Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Reliz fault zone, Blanco section (Class A) No. 286a

Last Review Date: 2003-07-17

citation for this record: Rosenberg, L.I., and Bryant, W.A., compilers, 2003, Fault number 286a, Reliz fault zone, Blanco section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:52 PM.

Synopsis General: Late Quaternary, predominately high-angle reverse fault. The Reliz fault zone is mapped at regional scales of mainly 1:62,500 and 1:24,000. No paleoseismic data are available for this fault. Vertical uplift rates derived from marine terrace profiles on western side of Santa Lucia Range suggest a late Quaternary slip rate of about 0.16 mm/yr (Page and others, 1998 #6176). Dextral slip rate unknown, but is probably 0.2-1 mm/yr if assumed the same as for the Rinconada fault zone, and maybe less if slip is partitioned along intra-Salinian faults, such as the Tularcitos fault [62c], westward to the San Gregorio fault zone [60] (Working Group on Northern California Earthquake Potential, 1996 #1216; Jachens and others, 1998 #6174; Clark and Rosenberg, 1999 #5394). Only one site has been investigated by trenching. At site 286b-1 (Terratech Inc., 1989 #6179) strands of the Reliz fault zone offset soil horizons estimated to be between several tens of

	thousands to a few hundred thousand years old that have developed within Pliocene-Pleistocene Paso Robles Formation. Overlying late Pleistocene colluvium estimated to be 30-50 ka is not offset. Sections: This fault has 2 sections.
Name comments	General: Section: The part of the Reliz fault zone concealed beneath the Salinas River alluvium north of Spreckels is herein named the Blanco section, for the Blanco district of the Salinas Valley, of which it crosses. This section extends from its complex junction with the Monterey Bay-Tularcitos fault zone [62] southeast to its intersection with the Sierra de Salinas section [286b] near Spreckels.
	Fault ID: Refers to number 239 (Reliz fault) of Jennings (1994 #2878) and L01 (Rinconada fault) of Working Group on Northern California Earthquake Potential (1996 #1216).
County(s) and State(s)	MONTEREY COUNTY, CALIFORNIA
Physiographic province(s)	PACIFIC BORDER
Reliability of location	Poor Compiled at 1:100,000 scale.
	<i>Comments:</i> Location is constrained by stratigraphy from water and oil wells, and from regional geophysical (gravity and magnetic) data.
Geologic setting	The Reliz fault zone is a major, high-angle reverse fault, which offsets Salinian block crystalline basement rocks and locally juxtaposes Pliocene-Pleistocene age Paso Robles Formation against basement rocks. The continuity of the Reliz fault zone with the Rinconada fault zone [63] to the southeast is controversial. Durham (1974 #6171) regarded the Reliz fault as a relatively minor Coast Range structure, stating that it is unlikely that the fault extends south of Arroyo Seco. On the other hand, Dibblee (1976 #6170) interprets the Reliz fault as the northern component of a major structural feature he calls the Rinconada- Reliz fault zone. Although the Reliz and Rinconada [63] faults are roughly aligned, there is a 10-15 degree difference in strike at the

	juncture. More significantly, the dominant style of displacement on the Reliz fault is reverse, whereas on the Rinconada fault zone [63], it is dextral strike-slip. Indeed, based on the distribution of the schist of the Sierra de Salinas, Ross (1974 #6178, (Ross, 1984 ,p. 18) sees "no compelling reason to believe that this schist belt was significantly faulted or offset" by this fault zone. Limited subsurface data (Ross, 1984 #6458, fig.11) suggest that this schist terrane continues to the east across the Reliz fault zone and disallow right-slip in excess of 23 km since Cretaceous time. Most of the offset on the Reliz fault appears to have been reverse dip-slip with Sierra de Salinas and Salinian basement uplifted to the southwest by as much as 3,000 m (Dibblee, 1976 #6170). The total documented dextral-slip on the Rinconada fault zone [63] is 38 km, whereas the maximum possible right-slip on the Reliz fault zone probably does not exceed 23 km and may be less. Thus, some, if not all, of the strike-slip motion along the Rinconada trend may have been partitioned northwestward via the Paloma and related faults to the Tularcitos fault [62c] of upper Carmel Valley. This latter fault is Holocene active and may have at least 16 km and possibly as much as 40 km of right-lateral displacement (Clark and others, 1997 #6137). Therefore, we believe that the Reliz fault is a separate zone because of the difference in type of displacement, the change in overall strike, and the likelihood that slip is partitioned at different rates between the Rinconada fault zone [63] and the Reliz fault zone.
U	
	N52°W (for section) versus N43°W (for whole fault)
Sense of movement	Reverse <i>Comments:</i> The Blanco section predominantly is delineated by high-angle reverse faults. Fairborn (1963 #6172) interpreted Bouger gravity anomalies to show Reliz fault as a high-angle reverse fault with about 3,000 m of vertical displacement. Fairborn also stated that Reliz fault did not continue beyond the northern end of the Sierra de Salinas. In contrast, Sieck (1964 #6145) interpreted the gravity data as supporting a northwestward continuation of the Reliz fault with about 900 m of vertical displacement. Recent gravity data (Langenheim and others, 2002 #6175) and magnetic anomaly data (R.C. Jachens, USGS, unpublished data) confirm the connection with onland Reliz fault and the offshore Monterey Bay fault zone [62]. A compilation map of isostatic gravity contours shows a prominent gravity low

Γ

Г

	with a value of about -46 mGal near the western boundary of the former Fort Ord. This low extends in a northwest-southeast direction beneath several deep water wells (Langenheim and others, 2002 #6175). We interpret this gravity low as a concealed sedimentary basin with the deepest part near Marina and the former Fort Ord. This deep basin could partly explain the unusually thick section of Purisima Formation penetrated by the USGS DMW-1 well (Hanson and others, 2002 #6173). The gravity low continues southeastward, forming a trough parallel to the axis of the Salinas Valley and aligns with the projection of the Blanco section.
Dip	70°
	<i>Comments:</i> Unknown, but likely deeps steeply southwest, based on alignment with Sierra de Salinas section to the south and gravity data (Fairborn, 1963 #6172, cross section A-A').
Paleoseismology studies	
Geomorphic expression	Poor. Traces delineating the Blanco section are concealed by Holocene alluvial and eolian deposits of the Salinas River valley.
	Youngest unit faulted is the Aromas Red Sands of probable late Pleistocene age (50-100 ka in Dupre, 1975 #5386) based on regional analysis of deep water and oil wells, and unpublished micro-paleontology reports used to construct cross sections for the Marina coastal area (Wrime Inc., 2003 #6182).
Historic earthquake	
Most recent prehistoric deformation	late Quaternary (<130 ka)
Recurrence interval	
Slip-rate category	Between 0.2 and 1.0 mm/yr <i>Comments:</i> Vertical uplift rates derived from marine terrace

	profiles on western side of Santa Lucia Range suggest a late Quaternary slip rate of about 0.16 mm/yr (Page and others, 1998 #6176). Dextral slip rate unknown, but is probably 0.2-1 mm/yr if assumed the same as for the Rinconada fault zone. May be less if slip is partitioned along intra-Salinian faults, such as the Tularcitos fault [62c], westward to the San Gregorio fault zone [60] (Working Group on Northern California Earthquake Potential, 1996 #1216; Jachens and others, 1998 #6174; Clark and Rosenberg, 1999 #5394). Slip rate assigned to the entire Reliz fault by Petersen and others (1996 #4860) for probabilistic seismic hazard assessment for the State of California was 1 mm/yr (with minimum and maximum assigned slip rates of 0 mm/yr and 2 mm/yr, respectively.
Date and Compiler(s)	Lewis I. Rosenberg, San Luis Obispo County Planning Department
	William A. Bryant, California Geological Survey
References	 #5394 Clark, J.C., and Rosenberg, L.I., 1999, Southern San Gregorio fault displacement—Stepover segmentation vs. through- going tectonics: U.S. Geological Survey NEHRP Final Technical Report, Grant Number 1434-HQ-98-GR-00007, 50 p., scale 1:24,000. #6137 Clark, J.C., Dupre, W.R., and Rosenberg, L.I., 1997, Geologic map of the Monterey and Seaside 7.5-minute quadrangles, Monterey County, California—A digital database: U.S. Geological Survey Open-File Report 97-30, map scale, scale 1:24,000. #6170 Dibblee, T.W., Jr., 1976, The Rinconada and related faults in the southern Coast Ranges, California, and their tectonic significance: U.S. Geological Survey Professional Paper 981, 55 p. #5386 Dupre, W.R., 1975, Quaternary history of the Watsonville lowlands, north-central Monterey Bay region, California: Stanford University, unpublished Ph.D. dissertation, 145 p. #6171 Durham, D.L., 1974, Geology of the southern Salinas Valley area, California: U.S. Geological Survey Professional Paper 819, 111 p., 4 sheets, scale 1:125,000. #6172 Fairborn, J.W., 1963, Gravity survey and interpretation of

the northern portion of the Salinas Valley: Stanford, California, Stanford University, report on student research project, 22 p., scale 1:62,500.

#6173 Hanson, R.T., Everett, R.R., Newhouse, M.W., Crawford, S.M., Pimintel, M.I., and Smith, G.A., 2002, Geohydrology of a deep-aquifer system monitoring well site in Marina, Monterey County, California: U.S. Geological Survey Water-Resources Investigations Report 02-4003, 73 p.

#6174 Jachens, R.C., Wentworth, C.M., and McLaughlin, R.J., 1998, Pre-San Andreas location of the Gualala block inferred from magnetic and gravity anomalies, *in* Elder, W.P., ed., Geology and tectonics of the Gualala block, northern California, Book 84: Society of Economic Paleontologists and Mineralogists, Pacific Section, p. 27-64.

#2878 Jennings, C.W., 1994, Fault activity map of California and adjacent areas, with locations of recent volcanic eruptions:California Division of Mines and Geology Geologic Data Map 6, 92 p., 2 pls., scale 1:750,000.

#6175 Langenheim, V.E., Stiles, S.R., and Jachens, R.C., 2002, Isostatic gravity map of the Monterey 30 x 60 minute quadrangle and adjacent areas, California: U.S. Geological Survey Open-File Report 02-373, scale 1:100,000.

#4969 Lawson, A.C., chairman, 1908, The California earthquake of April 18, 1906—Report of the State Earthquake Investigation Commission: Washington, D.C., Carnegie Institution of Washington Publication 87.

#6176 Page, B.M., Thompson, G.A., and Coleman, R.G., 1998, Overview—Late Cenozoic tectonics of the central and southern Coast Ranges of California: Geological Society of America Bulletin, v. 110, p. 846-876.

#4860 Petersen, M.D., Bryant, W.A., Cramer, C.H., Cao, T.,
Reichle, M.S., Frankel, A.D., Lienkaemper, J.J., McCrory, P.A.,
and Schwartz, D.P., 1996, Probabilistic seismic hazard assessment
for the State of California: California Department of
Conservation, Division of Mines and Geology Open-File Report
96-08 (also U.S. Geological Open-File Report 96-706), 33 p.

#6177 Reed, R.D., 1925, The post-Monterey disturbance in the Salinas Valley, California: Journal of Geology, v. 33, no. 6, p. 588-607.
#6178 Ross, D.C., 1974, Map showing basement geology and locations of wells drilled to basement, Salinian block, central and southern Coast Ranges, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-588, 2 sheets, scale 1:500,000.
#6458 Ross, D.C., 1984, Possible correlations of basement rocks across the San Andreas, San Gregorio-Hosgri, and Rinconada- Reliz-King City faults, California: U.S. Geological Survey Professional Paper 1317, 37 p.
#6145 Sieck, H.C., 1964, Gravity investigation of the Monterey- Salinas area, California: Stanford, California, Stanford University report on student research project, 32 p., 7 sheets, scale 1:62,500.
#6179 Terratech Inc., 1989, Supplemental fault investigation, Las Palmas Ranch Development, Monterey County, California: report, 3 p.
#1216 Working Group on Northern California Earthquake Potential (WGNCEP), 1996, Database of potential sources for earthquakes larger than magnitude 6 in northern California: U.S. Geological Survey Open-File Report 96-705, 40 p.
#6182 Wrime Inc., 2003, Deep aquifer investigative study: report to Marina Coast Water District, variously paginated.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal