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Overview
q The hybrid empirical method.

q Pezeshk, Zandieh, Campbell, and Tavakoli (2015) - hybrid empirical method
for Central and Eastern North America. [NGA-EAST Report]

q Pezeshk, Zandieh, Campbell, and Tavakoli (2018) - hybrid empirical method
for Central and Eastern North America. [BSSA]

q Shahjouei and Pezeshk (2015) - Alternative Hybrid Empirical Ground-Motion
Model for Central and Eastern North America using Hybrid Simulations -
[NGA-EAST Report]

q Shahjouei and Pezeshk (2016) - Alternative Hybrid Empirical Ground-Motion
Model for Central and Eastern North America using Hybrid Simulations -
[BSSA]
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Hybrid Empirical Model (HEM)
qThe hybrid empirical method (Campbell, 1981) is a procedure to develop ground-motion prediction 

equations (GMPEs) or ground-motion models (GMMs) in areas with sparse ground motions (target region)
q Incorporates the empirically developed GMPEs from an area with well recorded earthquakes (host region)
q Apply the regional modification factors between two regions
q Requires earthquake simulations for both regions to calculate the modification factors
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The Hybrid Broadband (HBB) 
Earthquake Simulation Package

Shahjouei and  Pezeshk (2015b)
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HBB Simulation
Flowchart
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Simulation Methodology
Low-Frequency Simulations

q Kinematic Source Model:
Ø Define Shaking Scenarios
Ø Consider Variability of Parameters

q Deterministic Wave Propagation:
Ø Green’s function are calculated in discrete wavenumber/finite element method

Long-Period
Synthetics

Deterministic
Wave

Propagation

Kinematic
Source
Model
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Stochastic Method
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Examples of Earthquake Source characterization
M 7.5, 6.5, and 5.5 Shahjouei and  Pezeshk (2015b)
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Simulation Parameters (SP16)
Low-Frequency Synthetics

M
CENA (km) WNA (km)

L W ZTOR ZHypo L W ZTOR Zhypo

5.0 2 3 3–5 6.5±1.5 3.0 4 3–4 6.0±1.0
5.5 5 5 3–5 7.5±2.0 4.5 4.5 3–4 6.5±1.0
6.0 8 6 3–5 8.0±1.5 12 7 3–4 8.5±1.0
6.5 18 12 2–4 11.0±1.5 18 12 2–3 12±1.5
7.0 23 12 2–4 11.0±1.5 50 13 2–3 12±1.5
7.5 150 15 2–3 12.0±2.0 150 15 1–2 13.5±2
8.0 150 22 2–3 17.0±2.0 180 25 1–2 18±2

M
log10 (M0) fcross CENA WNA

(N. m) (Hz) Ave. Slip 
(m)

Ave. Rise 
Time (s)

Ave. Slip 
(m)

Ave. Rise 
Time (s)

5.0 16.550 3.0 0.18 0.21 0.10 0.12
5.5 17.301 3.0 0.25 0.38 0.25 0.20
6.0 18.041 2.6 0.71 0.67 0.40 0.36
6.5 18.799 2.4 0.90 1.20 0.88 0.64
7.0 19.550 1.6 2.56 2.12 1.65 1.13
7.5 20.300 0.8 2.70 3.75 2.68 2.02
8.0 21.050 0.8 10.3 6.72 7.56 3.58
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Synthetic Simulations (SP15/SP16)
Station Map

M
R ≤ 200 km R > 200 km Total

CENA WNA Both Regions CENA WNA
5.0 346 342 140 486 482
5.5 384 384 140 524 384
6.0 380 363 140 520 363
6.5 438 438 140 578 438
7.0 404 355 140 544 355
7.5 459 459 140 599 459
8.0 520 459 140 660 459
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Simulation Parameters (SP16)
Stochastic High-Frequency Finite-Fault Model

Parameter WNA (100%) CENA-Alternative 1 (50%) CENA-Alternative 2 (50%)
Source spectrum model Single corner frequency, ω -2 Single corner frequency, ω -2 Single corner frequency, ω -2

Stress parameter, Δσ (bars) 135 600 400

Shear-wave velocity at source depth, βs (km/s) 3.5 3.7 3.7

Density at source depth, ρs (gm/cc) 2.8 2.8 2.8

Geometric spreading, Z (R) 

Quality factor, Q 202 f 0.54 525 f 0.45 440 f 0.47

Source duration, Ts (s) 1 / f a 1 / f a 1 / f a

Path duration, Tp (s) Boore and Thompson (2015) Table 1 Boore and Thompson (2015) Table 2

Site amplification, A(f) Atkinson and Boore (2006) - Table 4 Boore and Thompson (2015)-Table 4 Boore and Thompson (2015)-Table 4

Kappa, k0 (s) 0.035 0.005 0.006
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Hybrid Empirical Model (HEM)
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HEM
Synthetic Earthquake Simulations for WNA and CENA
q Methodology: HBB Platform (Shahjouei and Pezeshk, 2015b)

q Different regional parameters:
Ø Source term effects

Ø Path effects

Ø Site conditions

q Magnitude range: M5–8

q Distance range: 2–1000 km

q Variability of Parameters (combination of kinematic and stochastic parameters)
Ø WNA (9*1=9 alternative source models) & CENA (9*2=18 alternative source models) for each magnitude

q Numbers of stations: 486–660  (varies with magnitude) for each simulation

q Used HPC
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q The median GMPEs:

q GMPEs: PGA, PGV, and PSA (T)

q Coefficients: Nonlinear least squares regression analysis 

Functional Form and the Coefficients
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Aleatory Variability and Epistemic Uncertainty
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q Aleatory Uncertainty: characterize the inherent randomness in the predicted model as the 
results of unknown characteristics of the model
Ø Standard deviation of geometric mean of 5 NGA-West2 GMPEs

Ø Standard deviation of regression analysis

q Epistemic Uncertainty: A systematic uncertainty which is due to lack of knowledge
Ø Parametric modeling
Ø Epistemic in median estimation of NGA-West2 GMPEs

q Total variability and uncertainty
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Model Validation and Comparison
Validation - NGA-West2 GMPEs

Shahjouei and Pezeshk (2016)
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Results
Comparison with the previous GMMs in CENA

Shahjouei and Pezeshk (2016)
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Results
Comparison with the previous GMMs in CENA

Shahjouei and Pezeshk (2016)
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Model Validation
Comparison with the recorded earthquakes in CENA

q Stations and earthquakes used in the residual analysis

Goulet and Bozorgnia (2015)
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Model Validation
Comparison with the recorded earthquakes in CENA

q Small to moderate magnitude 
earthquakes in NGA-East database

Shahjouei and Pezeshk (2016)
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Residual Analysis
q With respect to the distance

Ø Periods of T = 0.2, 1.0, and 4.0 seconds
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Residual Analysis
Classifications
q With respect to the magnitude

Ø Inter-event (between-event) residuals (a)
Ø Intra-event (within-event) residuals (b)

q With respect to the distance
Ø Total residuals (c)
ØSingle-site residuals (d)

Shahjouei and Pezeshk (2016)

26



Summary
q Alternative GMPE for CENA is developed using Hybrid Empirical Approach

q Model is developed for 
Ø 2 < R < 1000 km
Ø 5.0 < M < 8.0 
Ø Reference rock site condition: VS30=3 km/s for CENA

q A new proposed Hybrid Broadband simulation technique is incorporated in the earthquake 
simulations

ØUsed HPC

q The empirical NGA-West2 GMPEs are employed

q Comparison with other GMMs.

q Comprehensive residual analysis is accomplished using the NGA-East database
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SP16 vs. SP15
SP15 (NGA-East report) … SP16 (BSSA)

Similarities-Both models:
ØBoth models use Hybrid Empirical Approach for GMM development
ØBoth models uses Hybrid Broadband Simulation Technique (proposed by Shahjouei and Pezeshk, 2015b) for synthetic 

earthquake simulations in WNA and CENA

• Differences:
Ø SP16 is an update to the SP15
Ø SP16 uses different combinations of stochastic set parameters and more weighted to the most recent ones:

– SP16: Equally weighted 2 sets of parameters for CENA and one set for WNA
– SP15: Equally weighted 3 sets of parameters for CENA and two sets for WNA

Ø SP16 incorporates additional earthquake simulations using the most recent seismological parameter.

ØBoth SP15 and SP16 models are originally developed for  5 ≤ Mw ≤ 8; however  based on the feedback from NGA-East 
TI  team, new calibration is applied for lower magnitudes (for extrapolation to smaller magnitude events, M4-5)

ØSP16 proposed a refined median GMMs  as well as aleatory variability and epistemic uncertainty model
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