Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Corvallis fault zone (Class B) No. 869

Last Review Date: 2002-05-21

citation for this record: Personius, S.F., compiler, 2002, Fault number 869, Corvallis fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 03:14 PM.

Synopsis	The northeast-striking, shallowly northwest-dipping Corvallis fault zone forms th western margin of the southern Willamette Valley in the vicinity of Corvallis. The thrusts Eocene Siletz River Volcanics over siltstone and sandstone of the Eocene Formation The fault may have been reactivated as a steeply dipping left-lateral st slip fault. The fault trace is offset by two northwest-striking strike-slip faults that appear to be tear faults in the thrust sheet; however, these faults may extend eastv into the Willamette Valley and thus may not be not tear faults. No unequivocal evidence of Quaternary deformation has been described, so, herein the fault is classified as Class B until further studies are conducted.
	The Corvallis fault zone is named after the nearby City of Corvallis; the Corvallis zone was first mapped and named by Vokes and others (1954 #4078), and has bee subsequently mapped or described by Baldwin (1955 #4147), Lawrence and othe (1977 #4027), Bela (1979 #4051), Goldfinger (1991 #3952), Pezzopane (1993 #3 Geomatrix Consultants, Inc. (1995 #3593), and Yeats and others (1996 #4291).

	Fault ID: This fault zone is fault number 20 of Pezzopane (1993 #3544) and faul number 34 of Geomatrix Consultants, Inc. (1995 #3593).
County(s) and	BENTON COUNTY, OREGON
Physiographic province(s)	PACIFIC BORDER
Reliability of location	Good Compiled at 1:8,000 scale.
	<i>Comments:</i> Location of fault from ORActiveFaults (http://www.oregongeology.org/arcgis/rest/services/Public/ORActiveFaults/MapS downloaded 06/02/2016) attributed to 1:100,000-scale mapping of McClaughry a others (2010 #7784).
	The Corvallis fault zone forms the western margin of the southern Willamette Val the vicinity of Corvallis. This shallowly northwest-dipping fault thrusts Eocene S River Volcanics over siltstone and sandstone of the Eocene Tyee Formation (Vok others, 1954 #4078; Bela, 1979 #4051; Walker and Duncan, 1989 #3581; Goldfin 1991 #3952; Yeats and others, 1996 #4291). The fault trace is offset by two north striking strike-slip faults (Goldfinger, 1991 #3952; Yeats and others, 1996 #4291) appear to be tear faults in the thrust sheet; however, these faults may extend eastv into the Willamette Valley and thus may not be not tear faults (Goldfinger, 1991 #3952). The Corvallis fault zone may have been reactivated as a steeply dipping l lateral strike-slip fault (Goldfinger, 1991 #3952).
Length (km)	40 km.
Average strike	N3°E
movement	Thrust, Left lateral <i>Comments:</i> The Corvallis fault zone was previously mapped as a high-angle reve fault (Vokes and others, 1954 #4078; Bela, 1979 #4051), but recent gravity data indicate a shallow (10–15°) northwest dip (Yeats, 1990 #4018; Goldfinger, 1991 #3952; Yeats and others, 1996 #4291). The fault zone may have been reactivated steeply dipping left-lateral strike-slip fault (Goldfinger, 1991 #3952). The two northwest-striking possible tear faults have left- and right-lateral strike-slip displacements.
	NW <i>Comments:</i> The thrust dip estimate (10–15°) is based on gravity data (Yeats, 199(#4018; Goldfinger, 1991 #3952; Yeats and others, 1996 #4291); the 60–90° NW.

	interpreted for strike-slip motion from a fault exposure described by Goldfinger (#3952).
Paleoseismology studies	
Geomorphic expression	The Corvallis fault zone parallels the western margin of the Willamette Valley in vicinity of Corvallis; the valley margin in this location is marked by a gentle, eml 300-m-high escarpment in Eocene bedrock. Small (<1 m high), short scarps and lineations have been described along parts of the Corvallis fault zone and along the northwest-striking faults that offset the Corvallis fault trace, but the origin of thes features is equivocal (Goldfinger, 1991 #3952; Yeats and others, 1996 #4291).
Age of faulted surficial deposits	The Corvallis fault zone offsets Oligocene bedrock, but no unequivocal examples offset Quaternary deposits have been described (Yeats and others, 1996 #4291). I and Parsons (1968 #3989; 1969 #4003) describe evidence of uplift of their Irish I Member of the Willamette Formation, thought to be latest Pleistocene in age, but McDowell (1991 #4004) described nontectonic processes that were more likely responsible for the stratigraphic and geomorphic relations described by Balster ar Parsons (1968 #3989; 1969 #4003). Goldfinger (1991 #3952) and Yeats and other (1996 #4291) describe stratigraphic relationships between the Willamette Format and underlying middle to late Pleistocene Rowland Formation as equivocal evide Quaternary offset across the Corvallis fault zone.
Historic earthquake	
Most recent prehistoric deformation	undifferentiated Quaternary (<1.6 Ma) <i>Comments:</i> Pezzopane (1993 #3544) mapped this fault as Quaternary (<1.6 Ma), later compilations (Geomatrix Consultants Inc., 1995 #3593, Madin, 1996 #3575) inferred fault movement in the middle and late Quaternary (<780 ka). Given the 1 documented geomorphic expression in Quaternary deposits (Goldfinger, 1991 #39) herein the fault is classified as Class B until further studies are conducted.
Recurrence interval	
Slip-rate category	Less than 0.2 mm/yr <i>Comments:</i> Goldfinger (1991 #3952) and Yeats and others (1996 #4291) estimate 13 km of horizontal shortening in Eocene bedrock, but the lack of significant geomorphic expression along these faults suggest low rates of slip. Geomatrix Consultants, Inc. (1995 #3593) and Wong and others (1999 #4073; 2000 #5137) assigned slip rates of 0.005–0.05 mm/yr in their probabilistic seismic hazard anal

Date and	2002
Compiler(s)	Stephen F. Personius, U.S. Geological Survey
References	#4147 Baldwin, E.M., 1955, Geology of the Marys Peak and Alsea quadrangles, Oregon: U.S. Geological Survey Oil and Gas Investigations Map OM-162, 1 shee scale 1:62,500.
	#3989 Balster, C.A., and Parsons, R.B., 1968, Geomorphology and soils Willame Valley, Oregon: United States Department of Agriculture Soil Conservation Servi p., 1 pl., scale 1:200,000.
	#4003 Balster, C.A., and Parsons, R.B., 1969, Late Pleistocene stratigraphy, south Willamette Valley, Oregon: Northwest Science, v. 43, no. 3, p. 116-129.
	#4051 Bela, J.L., 1979, Geologic hazards of eastern Benton County, Oregon: Stat Oregon, Department of Geology and Mineral Industries Bulletin 98, 122 p., 5 pls
	#3593 Geomatrix Consultants, Inc., 1995, Seismic design mapping, State of Oreg Technical report to Oregon Department of Transportation, Salem, Oregon, under Contract 11688, January 1995, unpaginated, 5 pls., scale 1:1,250,000.
	#3952 Goldfinger, C., 1991, Evolution of the Corvallis fault and implications for Oregon Coast Range: Oregon State University, unpublished M.S. thesis, 129 p., 2
	#4027 Lawrence, R.D., Livingston, N.D., Vickers, S.D., and Conyers, L.B., 1977 Field guide to the geology of Corvallis and vicinity, Oregon: The ORE BIN, v. 39 4, p. 53-71.
	#7784 McClaughry, J.D., Wiley, T.J., Ferns, M.L., and Madin, I.P., 2010, Digital geologic map of the southern Willamette Valley, Benton, Lane, Linn, Marion, and Counties, Oregon: Oregon Department of Geology and Mineral Industries Open- Reoprt O-10-03, 116 p., scale 1:8,000.
	#4004 McDowell, P.F., 1991, Quaternary stratigraphy and geomorphic surfaces o Willamette Valley, Oregon, <i>in</i> Morrison, R.B., ed., Quaternary nonglacial geology Conterminous U.S.: Boulder, Colorado, Geological Society of America, The Geo of North America, v. K-2, p. 156-163.
	#3544 Pezzopane, S.K., 1993, Active faults and earthquake ground motions in Ol Eugene, Oregon, University of Oregon, unpublished Ph.D. dissertation, 208 p.
	#4078 Vokes, H.E., Myers, D.A., and Hoover, L., 1954, Geology of the west-cent border area of the Willamette Valley, Oregon: U.S. Geological Survey Oil and Ga Investigations Map OM-0150, 1 sheet, scale 1:62,500.

#3581 Walker, G.W., and Duncan, R.A., 1989, Geologic map of the Salem 1 by 2 quadrangle, western Oregon: U.S. Geological Survey Miscellaneous Investigation Map I-1893, 1 sheet, scale 1:250,000.
#4073 Wong, I., Silva, W., Bott, J., Wright, D., Thomas, P., Gregor, N., Li, S., Ma M., Sojourner, A., and Wang, Y., 1999, Earthquake scenario and probabilistic gro shaking maps for the Portland, Oregon metropolitan area: Technical report to U.S Geological Survey, under Contract 1434-HQ-96-GR-02727, 16 p., 12 pls.
#5137 Wong, I., Silva, W., Bott, J., Wright, D., Thomas, P., Gregor, N., Li, S., Ma M., Sojourner, A., and Wang, Y., 2000, Earthquake scenario and probabilistic gro shaking maps for the Portland, Oregon, metropolitan area: State of Oregon, Department of Geology and Mineral Industries Interpretive Map Series IMS-16, pamphlet, scale 1:62,500.
#4018 Yeats, R.S., 1990, A search for active faults in the Willamette Valley, Oreg U.S. Geological Survey Open-File Report 90-334.
#4291 Yeats, R.S., Graven, E.P., Werner, K.S., Goldfinger, C., and Popowski, T.A 1996, Tectonics of the Willamette Valley, Oregon, <i>in</i> Rogers, A.M., Walsh, T.J., Kockelman, W.J., and Priest, G.R., eds., Assessing earthquake hazards and reduct risk in the Pacific Northwest: U.S. Geological Survey Professional Paper 1560, v. 183-222.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal