Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

West Grande Ronde Valley fault zone, Craig Mountain section (Class A) No. 802c

Last Review Date: 2016-03-21

citation for this record: Personius, S.F., and Haller, K.M., compilers, 2002, Fault number 802c, West Grande Ronde Valley fault zone, Craig Mountain section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 01:59 PM.

Synopsis	General: The West Grande Ronde Valley fault forms the western margin of a lar
	graben system that confines the Grande Ronde Valley in northeastern Oregon. Th
	graben is formed in Miocene and Pliocene volcanic rocks, and is floored by a thic
	sequence of Neogene and Quaternary alluvial sediments. The Grande Ronde Vall
	may be a pull apart basin related to displacement along a regional scale right-late
	strike-slip fault system. The West Grande Ronde Valley fault zone is divided into
	sections herein; from north to south, these are the Mount Emily, La Grande, and (
	Mountain sections. All of these sections form steep, en echelon range fronts, which
	intermittently marked by tonal contrasts, linear depressions, range front facets, sp
	and scarps. Most fault studies in the region infer late Pleistocene and perhaps Hol
	displacement on the Mount Emily and La Grande sections, and somewhat older la
	Quaternary displacement on the Craig Mountain section.

	Sections: This fault has 3 sections. The West Grande Ronde Valley fault zone is divided into three sections herein, slightly modified from the divisions of Simpso others (1993 #3596); from north to south, these are the Mount Emily section, the Grande section, and the Craig Mountain section.
Name comments	 General: The fault zone along the western margin of the Grande Ronde Valley w originally mapped by Hampton and Brown (1964 #3491), and later summarized t Walker (1979 #3576). Parts of the fault zone north of La Grande were named the Ruckel Ridge and Indian Rock faults (Kienle and others, 1979 #3728); faults nead Grande were named the Mount Emily, La Grande, Foothill Road, and Hot Lake fi (Barrash and others, 1980 #3570), and the La Grande fault (Geomatrix Consultan Inc., 1989 #1310). The fault traces included herein were informally grouped as th West Grande Ronde Valley fault by Simpson and others (1993 #3596). Faults alowest side of the Grande Ronde Valley have been included in numerous reconnais: Quaternary fault investigations and compilations (Kienle and others, 1979 #3728) Army Corps of Engineers, 1983 #3480; Geomatrix Consultants Inc., 1989 #1310; and others, 1990 #3733; Pezzopane and Weldon, 1993 #149; Pezzopane, 1993 #3508; Simpson and others, 1993 #3596; 1995 #3593; Madin and Mabey, 1996 #3575; Personius, 1998 #3508; Wood, 1999 #4042). Section: This section consists of the Craig Mountain segment of the West Grande Ronde Valley fault of Barrash and others (1980 #3570). Fault ID: This structure is part of fault number 13 of Pezzopane (1993 #3544) ar fault number 68a of Geomatrix Consultants, Inc. (1995 #3593).
County(s) and State(s)	UNION COUNTY, OREGON
Physiographic province(s)	COLUMBIA PLATEAU
location	Compiled at 1:100,000 scale. <i>Comments:</i> Location of fault from ORActiveFaults (http://www.oregongeology.org/arcgis/rest/services/Public/ORActiveFaults/MapS downloaded 06/02/2016) attributed to 1:100,000-scale compilation of Ferns and ((2001 #5135).
Geologic setting	The West Grande Ronde Valley fault zone forms the western margin of a large gr system that forms the Grande Ronde Valley. The graben is formed in volcanic roc the Miocene Columbia River Group and the Mio-Pliocene Powder River volcanic and is floored by a thick sequence of Neogene and Quaternary alluvial sediments (Hampton and Brown, 1964 #3491; Walker, 1979 #3576; Barrash and others, 198

	#3570; Ferns and Madin, 1999 #5160, Ferns, 2001 #5135; Van Tassell and others 2000 #5166). Numerous northwest-trending faults are present throughout the regi some workers attribute graben formation to a pull apart basin related to displacen along a regional scale right-lateral strike-slip fault system (Gehrels and others, 19 #3774). However, no evidence of significant lateral displacement in the Quaterna been found along the West Grande Ronde Valley fault zone (Ferns and Madin, 19 #5160).							
Length (km)	his section is 10 km of a total fault length of 48 km.							
Average strike	N49°W (for section) versus N19°W (for whole fault)							
Sense of movement	Normal, Right lateral <i>Comments:</i> Faults in this section are mapped as a normal or high-angle faults (Hampton and Brown, 1964 #3491; Walker, 1979 #3576; Barrash and others, 198 #3570; Walker and MacLeod, 1991 #3646; Pezzopane, 1993 #3544; Simpson and others, 1993 #3596; Ferns and others, 2001 #5135). Some workers attribute form of the Grande Ronde graben to a pull apart basin related to displacement along a regional scale right-lateral strike-slip fault system, and horizontal striations have observed on some faults in the area (Gehrels and others, 1980 #3774). However, 1 evidence of significant lateral displacement in the Quaternary has been found alon West Grande Ronde Valley fault zone (Ferns and Madin, 1999 #5160).							
Dip Direction	NE; SW <i>Comments:</i> No dip measurements have been published, but Ferns and Madin (199 #5160) used mapped outcrop patterns to estimate dips of 60-70° E. on the Mount Emily section [802a]. Simpson and others (1993 #3596) and Geomatrix Consulta Inc. (1995 #3593) modeled the West Grande Ronde Valley fault as a 70° dipping normal fault in their analyses of paleo-earthquake magnitudes. Dip can be estima from the mapped trace of the fault and the intersection of the fault in the Magma- LaGrande No. 1 well near Hot Lake. The fault is intersected in the well at a depth 503 m (Barrash and others, 1980 #3570), suggesting a dip of 68–70°.							
Paleoseismology studies								
Geomorphic expression	The Craig Mountain section forms a steep, en echelon, linear range front along th flank of Craig Mountain. The fault is intermittently marked by linear fronts and numerous springs; Hot Lake hot springs is located near the northern end of the se The geomorphic expression of the Craig Mountain section may suggest a lower rafaulting than the La Grande section faults (Simpson and others, 1993 #3596), but numerous landslide complexes bury the mountain front (I.P. Madin, pers. commu 2001), which may mask evidence of young faulting.							

	<u> </u>
surficial	Faults in the Craig Mountain section offset volcanic rocks of the Miocene Colum River Group and Mio-Pliocene Powder River volcanic field (Ferns and others, 20 #5135). Offsets in Quaternary surficial deposits have not been clearly demonstrat but scarps may be present in landslide deposits of unknown age (Simpson and oth 1993 #3596; Ferns and others, 2001 #5135) at the northern end of the section.
Historic earthquake	
Most recent prehistoric deformation	latest Quaternary (<15 ka) <i>Comments:</i> Simpson and others (1993 #3596) did not find evidence of repeated la Quaternary displacement on the Craig Mountain section. Pezzopane (1993 #3544 Geomatrix Consultants, Inc. (1995 #3593) infer middle and late Quaternary (<70 ka) displacement on the Craig Mountain section. Weldon and others (2002 #5648 latest Quaternary displacement on this part of the West Grande Ronde Valley faul zone; their age estimate is reported herein until further studies are conducted.
Recurrence interval	
Slip-rate category	Less than 0.2 mm/yr <i>Comments:</i> Displacement of Miocene Columbia River basalts across the Craig Mountain section is about 730 m southeast of Hot Lake (Barrash and others, 198 #3570); such offset data suggest low rates of long-term slip. Geomatrix Consulta Inc. (1995 #3593) use offset data from Simpson and others (1993 #3596) to estim rates of 0.01–0.05 mm/yr for all of the West Grande Ronde Valley fault zone. Rat may be higher than those estimated by Geomatrix Consultants, Inc. (1995 #3593) because Van Tassell and others (2000 #5161) used regional mapping and well dat calculate a subsidence rate of 0.2 mm/yr for the last 9 Ma for the southwestern pa the La Grande basin.
Date and Compiler(s)	2002 Stephen F. Personius, U.S. Geological Survey Kathleen M. Haller, U.S. Geological Survey
References	 #3570 Barrash, W., Bond, J.G., Kauffman, J.D., and Venkatakrishnan, R., 1980, Geology of the La Grande Area, Oregon: State of Oregon, Department of Geolog Mineral Industries Special Paper 6, 47 p., 5 pls., scale 1:24,000. #5160 Ferns, M.L., and Madin, I.P., 1999, Geologic map of the Summerville quadrangle, Union County, Oregon: State of Oregon, Department of Geology and Mineral Industries Geologic Map Series GMS-111, 23 p. pamphlet, 1 sheet, scale 1:24,000.

#5135 Ferns, M.L., Madin, I.P., and Taubeneck, W.H., 2001, Reconnaissance geo map of the La Grande 30' x 60' quadrangle, Baker, Grant, Umatilla, and Union Counties, Oregon: State of Oregon, Department of Geology and Mineral Industri Reconnaissance Map Series RMS-1, 1 pl., scale 1:100,000.

#3774 Gehrels, G.E., White, R.R., and David, G.A., 1980, The La Grande pull-ar basin, northeastern Oregon: Geological Society of America Abstracts with Prograv. 12, no. 3, p. 107.

#1310 Geomatrix Consultants, Inc., 1989, Final report seismotectonic evaluation Mann Creek Dam site and Mason Dam site: Technical report to U.S. Department Interior, Bureau of Reclamation, Denver, Colorado, under Contract 6-CS-81-073 October 1989, 118 p., 2 pls.

#3593 Geomatrix Consultants, Inc., 1995, Seismic design mapping, State of Oreg Technical report to Oregon Department of Transportation, Salem, Oregon, under Contract 11688, January 1995, unpaginated, 5 pls., scale 1:1,250,000.

#3491 Hampton, E.R., and Brown, S.G., 1964, Geology and ground-water resour the Upper Grande Ronde River Basin Union County, Oregon: U.S. Geological Su Water-Supply Paper 1597, 99 p., 6 pls.

#3728 Kienle, C.F., Jr., Hamill, M.L., and Clayton, D.N., 1979, Geologic reconnaissance of the Wallula Gap, Washington-Blue Mountains-LaGrande, Oreg region: Technical report to Shannon & Wilson, Inc., Portland, Oregon, under Con 44013, December 1979, 58 p., 1 pl., scale 1:125,000.

#3575 Madin, I.P., and Mabey, M.A., 1996, Earthquake hazard maps for Oregon: of Oregon, Department of Geology and Mineral Industries Geological Map Serie GMS-100, 1 sheet.

#3508 Personius, S.F., 1998, Surficial geology and neotectonics of selected areas western Idaho and northeastern Oregon: U.S. Geological Survey Open-File Repo 771, 25 p.

#3544 Pezzopane, S.K., 1993, Active faults and earthquake ground motions in O1 Eugene, Oregon, University of Oregon, unpublished Ph.D. dissertation, 208 p.

#149 Pezzopane, S.K., and Weldon, R.J., II, 1993, Tectonic role of active faulting central Oregon: Tectonics, v. 12, p. 1140-1169.

#3733 Piety, L.A., LaForge, R.C., and Foley, L.L., 1990, Seismic sources and maximum credible earthquakes for Cold Springs and McKay Dams, Umatilla Prc north-central Oregon: U.S. Bureau of Reclamation Seismotectonic Report 90-1, 6

1 pl.

#3596 Simpson, G.D., Hemphill-Haley, M.A., Wong, I.G., Bott, J.D.J., Silva, W.J Lettis, W.R., 1993, Seismotectonic evaluation, Burnt River Project Unity Dam, B Project Thief Valley Dam, northeastern Oregon: Final Report prepared for U.S. Department of the Interior, Bureau of Reclamation, 167 p., 2 pls.
#3480 U.S. Army Corps of Engineers, 1983, The Dalles and John Day Lakes earthquake and fault study—Design memorandum 26: U.S. Army Corps of Engir Portland District, 66 p., 19 pls.
#5161 Van Tassell, J., Ferns, M.L., and McConnell, V.S., 2000, Neogene sedimer accumulation and subsidence rates, La Grande basin, northeast Oregon: Geologic Society of America Abstracts with Programs, v. 32, no. 6, p. A-73-A-74.
#5166 Van Tassell, J., Ferns, M., McConnell, V., and Smith, G.R., 2001, The mid Pliocene Imbler fish fossils, Grande Ronde Valley, Union County, Oregon, and th connection between Lake Idaho and the Columbia River: Oregon Geology, v. 63, p. 77-96.
#3576 Walker, G.W., 1979, Reconnaissance geologic map of the Oregon part of t Grangeville quadrangle, Baker, Union, Umatilla, and Wallowa Counties, Oregon: Geological Survey Miscellaneous Investigations Map I-1116, 1 sheet, scale 1:250
#3646 Walker, G.W., and MacLeod, N.S., 1991, Geologic map of Oregon: U.S. Geological Survey, Special Geologic Map, 2 sheets, scale 1:500,000.
#5648 Weldon, R.J., Fletcher, D.K., Weldon, E.M., Scharer, K.M., and McCrory, 2002, An update of Quaternary faults of central and eastern Oregon: U.S. Geolog Survey Open-File Report 02-301 (CD-ROM), 26 sheets, scale 1:100,000.
#4042 Wood, S.H., 1999, Quaternary faulting in southwest Idaho and adjacent Or <i>in</i> Quaternary geology of the northern Quinn River and Alvord Valleys, southeast Oregon: Friends of the Pleistocene field trip guide, September 24-26, 1999, Appe 9, p. 1-5.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

C		2	r	С	h	١.				
0	C	a	1	C	5	ļ	۰	۰	۰	

HomeAbout UsContactsLegal