Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Emigrant fault, southern section (Class A) No. 642b

Last Review Date: 2010-11-17

Compiled in cooperation with the Montana Bureau of Mines and Geology

citation for this record: Haller, K.M., compiler, 2010, Fault number 642b, Emigrant fault, southern section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:03 PM.

Synopsis	General: Detailed mapping and reconnaissance studies of scarp
	morphology are the sole source of data for this fault;
	segmentation model has not been proposed based on these data.
	No detailed site studies, such as trenching, have been conducted.
	Sections: This fault has 2 sections. Seismogenic segments are not
	defined for this fault. The fault is marked by short discontinuous
	scarps that have similar morphologic characteristics (Personius,
	1982 #241). According to Personius (1982 #244), scarp-
	morphology data do not clearly define difference in timing of

	displacement along this fault, even though the fault's geometry has an abrupt bend and a left-stepping echelon pattern in the central part of the fault that could suggest a possible structural complexity.
Name comments	General: One of the earliest references to name the Emigrant fault is Pardee (1950 #46), who describes the fault as extending from Pine Creek southwestward to Yankee Jim Canyon. Also referred to as the Deep Creek fault (Bonini and others, 1972 #265; Personius, 1982 #241; 1982 #244; 1986 #252) and Emigrant Valley fault (U.S. Coast and Geodetic Survey, 1959 #630).
	Section: This informally named section includes Barney Creek, Strawberry Creek, Elbow Creek, Count's Ranch, and Gray's Ranch scarps of Personius (1982 #241; 1982 #244; 1986 #252); Barney Creek, Strawberry Creek, Mill Creek, Sixmile Creek, and Dailey Lake scarps of Stickney and Bartholomew (1987 #85; 1987 #242); and Barney Creek, Strawberry Creek, Elbow Creek, Sixmile Creek, Dailey Lake, and Dome Mountain segments of Stickney and Bartholomew (written commun. 1992 #556).
	Fault ID: Refers to number 15 (Emigrant fault) of Witkind (1975 #317); numbers 70 (Emigrant fault), 71 (Deep Creek fault), and 72 (Deep Creek West fault) of Johns and others (1982 #259); number 17 (Emigrant fault) of Stickney and Bartholomew (1987 #85); and Emigrant fault of Stickney and Bartholomew (1987 #242; written commun. 1992 #556).
County(s) and State(s)	PARK COUNTY, MONTANA
Physiographic province(s)	MIDDLE ROCKY MOUNTAINS NORTHERN ROCKY MOUNTAINS
Reliability of location	Good Compiled at 1:50,000 scale. <i>Comments:</i> Location of fault primarily based on Lopez and Reiten (2003 #7142) further constrained by satellite imagery and topography at scale of 1:50,000. Reference satellite imagery is ESRI_Imagery_World_2D with a minimum viewing distance of 1 km (1000 m). additional scarps are from 1:125,000-scale map of Personius (1982 #241)
Geologic setting	High-angle, down-to-the-northwest, range-front normal fault bounding the west side of the Beartooth uplift. Fault is generally

	several hundreds of meters west of the topographic range front (Bonini and others, 1972 #265; Personius, 1982 #241). Pierce and Morgan (1992 #539) indicate that the fault was active between 8 and at least 15 Ma and since 0.5 Ma with an interval of quiescence between, based on regressing displacement at a late Quaternary rate to fit the observed tilt in 5.4 and 8 Ma basalts in the valley. Units below the basalts suggest displacement totaling more than 1 km during the Miocene. Gravity data of Bonini and others (1972 #265) indicate total displacement of 5.6-6.1 km.
Length (km)	This section is 41 km of a total fault length of 43 km.
Average strike	N47°E (for section) versus N46°W (for whole fault)
Sense of	Normal
movement	Comments: (Bonini and others, 1972 #265)
Dip	50°-60° W
	<i>Comments:</i> Personius (1982 #241) reports 60° W dip from exposure 4 km northeast of Sixmile Canyon in unconsolidated alluvium. Pardee (1950 #46) reports 50° W dip in 6-m-deep artificial exposure that was probably in unconsolidated alluvium, exact location unknown but was somewhere along the southernmost part of the fault. Bonini and others (1972 #265) indicate that a model of a vertical fault best fits the gravity data.
Paleoseismology studies	
Geomorphic expression	Faceted spurs are preserved only locally, remnant pediments are absent, scarps on alluvium are discontinuous and as high as 50 m high (Personius, 1982 #241). Hot springs are present along trace (Witkind, 1975 #317).
Age of faulted surficial deposits	Holocene and upper Pleistocene alluvium, upper Pleistocene (Pinedale) glacial drift, Precambrian metamorphic bedrock (Personius, 1982 #241).
Historic earthquake	
Most recent prehistoric	latest Quaternary (<15 ka)
deformation	<i>Comments:</i> Scarps are on upper Pleistocene (Pinedale) deposits

	and scarp-morphology data of Personius (1982 #241) suggest age of 10-12 ka.
Recurrence	15–10 k.y.
interval	C (1002 #4(2): 1: (1): (1):
	for unspecified period of time based on data of Personius (1982
	#241; 1982 #244) and Stickney and Bartholomew (1987 #85).
Slip-rate	Between 0.2 and 1.0 mm/yr
category	Comments, Dienes and Marson (1002 #520) decument a slip rate
	of 0.25 mm/vr based on data of Personius (1982 #241), which is
	inferred here to be a late Quaternary rate. Ruleman and others
	(2000 #7020) document 12-m-high Holocene fault scarps further
	do not mention the location of their observation. In addition.
	Ruleman (2002 #5133) suggests a slip rate of less than 0.53
	mm/yr based on the sinuosity of the range front and basal facet
	neights.
Date and Compiler(s)	2010 Kathleen M. Haller, U.S. Geological Survey
References	#265 Bonini WE Kelley WN Ir and Hughes DW 1972
iterefences	Gravity studies of the Crazy Mountains and the west flank of the
	Beartooth Mountains, Montana, <i>in</i> Lynn, J., Balster, C., and
	Society, 21st Annual Geological Conference, September 22-24.
	1972, Guidebook, p. 119-127.
	#250 Johns WM Strow WT Demonstra DN Drossen UW
	Hendrix, T.E., McClernan, H.G., Palmquist, J.C., and Schmidt,
	C.J., 1982, Neotectonic features of southern Montana east of
	112°30' west longitude: Montana Bureau of Mines and Geology
	Open-File Report 91, 79 p., 2 sheets.
	#7142 Lopez, D.A., and Reiten, J.C., 2003, Preliminary geologic
	map of Paradise Valley, south-central Montana: Montana Bureau of Mines and Geology Open File Report 480, 22 p. 1 sheet
	1:50,000 scale.
	#463 Mason, D.B., 1992, Earthquake magnitude potential of active faults in the Intermountain seismic belt from surface
	parameter scaling: Salt Lake City, University of Utah,

unpublished M.S. thesis, 110 p.

#46 Pardee, J.T., 1950, Late Cenozoic block faulting in western Montana: Geological Society of America Bulletin, v. 61, p. 359-406.

#241 Personius, S.F., 1982, Geologic setting and geomorphic analysis of Quaternary fault scarps along the Deep Creek fault, upper Yellowstone valley, south-central Montana: Bozeman, Montana State University, unpublished M.S. thesis, 77 p., 1 sheet, scale 1:125,000.

#244 Personius, S.F., 1982, Geomorphic analysis of the Deep Creek fault, upper Yellowstone valley, south-central Montana, *in* Reid, S.G., and Foote, D.J., eds., Geology of Yellowstone Park area: Wyoming Geological Association, 33rd Annual Field Conference, Mammoth Hot Springs, Wyoming, September 15-18, 1982, Guidebook, p. 203-212.

#252 Personius, S.F., 1986, Quaternary faulting along the Deep Creek fault upper Yellowstone valley, southwestern Montana, *in* Locke, W.W., ed., Quaternary geomorphic evolution of the Yellowstone region: Rocky Mountain Cell, Friends of the Pleistocene, September 6-8, 1986, Guidebook, p. 3-30.

#539 Pierce, K.L., and Morgan, L.A., 1992, The track of the Yellowstone hot spot—Volcanism, faulting, and uplift, *in* Link, P.K., Kuntz, M.A., and Platt, L.B., eds., Regional geology of eastern Idaho and western Wyoming: Geological Society of America Memoir 179, p. 1-53, 1 pl.

#5133 Ruleman, C.A., III, 2002, Quaternary tectonic activity within the northern arm of the Yellowstone tectonic parabola and associated seismic hazards, southwest Montana: Bozeman, Montana State University, unpublished M.S. thesis, 158 p.

#7020 Ruleman, C., Lageson, D.R., Stickney, M.C., 2000,Paradise Valley seismic gap, Southwest Montana: GeologicalSociety of America Abstracts with Programs, v. 32, no. 5, p. 37.

#242 Stickney, M.C., and Bartholomew, M.J., 1987, Preliminary map of late Quaternary faults in western Montana: Montana Bureau of Mines and Geology Open-File Report 186, 1 pl., scale 1:500,000.

#85 Stickney, M.C., and Bartholomew, M.J., 1987, Seismicity and late Quaternary faulting of the northern Basin and Range province, Montana and Idaho: Bulletin of the Seismological Society of America, v. 77, p. 1602-1625.
#556 Stickney, M.C., and Bartholomew, M.J., 1992 written commun., Preliminary map of late Quaternary faults in western Montana (digital data): Montana Bureau of Mines and Geology (digital version of MBMG Open-File Report 186), 1 pl., scale 1:500,000.
#630 U.S. Coast and Geodetic Survey, 1959, Preliminary report— Hebgen Lake, Montana earthquakes, August 1959: U.S. Department of Commerce, 15 p.
#317 Witkind, I.J., 1975, Preliminary map showing known and suspected active faults in western Montana: U.S. Geological Survey Open-File Report 75-285, 36 p. pamphlet, 1 sheet, scale 1:500,000.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal