Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Drum Mountains fault zone (Class A) No. 2432

Last Review Date: 1999-10-01

Compiled in cooperation with the Utah Geological Survey

citation for this record: Black, B.D., Hylland, M.D., and Hecker, S., compilers, 1999, Fault number 2432, Drum Mountains fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:56 PM.

Synopsis	Complex zone of multiple, subparallel, west- and east-dipping normal faults on the eastern side of the Drum Mountains in central Utah. The fault zone cuts lacustrine deposits related to the Provo shoreline level of Lake Bonneville. It shows evidence for Holocene activity and has been trenched, studied in outcrop and been the subject of a seismic-reflection study.
Name comments	Fault ID: Refers to fault number 8-1 of Hecker (1993 #642).
County(s) and State(s)	JUAB COUNTY, UTAH MILLARD COUNTY, UTAH

Physiographic province(s)	BASIN AND RANGE
Reliability of location	Good Compiled at 1:250,000 scale.
	<i>Comments:</i> Mapped or discussed by Bucknam and Anderson (1979 #517), Allmendinger and others (1983 #405), Anderson (1983 #4971), Colman and Watson (1983 #334), Crone (1983 #552), Crone and Harding (1984 #551), Hanks and others (1984 #337), Anderson and Barnhard (1986 #895), Pierce and Colman (1986 #53), Oviatt (1989), and Hintze and Davis (in preparation #4539). Fault traces from mapping of Bucknam and Anderson (1979 #517) and Oviatt (1989 #381).
Geologic setting	North-trending fault zone along the eastern margins of the Drum and Little Drum Mountains in central Utah. The fault zone contains numerous north-trending, subparallel, en-echelon fault traces in a wide, elongate area tens of kilometers long and wide. The Drum Mountains are in the southern Thomas Range, easternmost of three north-trending mountain ranges in western Utah (including the Confusion and House Ranges). Bedrock in the mountains is mainly Cambrian sedimentary and Tertiary volcanic rocks. Unconsolidated deposits in the valley are mainly lake sediments and alluvium.
Length (km)	52 km.
Average strike	N7°W
Sense of movement	Normal
Dip Direction	E; W
Paleoseismology studies	Site [2433-1]. A.J. Crone (U.S. Geological Survey) excavated a long trench across 7.2 m high scarps below the Provo level of Lake Bonneville. The trenching revealed evidence for one or more displacement events that resulted in 5.7 m of net stratigraphic offset of gravels that are considered to be <14 ka (Anderson, 1983 #4971; A.J. Crone, oral commun., 2002). A shallow seismic-reflection profile across the scarps shows a network of steeply dipping faults (many of which are not associated with scarps) and substantial, recurrent displacement (Crone and Harding, 1984 #551). Crone's (1983 #552) study of scarp-related soil development and stratigraphy indicate an early

	Holocene age for the scarps. Faulted Provo shoreline features provide a maximum age for the scarps of 13.5 ka (Crone, 1983 #552).
Geomorphic expression	Multiple, north-south-trending, subparallel normal fault scarps along the eastern base of the Drum Mountains. Scarps range in height from 0.7 to 7.3 m, and average 2.4 m. Oviatt (1989 #381) indicates net displacement is difficult to determine because major faults across the zone have both down-to-the-east and down-to- the-west displacement. The surface projection of a west-dipping, low-angle detachment (Allmendinger and others, 1983 #405) coincides with scarps at the south end of the zone. A channel pattern anomaly suggestive of uplift affects a broad (35-km-long) reach of the Sevier River south of the fault zone (Anderson and Barnhard, 1992 #612). Morphometric scarp analyses by Pierce and Colman (1986 #53) yielded a scarp age of 9 ka. Earlier modeling, uncorrected for height dependency in age estimates, yielded scarp ages of from 5 to 5.6 ka (Colman and Watson, 1983 #334; Hanks and others, 1984 #337). Empirical studies of scarp morphology as a function of age were conducted by Bucknam and Anderson (1979 #332) and Sterr (1985 #351).
Age of faulted surficial deposits	Early(?) Holocene alluvium and latest Pleistocene lacustrine deposits and loess.
Historic earthquake	
Most recent prehistoric deformation	latest Quaternary (<15 ka) <i>Comments:</i> Early Holocene timing based primarily on morphometric data.
Recurrence interval	
Slip-rate category	Less than 0.2 mm/yr
Date and Compiler(s)	1999 Bill D. Black, Utah Geological Survey Michael D. Hylland, Utah Geological Survey
	Suzanne Hecker, U.S. Geological Survey

Brown, L., Kaufman, S., and Oliver, J., 1983, Cenozoic and Mesozoic structure of the eastern Basin and Range province, Utah, from COCORP seismic-reflection data: Geology, v. 11, p. 532-536.

#4971 Anderson, R.E., 1983, Regional and local hazards mapping in the eastern Great Basin, *in* Jacobson, J.L., ed., National Earthquake Hazards Reduction Program, Summaries of Technical Reports Volume XXVII: U.S. Geological Survey Open-File Report 89-913, p. 96-97.

#895 Anderson, R.E., and Barnhard, T.P., 1986, Genetic relationship between faults and folds and determination of Laramide and neotectonic paleostress, western Colorado Plateautransition zone, central Utah: Tectonics, v. 5, p. 335-357.

#612 Anderson, R.E., and Barnhard, T.P., 1992, Neotectonic framework of the central Sevier Valley area, Utah, and its relationship to seismicity, *in* Gori, P.L., and Hays, W.W., eds., Assessment of regional earthquake hazards and risk along the Wasatch front, Utah: U.S. Geological Survey Professional Paper 1500, p. F1-F47.

#332 Bucknam, R.C., and Anderson, R.E., 1979, Estimation of fault-scarp ages from a scarp-height—slope-angle relationship: Geology, v. 7, p. 11-14.

#517 Bucknam, R.C., and Anderson, R.E., 1979, Map of fault scarps on unconsolidated sediments, Delta 1° x 2° quadrangle, Utah: U.S. Geological Survey Open-File Report 79-366, 21 p. pamphlet, 1 sheet, scale 1:250,000.

#334 Colman, S.M., and Watson, K., 1983, Ages estimated from a diffusion equation model for scarp degradation: Science, v. 221, p. 263-265.

#552 Crone, A.J., 1983, Amount of displacement and estimated age of a Holocene surface faulting event, eastern Great Basin, Millard County, Utah, *in* Crone, A.J., ed., Paleoseismicity along the Wasatch Front and adjacent areas, central Utah: Utah Geological and Mineral Survey Special Studies 62, p. 49-55.

#551 Crone, A.J., and Harding, S.T., 1984, Relationship of late Quaternary fault scarps to subjacent faults, eastern Great Basin,

Utah: Geology, v. 12, p. 292-295.
#337 Hanks, T.C., Bucknam, R.C., Lajoie, K.R., and Wallace, R.E., 1984, Modification of wave-cut and faulting-controlled landforms: Journal of Geophysical Research, v. 89, no. B7, p. 5771-5790.
#642 Hecker, S., 1993, Quaternary tectonics of Utah with emphasis on earthquake-hazard characterization: Utah Geological Survey Bulletin 127, 157 p., 6 pls., scale 1:500,000.
#381 Oviatt, C.G., 1989, Quaternary geology of part of the Sevier Desert, Millard County, Utah: Utah Geological and Mineral Survey Special Studies 70, 41 p., 1 pl., scale 1:100,000.
#53 Pierce, K.L., and Colman, S.M., 1986, Effect of height and orientation (microclimate) on geomorphic degradation rates and processes, late-glacial terrace scarps in central Idaho: Geological Society of America Bulletin, v. 97, p. 869-885.
#351 Sterr, H., 1985, Rates of change and degradation of hillslopes formed in unconsolidated materials—A morphometric approach to date quaternary fault scarps in western Utah; USA: Zeitschrift fuer Geomorphologie N. Folge, v. 29, p. 315-333.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal