Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Wiggins uplift (Class B) No. 2660

Last Review Date: 1998-05-11

citation for this record: Crone, A.J., compiler, 1998, Fault number 2660, Wiggins uplift, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 01/04/2021 10:24 AM.

Synopsis	This feature is classified as a Class B feature solely because of
	results reported in studies by Burnett and Schumm. These studies
	offer the only evidence of possible Quaternary uplift of the
	feature but the data are only considered to be suggestive of
	Quaternary deformation and are not compelling. Burnett and
	Schumm base their conclusion of Quaternary uplift on evidence
	derived from fluvial geomorphology, and they report supporting
	evidence of uplift from geodetic surveys. If Quaternary
	deformation is occurring on the Wiggins uplift, then it is not clear
	if the deformation is truly tectonic or if it could be related to other
	nontectonic processes such as salt tectonics or differential
	subsidence. Therefore, this feature is assigned to Class B in this
	compilation. The inclusion of the Wiggins uplift in this
	compilation is based on geomorphic evidence of possible
	Quaternary uplift of the entire structure. This inferred uplift is not
	related to individual faults, so it is impossible to define and
	measure fault-specific parameters such as azimuth, length, and dip
	for the Wiggins uplift.

Name	The Wiggins uplift is also known as the Wiggins arch (Cagle and
comments	Kahn, 1983 #2819).
County(s) and	BALDWIN COUNTY, ALABAMA
State(s)	MOBILE COUNTY, ALABAMA
	FORREST COUNTY, MISSISSIPPI
	GEORGE COUNTY, MISSISSIPPI
	HANCOCK COUNTY, MISSISSIPPI
	HARRISON COUNTY, MISSISSIPPI
	JACKSON COUNTY, MISSISSIPPI
	LAMAR COUNTY, MISSISSIPPI
	MARION COUNTY, MISSISSIPPI
	PEARL RIVER COUNTY, MISSISSIPPI
	PERRY COUNTY, MISSISSIPPI
	STONE COUNTY, MISSISSIPPI
	WALTHALL COUNTY, MISSISSIPPI
	WASHINGTON COUNTY, LOUISIANA
Physiographic	
province(s)	COASTAL PLAIN
Reliability of	Poor
location	Compiled at 1:2.500.000 scale.
	<i>Comments:</i> The location of the Wiggins uplift is defined on the
	basis of subsurface data and is typically mapped by the absence of
	salt in extreme southeastern Louisiana and adjacent southwestern
	Mississippi (Cagle and Kahn, 1983 #2819; Ewing, 1991 #1994).
	This salt-free area is confined to the area of the Mobile 2? sheet.
	However, the outline of the Wiggins uplift shown by Burnett and
	Schumm (1983 #2815) and Schumm (1986 #2817) is located
	north of the salt-free area and lies within the limits of the
	Hattiesburg and Natchez sheets. The counties listed above are
	determined from the location of the Wiggins uplift as shown by
	Cagle and Kahn.
Geologic setting	The Wiggins uplift is a small feature centered in southern
	Mississippi and defined on the basis of subsurface data. It is a
	second-order structural feature (Ewing, 1991 #1994) located
	along the northern flank of the Gulf of Mexico basin. It is
	bounded on the north by the Mississippi Salt basin and on the
	defined by the change of celt and some Uncertainty
	the creat of the feature (Carle and Kahn, 1022 #2210, Ewing
	the crest of the feature (Cagle and Kahn, 1983 #2819; Ewing,

	1991 #1994).
	The primary sources of information that suggest possible neotectonic uplift of the Wiggins uplift are reports by Burnett and Schumm (1983 #2815) and Schumm (1986 #2817). These reports briefly discuss fluvial geomorphic evidence that suggests contemporary uplift of the Wiggins uplift. The evidence includes changes in stream channel patterns and sinuosity across the uplift, and channel incision that has resulted in the formation of low terraces along Bogue Homo Creek. A gauging station on the Tallahala River provides evidence of as much as 12 mm/yr of incision since 1940, and longitudinal profiles of terraces and the valley floor along the Pearl River suggest deformation.
	As further support for their contention of modern uplift, they cite Brown and Oliver (1976 #2818), who indicate an uplift rate of about 4 mm/yr in the area of the uplift. However, Brown and Oliver note that the geodetic data they analyzed only detects relative motion and their data from the entire Coastal Plain of the eastern United States shows a pattern of tilting downward, away from the continental interior. Thus the apparent uplift could actually be the result of a more stable block beneath the uplift subsiding at a slower rate relative to the surrounding areas. Alternatively, the uplift could be the expression of a peripheral forebulge caused by sedimentation in the Mississippi River delta (Brown and Oliver, 1976 #2818).
	No additional studies have been conducted to confirm the conclusions of the geodetic or geomorphic investigations. Without additional confirmation, the Wiggins uplift is categorized as a Class B feature because it is located in a region of minimal historical seismicity and because the inferred deformation rates are anomalous for the geologic setting of the Gulf Coastal plain.
Length (km)	km.
Average strike	
Sense of movement	No data <i>Comments:</i> The exposed faults may be caused be either subsurface dissolution or tectonic faulting. The causal fault, if any, remains unknown and uncharacterized. No movement on specific faults is reported. The geomorphic evidence reported by Purmatt and Schumm (1082 #2815) inform metical unlift of the
	β α β

	feature rather than movement on individual faults.
Dip	No data
	<i>Comments:</i> The exposed faults may be caused by either subsurface dissolution or tectonic faulting. The causal fault, if any, remains unknown and uncharacterized.
Paleoseismology studies	
Geomorphic expression	The Wiggins uplift does not have any conspicuous geomorphic expression, but Burnett and Schumm (1983 #2815) and Schumm (1986 #2817) describe fluvial geomorphic evidence used to infer Quaternary movement. They report changes in stream channel sinuosity and morphology, and channel incision resulting in the formation of terraces as evidence of continuing uplift.
Age of faulted surficial deposits	Holocene.
Historic earthquake	
Most recent prehistoric deformation	latest Quaternary (<15 ka) <i>Comments:</i> Deposits are not faulted but Burnett and Schumm (1983 #2815) and Schumm (1986 #2817) note that the modern river channels are responding to the deformation, which is indicative of contemporary deformation. Thus, the most recent deformation is Holocene in age.
Recurrence interval	<i>Comments:</i> The geomorphic evidence of Quaternary uplift implies that the deformation is a steady, on-going process. It is not clear that the deformation is episodic or coseismic, so it is impossible to quantify the deformation in terms of recurrence intervals.
Slip-rate category	Less than 0.2 mm/yr <i>Comments:</i> The evidence for one or a few through-going, causal faults is speculative. The causal faults, if any, remain unknown

	and uncharacterized. The inferred "slip rate" of this feature is not really a slip rate in the same sense as defining a slip rate on a fault; this "slip rate" is actually an inferred uplift rate of the entire feature. The only reported information concerning deformation rates is from Brown and Oliver (1976 #2818). They indicate a geodetic uplift rate of 4 mm/yr, but there is some question about whether this deformation is truly tectonic deformation. This high rate is generally incompatible with the geologic and tectonic setting of the Gulf Coast province, and if this rate were sustained for a significant period of geologic time, then the geomorphic and geologic expression of the uplift would be far more pronounced than it is at present. Thus, this geodetic rate is suspect in terms of it accurately reflecting a long-term tectonic uplift rate. The sparse historical seismicity in the region of the Wiggins uplift contrasts with the unusually high uplift rate. It is not clear if the uplift reflects long-term tectonic processes that produce tectonic strain that could be released by damaging earthquakes. Until some of these fundamental questions about the nature of the deformation are answered, the Wiggins uplift is classified as a Class B feature. Because of the uncertainties described above, the slip rate is defined as "unknown" until better information is available about the nature and rate of Quaternary deformation.
Date and Compiler(s)	1998 Anthony J. Crone, U.S. Geological Survey, Emeritus
References	 #2818 Brown, L.D., and Oliver, J.E., 1976, Vertical crustal movements from leveling data and their relation to geologic structure in the eastern United States: Reviews of Geophysics and Space Physics, v. 14, no. 1, p. 13-35. #2815 Burnett, A.W., and Schumm, S.A., 1983, Alluvial-river response to neotectonic deformation in Louisiana and Mississippi: Science, v. 222, p. 49-50. #2819 Cagle, J.W., and Kahn, M.A., 1983, Smackover-Norphlet stratigraphy, south Wiggins arch, Mississippi and Alabama: Transactions of the Gulf Coast Association of Geological Societies, v. 33, p. 23-29. #1994 Ewing, T.E., 1991, Structural framework, <i>in</i> Salvador, A., ed., The Gulf of Mexico basin: Boulder, Colorado, Geological Society of America, The Geology of North America, v. J, p. 31-52.

#2817 Schumm, S.A., 1986, Alluvial river response to active
tectonics, <i>in</i> Active tectonics: Washington, D.C., National
Academy Press, p. 80-94.

Questions or comments?

Facebook Twitter Google Email

<u>Hazards</u>

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal