of America*, v. 98, pp. 2533–2542.
- Abstracts
- Gassman, S., Talwani, P., and Hasek, M., 2009, Maximum Magnitudes of Charleston, South Carolina Earthquakes from In-Situ Geotechnical Data: Abstracts Volume from Meeting of Central and Eastern U.S. Earthquake Hazards Program, University of Memphis, Memphis, TN, October 28-29, p. 19.
- Talwani, P., Dura-Gomez, I., Gassman, S., Hasek, M., and Chapman, A., 2008, Studies related to the discovery of a prehistoric sandblow in the epicentral area of the 1886 Charleston SC earthquake: Trenching and geotechnical investigations: *Program and Abstracts, Eastern Section of the Seismological Society of America*, p. 50.

CHARLESTON SOURCE, S.C. USGS AND CEUS SSC COMPARISON

	2008 USGS	CEUS SSC
Source	Narrow 1,400 km ² (0.5) Broad 22,000 km ² (0.5)	Narrow 1,900 km ² (0.3) Local 5,000 km ² (0.5) Regional 39,000 km ² (0.2)
Characteristic M	M6.8 (0.2) M7.1 (0.2) M7.3 (0.45) M7.5 (0.15)	M6.7 (0.1) M6.9 (0.25) M7.1 (0.3) M7.3 (0.25) M7.5 (0.1)
Recurrence	550 yr	480 yr (0.8) 480 yr (0.04) 770 (0.06) 910 yr (0.06) 1100 yr (0.04)
Earthquake occurrence model	Poisson	Poisson (0.9) Brownian Passage Time (0.1)

CEUS SSC VS. USGS CHARLESTON SOURCE, S.C.

1-HZ SPECTRAL ACCELERATION 2% PE IN 50 YR

CEUS SSC zones

USGS zones

Vs30 760 m/s

RATIO MAP CEUS SSC/USGS

CHARLESTON PALEOLIQUEFACTION

CEUS SSC report

Science for a changing world

CEUS CHARLESTON SPACE-TIME DIAGRAM

Contemporary ages only

All ages

Fig 6.1.2-7

Fig 6.1.2–8 CEUS SSC report

AGE UNCERTAINTY FOR CHARLESTON PALEOLIQUEFACTION

ANNUAL FREQUENCY OF MAXIMUM EARTHQUAKE, CHARLESTON SOURCES

- Should the USGS modify their Broad and Narrow zones that were used in prior maps?
- Is the modeled 550 yr return time appropriate to use in the update?

WABASH VALLEY FAULT SYSTEM

SSC Model: Mmax Zones Branch

Fig 6.1.9.2 CEUS SSC report

RECENT WABASH REFERENCES

- Obermeier, S. F., 2009, Using liquefaction-induced and other soft-sediment features for paleoseismic analysis: *International Geophysics*, v. 95, pp. 499-566.
- Van Arsdale, R., Counts, R., and Woolery, E., 2009, Quaternary Displacement Along the Hovey Lake Fault of Southern Indiana and Western Kentucky: NEHRP Final report submitted to the U.S. Geological Survey, External Grant Number 07HQGR0052, 11 pp.
- Counts, R.C., Durbin, J.M., and Obermeier, S.F., 2008, Seismic ground-failure features in the vicinity of the Lower Wabash and Ohio River valleys: in Counts, M.H., and Counts, R.C. (editors), From the Cincinnati Arch to the Illinois Basin: Geological Field Excursions Along the Ohio River Valley: Geological Society of America Field Guide 12, pp. 57-79.
- McBride, J.H., Leetaru, H.E., Bauer, R.A., Tingey, B.E., and Schmidt, S.E.A., 2007, Deep faulting and structural reactivation beneath the southern Illinois basin: *Precambrian Research*, v. 157, pp. 289-313, doi:10.1016/j.precamres.2007.02.020.
- Abstracts
- Counts, R., Van Arsdale, R., Tuttle, M., Mahan, S. Obermeier, S., and Woolery, E., 2011 Paleoseismology in the New Madrid and Wabash Valley Seismic Zones, central United States [abs.]: XVIII INQUA Bern 2011, link
- Counts, R., Van Arsdale, R., and Woolery, E., 2009b, Paleoseismic Features Within the Wabash Valley Seismic Zone in Western Kentucky: presentation given at meeting of CEUS Earthquake Hazards Program, U.S. Geological Survey, October 28–29, Memphis, Tenn.
- Counts, R.C., Van Arsdale, R.B., and Woolery, E.W., 2009a, Investigation of Quaternary displacement on the Uniontown fault, western Kentucky [abstract]: *Geological Society of America, Abstracts with Programs*, v. 41, no. 1, p. 20.
- Counts, R.C., Woolery, E., and Van Arsdale, R.B., 2008, Quaternary faulting in Union County, Kentucky—Preliminary results: Geological Society of America Abstracts with Programs, v. 40, no. 5, p. 80.
- Counts, R.C., Waninger, S., and Obermeier, S.F., 2007, Liquefaction evidence for a strong earthquake in the lower Ohio River valley during the mid to late Holocene: Geological Society of <u>America</u> Abstracts with Programs, v. 39, no. 3, p. 4.

WABASH PALEOEARTHQUAKES

CEUS SSC report

CEUS-SSC WABASH SOURCE

DEAGGREGATION--VINCENNES

2012 Jan 27 17:36:55 Site Coords:-87.5240 38.6796 (yellow disk) Vs30= 760.0. Max annual ExcdRate .6110E-04 (column height prop. to ExRate). Diamonds: historical earthquakes. Red M>6, WUS. Orange M>5, CEUS

MARIANNA ZONE, ARK.

- geologic record of earthquake induced liquefaction older than NMSZ features
- northwest-trending lineament defined by (1-4-m-wide) sand blows near Daytona Beach
 possibly fault controlled 17 km (M6.5)
- 3 or 4 Holocene earthquakes between 5 and 9.6-10.2 ka
- some sand blows are comparable to NMSZ
- M6.7-7.7
- Default to background 0.5

Fig 6.1.2b

CEUS SSC report

RECENT PUBLICATIONS

Recent abstracts

• 2010s

Al-Qadhi, O., 2010, Geophysical investigation of paleoseismological features in eastern Arkansas, USA: Ph.D. dissertation, University of Arkansas, Little Rock, 277 p.

• 2000s

Al-Shukri, H., Mahdi, H., Al Kadi, O., and Tuttle, M., 2009, Spatial and temporal characteristic of paleoseismic features in the southern terminus of the New Madrid seismic zone in eastern Arkansas: Final Technical Report Submitted to the U.S. Geological Survey under USGS External Grant Number 07HQGR0069, 24 p.

- Csontos, R., Van Arsdale, R., Cox, R., and Waldron, B., 2008, Reelfoot rift and its impact on Quaternary deformation in the central Mississippi River valley: *Geosphere*, v. 4, no. 1, pp. 145-158.
- Tuttle, M.P., 2008, Paleoseismological investigations at the East Site, The Gilmore/Tyronza Mitigation Project: in *Data Recovery at the Tyronza Sites, Poinsett County, Arkansas, The East Site (3P0610)*, technical report to Arkansas State Highway and Transportation Department, v. 4, pp. 259–277.
- Al-Shukri, H., Mahdi, H., and Tuttle, M., 2006, Three-dimensional imaging of earthquakeinduced liquefaction features with ground penetrating radar near Marianna, Arkansas: *Seismological Research Letters*, v. 77, pp. 505-513.
- Tuttle, M.P., Al-Shukri, H., and Mahdi, H., 2006, Very large earthquakes centered southwest of the New Madrid seismic zone 5,000-7,000 years ago: *Seismological Research Letters*, v. 77, pp. 755-770.
- Al-Shukri, H., Lemmer, R.E., Mahdi, H., and Connelly, J.B., 2005, Spatial and temporal characteristics of paleoseismic features in the southern terminus of the New Madrid seismic zone in eastern Arkansas: *Seismological Research Letters*, v. 76, pp. 502-511.

PRELIMINARY CONCLUSIONS

- Five generations of sand blows and related feeder dikes in Marianna area
- Weathering characteristics, stratigraphic and structural relations of features, and dating of buried soils suggest that liquefaction features formed during paleoearthquakes ~ 4.8, 5.5, 6.8, 9.9, and 9.9–38 ka
- Marianna sand blows are likely due to local, not New Madrid, earthquakes:
 - Very large size of liquefaction features
 - Lack of similarly large features that formed in AD 1811-1812, 1450, and 900

DAYTONA BEACH LINEAMENT

Explanation

Liquefaction features (1)
Faults (2)
Lineament (3, 4)

Sources: 1. CEUS SSC Project; 2. Schumm and Spitz (1996); 3. Tuttle et al. (2006); 4. Al-Qadhi (2010)

Basemap: NAIP Aerial Imagery (2006)

Fig 6.1.7–3 CEUS SSC report

 many large sand blows

severe ground failure
 may be surface

 expression of fault at
 depth; perhaps
 western member of
 White River FZ

PRELIMINARY CONCLUSIONS

- Marianna sand blows are likely due to local, not New Madrid, earthquakes:
 - Very large size of liquefaction features
 - Lack of similarly large features that formed in AD 1811-1812, 1450, and 900
- Some liquefaction evidence of complex faulting perhaps involving White River FZ and Eastern Margin Reelfoot Rift FZ
- Marianna paleoearthquakes were probably very large (M \geq 7); but warrants further study
- Findings suggest max average recurrence time of ~1.7 k.y. and clustered behavior with minimum active period of ~5 k.y.
- Implication currently "quiet" members of Reelfoot Rift fault system may produce very large earthquakes in future

MARIANNA PALEOLIQUEFACTION

Fig E-15 CEUS SSC report • Five generations of sand blows and related feeder dikes in Marianna area

 Field identification degree of weathering stratigraphic & structural relations dating of buried soils

Paleoliquefaction formed about 4.8, 5.5, 6.8, 9.9, and 9.9-38 ka

ESTIMATED TIME OF PALEOLIQUEFACTION FORMATION

Science for a changing world

Fig E-17 CEUS SSC report

