A New 3-D Mechanical Model of Faulting for the New Madrid Seismic Zone

Behrooz Tavakoli and Shahram Pezeshk

Department of Civil Engineering The University of Memphis

Description of the Hazard Environments for the NMSZ

Description of a New Fault-Hazard Model for the NMSZ

A New Mechanical Model of Faulting in the NMSZ

Surface Expressions of Deep-seated New Madrid Faults

Potential Rupture Scenario and Fault-Hazard Evaluation

Discussion and Conclusions

- Assuming a stress drop of 60 bars for large earthquakes in the NMSZ, the maximum magnitude (Mmax) would be equivalent to 7.6-7.8 earthquake.
- The large earthquakes in the NMSZ can be presented by a single deep-seated fault.
- The predominant hazard in the NMSZ comes from this single fault.
- The 3-D mechanical model of faulting for the NMSZ reflects a new interpretation of seismicity, and the proper inclusion of hazard uncertainties requires the consideration of different parameters for model.
- We will develop a fault-hazard methodology for involving our model to evaluate ground-shaking at or near the ground surface.