Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Almy fault zone (Class A) No. 742

Last Review Date: 1994-06-03

citation for this record: McCalpin, J.P., compiler, 1994, Fault number 742, Almy fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:02 PM.

Synopsis	The Almy fault zone is comprised of a group of short normal faults on the western side of the Bear River Valley.
Name comments	Unnamed in compilation of Gibbons and Dickey (1983). The informal name Almy fault zone has been applied by J.P. McCalpin to this structure after the nearby town of Almy. The fault has discontinuous traces extending from about Wyoming Highway 89 (in the north) to about 1.5 km south of Thomas Canyon.
County(s) and State(s)	UINTA COUNTY, WYOMING
Physiographic province(s)	MIDDLE ROCKY MOUNTAINS
Reliability of location	Poor Compiled at 1:250,000 scale.

	<i>Comments:</i> Mapped in reconnaissance (1:100,000 scale) by Gibbons and Dickey (1983 #821). Fault traces recompiled at 1:250,000-scale on map with topographic base.
Geologic setting	One of many short normal faults that parallel east-directed thrust faults in Mesozoic sedimentary rock in this part of the Overthrust Belt. Fault bounds part of western side of Bear River Valley.
Length (km)	11 km.
Average strike	N3°E
Sense of movement	Normal <i>Comments:</i> Shown as normal by Gibbons and Dickey (1983 #821).
Dip Direction	E
Paleoseismology studies	
Geomorphic expression	Faults are along base of bedrock escarpments in the Tertiary Wasatch Formation.
Age of faulted surficial deposits	Tertiary Wasatch Formation and Quaternary deposits. Gibbons and Dickey's (1983 #821) criteria were that the fault offsets erosion surfaces or materials (soils and deposits) dating from some stage in the development of the present landscape, which implied Quaternary movement.
Historic earthquake	
Most recent prehistoric deformation	undifferentiated Quaternary (<1.6 Ma) <i>Comments:</i> Gibbons and Dickey (1983 #821) suggested Quaternary movement, but no specific justification is given.
Recurrence interval	
Slip-rate category	Less than 0.2 mm/yr <i>Comments:</i> Low slip-rate category is inferred based on absence scarps and data to indicate otherwise.

Date and	1994
Compiler(s)	James P. McCalpin, GEO-HAZ Consulting, Inc.
References	#821 Gibbons, A.B., and Dickey, D.D., 1983, Quaternary faults in Lincoln and Uinta Counties, Wyoming, and Rich County, Utah: U.S. Geological Survey Open-File Report 83-288, 1 sheet, scale 1:100,000.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal