Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

East South Slough faults (Class A) No. 889

Last Review Date: 2002-05-31

citation for this record: Personius, S.F., compiler, 2002, Fault number 889, East South Slough faults, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 03:14 PM.

Synopsis	The north-northwest-striking faults on the east side of South Slough are a group c steeply dipping, north-down reverse (?) faults that offset Eocene bedrock and man terrace sediments in the central Oregon Coast Range. Given their orientation, they may be tear faults with significant oblique (strike-slip) component; this sense of s would be consistent with the east-west orientation of compressive stress in this pa the forearc of the Cascadia subduction zone. These faults offset the less than or ea to 200 ka Metcalf marine terrace, and thus have displacements in the middle and Quaternary. As with other folds and faults located in the Cascadia forearc, it is unknown if coseismic displacements on these faults are always related to great megathrust earthquakes on the subduction zone, or whether some displacements a related to smaller earthquakes in the North American Plate.
Name comments	North-northwest-striking faults on the east side of South Slough were mapped by Duncan (1953 #4121)], Madin and others (1995 #4158) and Black and Madin (19 #4157). Madin and others (1995 #4158) named the northern fault the Joe Nye fau apparently after nearby Joe Nye Slough.

County(s) and State(s)	COOS COUNTY, OREGON
Physiographic province(s)	PACIFIC BORDER
Reliability of location	Good Compiled at 1:24,000 scale.
	<i>Comments:</i> Location of fault from ORActiveFaults (http://www.oregongeology.org/arcgis/rest/services/Public/ORActiveFaults/MapS downloaded 06/02/2016) attributed to 1:24,000-scale mapping of Madin and othe (1995 #4158) and Black and Madin (1995 #4157).
Geologic setting	The north-northwest-striking faults on the east side of South Slough are a group c steeply dipping faults that offset Eocene bedrock and marine terrace sediments. C their orientation, these may be tear faults (Black and Madin, 1995 #4157) with significant oblique (strike-slip) component. This sense of slip would be consistent the east-west orientation of compressive stress in this part of the forearc of the Cascadia subduction zone (McInelly and Kelsey, 1990 #4102; Madin and others, #4158). As with other folds and faults located in the Cascadia forearc, it is unkno coseismic displacements on these faults are always related to great megathrust earthquakes on the subduction zone, or whether some displacements are related to smaller earthquakes in the North American Plate.
Length (km)	8 km.
Average strike	N70°W
Sense of movement	Reverse, Left lateral <i>Comments:</i> The north-northwest-striking faults on the east side of South Slough of Eocene bedrock and marine terrace sediments. They are mapped as steeply dippin down-north reverse (?) faults (Black and Madin, 1995 #4157; Madin and others, #4158), but the east-west orientation of compressive stress in this part of the fore- the Cascadia subduction zone (McInelly and Kelsey, 1990 #4102; Madin and other 1995 #4158) suggests that these may be tear faults (Black and Madin, 1995 #4157' with significant oblique (strike-slip) component. Map patterns suggest some left-l displacement.
Dip Direction	NE
Paleoseismology studies	
Geomorphic	These faults are mapped on the basis of offset bedrock and marine-terrace sedime

expression	(Black and Madin, 1995 #4157; Madin and others, 1995 #4158). Black and Madi (1995 #4157) describe uplifted Pleistocene estuarine deposits along the north ban Davis Slough that may be deformed along the southern unnamed fault in this group.
Age of faulted surficial deposits	The north-northwest-striking faults on the east side of South Slough offset Eocen bedrock and the Metcalf marine terrace (Madin and others, 1995 #4158); this marterrace platform is thought to correlate with a less than or equal to 200 ka sea level highstand (Kelsey and others, 1996 #4111). Black and Madin (1995 #4157) description deformed estuarine deposits along the north bank of Davis Slough that n middle or late Pleistocene in age.
Historic earthquake	
Most recent prehistoric deformation	middle and late Quaternary (<750 ka) <i>Comments:</i> If the faulted marine terrace sediments described by Madin and other (1995 #4158) are correlative with a less than or equal to 200 ka marine highstand these faults have displacements in the middle and late Quaternary. Madin and oth (1995 #4158) map these faults as active in the late Quaternary, but do not define t age designation. These faults are not shown on recent compilations of Quaternary faults in Oregon (Pezzopane, 1993 #3544; Geomatrix Consultants Inc., 1995 #355 Madin and Mabey, 1996 #3575).
Recurrence interval	
Slip-rate category	Less than 0.2 mm/yr <i>Comments:</i> Vertical offsets of a few hundred meters in Eocene bedrock (Madin and others, 1995 #4158) indicate that slip rates are probably low.
Date and Compiler(s)	2002 Stephen F. Personius, U.S. Geological Survey
References	 #4157 Black, G.L., and Madin, I.P., 1995, Geologic map of the Coos Bay quadrat Coos County, Oregon: State of Oregon Geological Map Series GMS-97, 1 sheet, 1:24,000. #4121 Duncan, D.C., 1953, Geology and coal deposits in part of the Coos Bay Correct Field, Oregon: U.S. Geological Survey Bulletin 982-B, 73 p., 1 pl. #3593 Geomatrix Consultants, Inc., 1995, Seismic design mapping, State of Oregon Technical report to Oregon Department of Transportation, Salem, Oregon, under Contract 11688, January 1995, unpaginated, 5 pls., scale 1:1,250,000.

#4111 Kelsey, H.M., Ticknor, R.L., Bockheim, J.G., and Mitchell, C.E., 1996, Quaternary upper pl. deformation in coastal Oregon: Geological Society of Amer Bulletin, v. 108, no. 7, p. 843-860.
#3575 Madin, I.P., and Mabey, M.A., 1996, Earthquake hazard maps for Oregon: of Oregon, Department of Geology and Mineral Industries Geological Map Serie GMS-100, 1 sheet.
#4158 Madin, I.P., McInelly, G.W., and Kelsey, H.M., 1995, Geologic map of the Charleston quadrangle, Coos County, Oregon: State of Oregon Geological Map S GMS-94, scale 1:24,000.
#4102 McInelly, G.W., and Kelsey, H.M., 1990, Late Quaternary tectonic deform in the Cape Arago-Bandon region of coastal Oregon as deduced from wave-cut platforms: Journal of Geophysical Research, v. 95, no. B5, p. 6699-6713.
#3544 Pezzopane, S.K., 1993, Active faults and earthquake ground motions in Or Eugene, Oregon, University of Oregon, unpublished Ph.D. dissertation, 208 p.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal