Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Panamint Valley fault zone, northern Panamint Valley section (Class A) No. 67a

Last Review Date: 2000-05-16

Compiled in cooperation with the California Geological Survey

citation for this record: Bryant, W.A., compiler, 2000, Fault number 67a, Panamint Valley fault zone, northern Panamint Valley section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:04 PM.

Synopsis	General: Major Holocene active oblique-slip range-front fault
	zone characterized by both Holocene normal dip-slip and dextral
	strike-slip offset (Smith, 1976 #1646; Bryant, 1989 #1459; Zhang
	and others, 1990 #199). Panamint Valley fault zone is divided into
	sections in this compilation, from north to south: Northern
	Panamint Valley [67a], Wildrose [76b], Southern Panamint Valley
	[67c], and Brown Mountain [67d]. The fault zone extends from
	the complex left compressional step over to the Hunter Mountain-
	Saline Valley fault zone [66] southeast along the eastern side of
	Panamint Valley and complexly intersects with the Garlock fault

	zone [69] along the Brown Mountain fault. Reheis (1991 #1602) suggested that the southern end of the Hunter Mountain fault zone extended into northern Panamint Valley and ends just north of Wildrose graben. Smith (1976 #1646) and Zellmer (1980 #1705) considered the junction between the Hunter Mountain [67] and Panamint Valley faults to be at the northern end of Panamint Valley south of Hunter Mountain. In this compilation the northern end of the Panamint Valley fault zone is considered to be delineated by the shallow northeast-dipping thrust fault along the south side of Hunter Mountain mapped by Smith (1976 #1646). The Panamint Valley fault zone is delineated by well-defined geomorphic features indicative of Holocene dextral and normal faulting (Smith, 1979 #1647; Bryant, 1989 #1459; Zhang and others, 1990 #199). Burchfiel and others (1987 #1454) reported a long term slip rate of 2-3.2 mm/yr for the Hunter Mountain-Saline Valley fault zone, based on dextral displacement of Hunter Mountain batholith contact. Zhang and others (1990 #199) reported latest Pleistocene to Holocene minimum dextral slip rates of 1.74?0.65 mm/yr and 2.36?0.79 mm/yr for the Panamint Valley fault zone (Southern Panamint Valley section [67c]), although ages of offset deposits are not well-constrained. Zhang and others (1990 #199) reported that large surface-rupturing earthquakes may occur as characteristic 3-m events, based on	
	a Holocene slip rate of 2.36?0.79 mm/yr. Sections: This fault has 4 sections. There is insufficient evidence to delineate seismogenic segments. The sections defined in this compilation are based on geomorphic expression, style of faulting, and geometry. From north to south the sections are: Northern Panamint Valley [67a], Wildrose [67b], Southern Panamint Valley [67c], and Brown Mountain [67d].	
Name comments	General: Panamint Valley fault zone was first described and named by Noble (1926 #1592), who considered the fault to be a normal dip-slip range-front fault. The Brown Mountain fault was first mapped and named by Muehlberger (1954 #6065).	
	Section: Section name proposed in this compilation. Section extends from complex connection with the Hunter Mountain-Saline Valley fault zone [66] southeast to the prominent change in	

	strike (from northwest to north-northwest) about 3 km northwest of Wildrose Canyon. Reheis (1991 #1602) proposed that the Hunter Mountain-Saline Valley fault zone [66] extended into northern Panamint Valley and terminated just north of the Wildrose graben.
	Fault ID: Refers to numbers 247 (Panamint Valley fault) and 269 (Brown Mountain fault) of Jennings (1994 #2878).
County(s) and State(s)	INYO COUNTY, CALIFORNIA
Physiographic province(s)	BASIN AND RANGE
Reliability of location	Good Compiled at 1:100,000 scale.
	<i>Comments:</i> Locations based on digital revisions to Jennings (1994 #2878) using original mapping by Hall (1971 #1521), Moyle (1969 #6514), and Bryant (1989 #1459) at 1:62,500; aerial photographic interpretation by Reheis (1991 #1602) at 1:100,000. Mapping of selected fault strands by Smith (1976 #1646) is at various scales to 1:24,000.
Geologic setting	Major oblique-slip fault characterized by both dextral strike-slip and normal dip-slip faults. Panamint Valley fault zone is located within the Death Valley extension region, the most active part of the southern Basin and Range province (Zhang and others, 1990 #199). The Panamint Valley fault zone is a Holocene active range-front fault that extends from the northern Panamint Valley southeast to the Garlock fault zone [69]. Dextral slip is probably transferred northward to the Hunter Mountain-Saline Valley fault zone [66] along a complex compressional left step at the northern end of Panamint Valley indicated by north-dipping Quaternary thrust faults (Smith, 1975 #1219; Smith, 1976 #1646). Reheis (1991 #1602) suggested that the southern end of the Hunter Mountain fault zone [66] extended into northern Panamint Valley and ended just north of Wildrose graben. Smith (1976 #1646) and Zellmer (1980 #1705) considered the junction between the Hunter Mountain [66] and Panamint Valley faults to be at the northern end of Panamint Valley south of Hunter Mountain. In this compilation, the northern end of the Panamint Valley fault zone is considered to be delineated by the shallow northeast-dipping thrust fault along the south side of Hunter Mountain mapped by

	Smith (1976 #1646). To the southeast, the Panamint Valley fault zone complexly joins the sinistral strike-slip Garlock fault zone [69] along the dextral Brown Mountain fault [67d]. Late Quaternary and Holocene displacement is characterized by both normal dip-slip and dextral strike-slip displacement. Dip-slip faults commonly occur along the range front and dextral strike- slip faults occur west of the range front. Johnson (1957 #6513) estimated that cumulative down-to-west vertical displacement may total as much as 1,800 m. Smith (1979 #1647) reported that 300-600 m of Quaternary dextral offset and as much as 3-4.5 km of cumulative dextral strike-slip displacement may total as much as 10 km (Smith, 1976 #1646). Burchfiel and others (1987 #1454) reported that cumulative dextral strike-slip displacement may total as much as 8-10 km since late Miocene time.
Length (km)	This section is 27 km of a total fault length of 104 km.
Average strike	N36°W (for section) versus N22°W,N36°W (for whole fault)
Sense of movement	Right lateral, Normal, Reverse <i>Comments:</i> Recently active traces of the Northern Panamint Valley section are characterized by predominantly dextral strike- slip displacement, based on geomorphic expression and dextral displacement of Quaternary deposits (Smith, 1976 #1646; Bryant, 1989 #1459). Older Quaternary active range-front normal faults roughly parallel the Holocene active dextral faults (Smith, 1976 #1646; Bryant, 1989 #1459). The northern extend of the Northern Panamint Valley fault zone may complexly join with the Hunter Mountain-Saline Valley fault zone [66] along a compressional left-step-over along more west-trending faults (Smith, 1976 #1646; Burchfiel and others, 1987 #1454). The southern end of the Northern Panamint Valley section changes to a more northerly strike and is characterized by dextral strike-slip with a significant normal dip-slip (down to west) component (Smith, 1976 #1646; Bryant, 1989 #1459).
Dip	near vertical to 70° NE. <i>Comments:</i> Bryant (1989 #1459) observed a near vertically dipping fault zone exposed in a stream channel margin in a Holocene alluvial fan. Just south of Towne Pass Road a stream- cut exposure revealed a 15-m-wide fault zone in Plio-Pleistocene

	(?) lacustrine clay with fault planes dipping from about 70? NE. to vertical. The significant normal component at the southern end of the Northern Panamint Valley section delineates a major range- front fault with down-to-the west normal displacement (Smith, 1976 #1646; Bryant, 1989 #1459).
Paleoseismology studies	
Geomorphic expression	Northern Panamint Valley section is delineated by moderately to well-defined geomorphic features indicative of Holocene dextral strike-slip faulting such as dextrally deflected drainages, beheaded drainages, linear ridges, ponded alluvium, linear scarps in latest Pleistocene and Holocene alluvium, linear tonal contrasts in Holocene alluvium (Bryant, 1989 #1459). The southern end of the Northern Panamint Valley section is delineated by geomorphic evidence of dextral normal displacement such as linear ridges, faceted spurs in bedrock, aligned saddles, and scarps to 2 m high on latest Pleistocene to early Holocene alluvial fans (Bryant, 1989 #1459).
Age of faulted surficial deposits	Fault offsets alluvium of post-latest high stand pluvial Lake Panamint (15?5 ka; Smith, 1976 #1646). Bryant (1989 #1459) reported fault exposures in Holocene alluvial fan deposits that have poorly developed rock varnish, desert pavement, and have poorly developed soil profiles.
Historic earthquake	
Most recent prehistoric deformation	latest Quaternary (<15 ka) <i>Comments:</i> Timing of the most recent paleoevent along the Northern Panamint Valley section is not precisely known. Traces of the Northern Panamint Valley section offset alluvium and alluvial fan deposits that post-date the 15?5 ka desiccation of pluvial Lake Panamint (Smith, 1979 #1647). Bryant (1989 #1459) observed faulted alluvial fan deposits that may be mid- to late Holocene, based on the relative age dating of alluvial fan surface characterized by well-preserved constructional surfaces, incipient rock varnish, poorly developed desert pavement, weak to moderate Stage I pedogenic carbonate development in gravel deposits predominantly composed of carbonate clasts (Bryant, 1989 #1459). Smith (1979 #1647) reported that the age of the most recent event is not known, but speculated that it probably

	occurred at least several hundred years ago.
Recurrence interval	<i>Comments:</i> Recurrence intervals for the Northern Panamint Valley section are not known. Zhang and others (1990 #199) identified dextral displacements in multiples of 3: the youngest offset is 3 m and dextral offsets of 6 m and 12 m were observed at many places between Manly Peak Canyon and Goler Wash Canyon (Southern Panamint Valley section [67c]). Zhang and others (1990 #199) concluded that the average recurrence interval for large surface rupturing earthquakes on the Southern Panamint Valley section [67c] is between 860 and 2,360 yr, based on a 3.2? 0.5 m characteristic event and a Holocene slip rate of 2.36?0.79 mm/yr. Smith (1979 #1647) estimated a mean recurrence interval of about 700-2,500 yr for the Panamint Valley fault zone, based on an assumed 1.4-2.6 m offset per event and 20 m total offset in the past 10-20 ka.
Slip-rate category	Between 1.0 and 5.0 mm/yr <i>Comments:</i> The Holocene slip rate for the Northern Panamint Valley section is not known. Zhang and others (1990 #199) reported latest Pleistocene to Holocene minimum dextral slip rates of 1.74?0.65 mm/yr and 2.36?0.79 mm/yr for the Southern Panamint Valley section [67c]. Petersen and others (1996 #4860) assigned a slip rate of 2.5 mm/yr (with minimum and maximum assigned slip rates of 1.5 mm/yr and 3.5 mm/yr, respectively) to the entire fault for probabilistic seismic hazard assessment for the State of California.
Date and Compiler(s)	2000 William A. Bryant, California Geological Survey
References	 #1459 Bryant, W.A., 1989, Panamint Valley fault zone and related faults, Inyo and San Bernardino Counties, California: California Division of Mines and Geology Fault Evaluation Report FER-206, 33 p., 1 pl., scale 1:62,500. #1454 Burchfiel, B.C., Hodges, K.V., and Royden, L.H., 1987, Geology of Panamint Valley-Saline Valley pull-apart system, California—Palinspastic evidence for low-angle geometry of a Neogene range-bounding fault: Journal of Geophysical Research, v. 92, no. B10, p. 10,422-10,426.

#1521 Hall, W.E., 1971, Geology of the Panamint Butte quadrangle, Inyo County, California: U.S. Geological Survey Bulletin 1299, 67 p., 1 pl., scale 1:48,000.

#2878 Jennings, C.W., 1994, Fault activity map of California and adjacent areas, with locations of recent volcanic eruptions:California Division of Mines and Geology Geologic Data Map 6, 92 p., 2 pls., scale 1:750,000.

#6513 Johnson, B.K., 1957, Geology of a part of the Manly Peak quadrangle, southern Panamint Range, California: University of California Publications in Geological Sciences, v. 30, no. 5.

#6514 Moyle, W.R., Jr., 1969, Water wells and springs in Panamint, Searles, and Knob valleys, San Bernardino and Inyo Counties, California: California Department of Water Resources Bulletin 91-17, 110 p., scale 1:62,500.

#6065 Muehlberger, W.R., 1954, Geology of the Quail Mountains, San Bernardino County: California Division of Mines Bulletin 170, Geology of Southern California Map Sheet 16, scale 1:48,000.

#1592 Noble, L.F., 1926, The San Andreas rift and some other active faults in the desert region of southeastern California: Carnegie Institution of Washington Year Book 25, p. 415-428.

#4860 Petersen, M.D., Bryant, W.A., Cramer, C.H., Cao, T.,
Reichle, M.S., Frankel, A.D., Lienkaemper, J.J., McCrory, P.A.,
and Schwartz, D.P., 1996, Probabilistic seismic hazard assessment
for the State of California: California Department of
Conservation, Division of Mines and Geology Open-File Report
96-08 (also U.S. Geological Open-File Report 96-706), 33 p.

#1602 Reheis, M.C., 1991, Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100,000 quadrangle, Nevada and California, and the Darwin Hills 1:100,000 quadrangle, California: U.S. Geological Survey Open-File Report 90-500, 6 p., 2 pls., scale 1:100,000.

#1219 Smith, R.S.U., 1975, Guide to selected examples of Quaternary tectonism in Panamint Valley, California: California Geology, v. 28, p. 112-115.

#1647 Smith, R.S.U., 1979, Holocene offset and seismicity along the Panamint Valley fault zone, western Basin and Range province, California: Tectonophysics, v. 52, p. 411-415.
#1705 Zellmer, J.T., 1980, Recent deformation in the Saline Valley region, Inyo County, California: Reno, University of Nevada, unpublished Ph.D. dissertation, 168 p., 7 pls., scale 1:50,000.
#199 Zhang, P., Ellis, M., Slemmons, D.B., and Mao, F., 1990, Right-lateral displacements and the Holocene slip rate associated with prehistoric earthquakes along the southern Panamint Valley fault zone—Implications for southern Basin and Range tectonics and coastal California deformation: Journal of Geophysical Research, v. 95, no. B4, p. 4857—4872.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal