Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Sawatch fault, southern section (Class A) No. 2308b

Last Review Date: 2015-03-14

Compiled in cooperation with the Colorado Geological Survey

citation for this record: Widmann, B.L., and Haller, K.M., compilers, 2015, Fault number 2308b, Sawatch fault, southern section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 03:00 PM.

Synopsis	General: The Sawatch fault is a range-front fault on the east side
	of the Sawatch Range from about Leadville south to the South
	Arakansas River. The faults comprise the western boundary of the
	upper Arkansas Valley graben, a Neogene west-tilted structure
	that forms the northernmost topographically prominent expression
	of the Rio Grande Rift. The graben developed along the axial
	crest of the Laramide Sawatch anticline. Trenching investigations
	on the southern part of the fault indicated six surface ruptures
	since about 150 ka, suggesting a recurrence interval of 10–0 k.y.;
	the most recent faulting event occurred less than 4 k.y. ago

	(Ostenaa and others, 1981 #2730).
	Sections: This fault has 2 sections. Ostenna and others (1981 #2730) described the Sawatch fault as bounding two coeval grabens, which they referred to as the north Arkansas graben and the south Arkansas graben. Unruh and others (1992 #2776) used these physiographic divisions to define their north and south segments of the Sawatch fault. Fault segments described by Unruh and others (1992 #2776), and Lettis and others (1996 #4453) are herein refered to as sections. Subdued scarps are present on Bull Lake deposits along the northern section of the fault. Along the southern section, scarps up to 10 m high are present on Bull Lake deposits, and scarps average about 2 m high on Pinedale deposits.
Name	General: The Sawatch fault is expressed as a series of more than
comments	16 generally north-trending fault scarps along eastern margin of the Sawatch Range between Leadville and Salida. Until recently, the south section of the fault was known as the Sawatch fault (e.g. Witkind, 1976 #2792; Kirkham and Rogers, 1981 #792), and the faults comprising the north section of the fault were as yet unnammed. Ostenaa and others (1981 #2730) described the Sawatch fault as bounding the upper Arkansas Valley, which they further subdivided into the north Arkansas graben and the south Arkansas graben. Unruh and others (1992 #2776) used these physiographic divisions to define their north and south segments of the Sawatch fault, which they termed the Northern Sawatch fault and the Southern Sawatch fault. Although this fault has been described in the literature as segmented (Unruh and others, 1992 #2776; Lettis and others, 1996 #4453), studies are not extensive enough on each section of the fault to warrant designation as a segmented fault. The fault is therefore herein described as a sectioned fault.
	Section: Unruh and others (1992 #2776) used the term Southern Sawatch fault to describe that part of the Sawatch fault that extends south from the Twin Lakes area. Herein this section of the fault is simply referred to as the southern section of the Sawatch fault. The southern section extends from south of the Twin Lakes area to the South Arkansas River, west of Salida. The southern section extends across the strike-slip fault bounding the southern end of the Chalk Cliffs that Richards and others (2010 #7282) suggests represents a major segment boundary responsible for the offset of the the southern Sawatch fault; however, differences in fault behavior north and south of the Chalk Cliffs is not

	demonstrated.
	Fault ID: Fault number Q56b of Widman and others (1998 #3441); fault 159 in Kirkham and Rogers (1981 #792); fault 'G' in Knepper (1974b #2714); faults 148, 149, 151 and 357 in Witkind (1976 #2792).
County(s) and State(s)	CHAFFEE COUNTY, COLORADO
Physiographic province(s)	SOUTHERN ROCKY MOUNTAINS
Reliability of location	Good Compiled at 1:100,000 scale.
	<i>Comments:</i> The southern section of the Sawatch fault was mapped by Limbach (1975 #2716) at a scale of 1:24,000, by Scott (1975 #2733) and Scott and others (1975 #2737) at 1:62,500, by Arestad (1977 #2556) at 1:187,500, by Colman and others (1985 #1954) at 1:125,000, and by Tweto and others (1976 #2774) at 1:250,000. The trace used herein is from Colman and others (1985 #1954) further constrained by satellite imagery and topography at scale of 1:100,000. Reference satellite imagery is ESRI_Imagery_World_2D with a minimum viewing distance of 1 km (1000 m).
Geologic setting	The Sawatch fault is a high-angle, down-to-the-east normal fault. It lies on the eastern margin of the Sawatch Range between Leadville and Salida and forms the western boundary of the upper Arkansas Valley graben, a Neogene west-tilted structure that forms the northernmost topographically prominent expression of the Rio Grande rift. The graben developed along the axial crest of the Laramide-age Sawatch anticline. The fault is one of the larger faults in the northern Rio Grande rift.
Length (km)	This section is 41 km of a total fault length of 84 km.
Average strike	N3°W (for section) versus N3°W,N3°W (for whole fault)
Sense of movement	Normal <i>Comments:</i> Limbach (1975 #2716) and Witkind (1976 #2792) indicated normal movement on this fault section. However, en echelon scarps indicate a left-lateral component of slip (Kirkham and Rogers, 1981 #792).

1	1
Dip	70° E.
	<i>Comments:</i> Witkind (1976 #2792) reported a northeast dip for faults on the east flank of the Collegiate Peaks. A cross section by Limbach (1975 #2716) showed a dip of about 70° E. north of Cottonwood Creek.
Paleoseismology studies	Ostenaa and others (1981 #2730) excavated five trenches across scarps along the southern section of the Sawatch fault. Trench investigations were not discussed individually nor exact location of the trenches was not indicated in the original report; however, summaries of their findings were presented. Trenches at the Cottonwood trench site near Cottonwood Creek and at the Eddy trench site south of Chalk Creek (two site are shown by Miller, 1999 #7057– revealed at least six episodes of surface faulting since 100–150 ka. Each event was inferred to have produced less than 0.2 to 0.3 m of surface displacement. The most recent event on this section of the fault was radiocarbon dated at less than 4 ka.
Geomorphic expression	Numerous scarps are present along the southern section of the Sawatch fault. Scarps are 8 to 10 m high on Bull Lake deposits and about 2 m high on Pinedale deposits (Ostenaa and others, 1981 #2730). The scarps form an en echelon series of left- stepping faults (Kirkham and Rogers, 1981 #792). Miller (1999 #7057) suggests geologic relations observed at Chalk Creek are the result of progressive migration of active strands toward the valley, which reduces the sinuosity in the fault.
Age of faulted surficial deposits	Scarps as much as 10 m high are present on Bull Lake deposits whereas scarps on Pinedale deposits average about 2 m in height (Ostenaa and others, 1981 #2730). Offset of Quaternary deposits was also shown by Scott (1975 #2733), Scott and others (1975 #2737), and Tweto and others (1976 #2774). Limbach (1975 #2716) reported 3,000 m of Neogene displacement across this section of the Sawatch fault.
Historic earthquake	
Most recent prehistoric deformation	latest Quaternary (<15 ka) <i>Comments:</i> Ostenaa and others (1980 #2729) radiocarbon dated the most recent faulting event at less than 4 ka. Scarps on Pinedale deposits also suggest Holocene activity on the fault

	(Ostenaa and others, 1981 #2730; Unruh and others, 1992 #2776; Lettis and others, 1996 #4453). Howard and others (1978 #312) and Kirkham and Rogers (1981 #792) indicated late Quaternary movement on this section of the fault, whereas Colman (1985 #1953) indicated Holocene movement.
Recurrence interval	10–40 k.y. (<150 ka) <i>Comments:</i> Ostenaa and others (1981 #2730) calculated a recurrence interval of 10–40 k.y. based on trenching investigations, which revealed six surface rupture events since about 150 ka.
Slip-rate category	Less than 0.2 mm/yr <i>Comments:</i> Maximum slip has been concentrated along the southern section of the fault (Ostenaa and others, 1981 #2730). Low slip rate is indicated based on 2 m of offset in 10–40 ka Pinedale deposits on the southern section.
Date and Compiler(s)	2015 Beth L. Widmann, Colorado Geological Survey Kathleen M. Haller, U.S. Geological Survey
References	 #2556 Arestad, J.F., 1977, Resistivity studies in the upper Arkansas Valley and northern San Luis Valley, Colorado: Golden, Colorado School of Mines, M.S. thesis T-1934, 129 p. #1953 Colman, S.M., 1985, Map showing tectonic features of late Cenozoic origin in Colorado: U.S. Geological Survey Miscellaneous Geologic Investigations I-1566, 1 sheet, scale 1:1,000,000.
	#1954 Colman, S.M., McCalpin, J.P., Ostenaa, D.A., and Kirkham, R.M., 1985, Map showing upper Cenozoic rocks and deposits and Quaternary faults, Rio Grande Rift, south-central Colorado: U.S. Geological Survey Miscellaneous Geologic Investigations I-1594, 2 sheets.
	#312 Howard, K.A., Aaron, J.M., Brabb, E.E., Brock, M.R., Gower, H.D., Hunt, S.J., Milton, D.J., Muehlberger, W.R., Nakata, J.K., Plafker, G., Prowell, D.C., Wallace, R.E., and Witkind, I.J., 1978, Preliminary map of young faults in the United States as a guide to possible fault activity: U.S. Geological Survey Miscellaneous Field Studies Map MF-916, 2 sheets, scale 1:5,000,000.

#792 Kirkham, R.M., and Rogers, W.P., 1981, Earthquake potential in Colorado: Colorado Geological Survey Bulletin 43, 171 p., 3 pls.

#2714 Knepper, D.H., Jr., 1974, Tectonic analysis of the Rio Grande Rift zone, central Colorado: Golden, Colorado School of Mines, Ph.D. dissertation T-1593, 237 p.

#4453 Lettis, W., Noller, J., Wong, I., Ake, J., Vetter, U., and LaForge, R., 1996, Draft report, Seismotectonic evaluation of Colorado River storage project-Crystal, Morrow Point, Blue Mesa dams, Smith Fork project-Crawford dam, west-central Colorado: Technical report to U.S. Bureau of Reclamation, Denver, Colorado, 177 p.

#2716 Limbach, F.W., 1975, The geology of the Buena Vista area, Chaffee County, Colorado: Golden, Colorado School of Mines, M.S. thesis T-1692, 98 p.

#7057 Miller, M.G., 1999, Active breaching of a geometric segment boundary in the Sawatch Range normal fault, Colorado, USA: Journal of Structural Geology, v. 21, p. 769-776.

#2729 Ostenaa, D.A., Losh, S.L., and Nelson, A.R., 1980, Recurrent late Quaternary faulting in the upper Arkansas Valley near Buena Vista, Colorado: Geological Society of America Abstracts with Programs, v. 12, no. 6, p. 300.

#2730 Ostenaa, D.A., Losh, S.L., and Nelson, A.R., 1981, Evidence for recurrent late Quaternary faulting, Sawatch fault, upper Arkansas Valley, Colorado, *in* Junge, W.R., ed., Colorado tectonics, seismicity and earthquake hazards—Proceedings and field trip guide: Colorado Geological Survey Special Publication 19, p. 27-29.

#7282 Richards, K., Revil, A., Jardani, A., Henderson, F., Batzle,
M., and Haas, A., 2010, Pattern of shallow ground water flow at
Mount Princeton Hot Springs, Colorado, using geoelectrical
methods: Journal of Volcanology and Geothermal Research, v.
198, p. 217–232, doi:10.1016/j.jvolgeores.2010.09.001.

#2733 Scott, G.R., 1975, Reconnaissance geologic map of the Buena Vista quadrangle, Chaffee and Park Counties, Colorado:

U.S. Geological Survey Miscellaneous Field Studies Map MF- 657.
#2737 Scott, G.R., Van Alstine, R.E., and Sharp, W.N., 1975, Geologic map of the Poncha Springs quadrangle, Chaffee County, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-658.
#2774 Tweto, O., Steven, T.A., Hail, W.J., Jr., and Moench, R.H., 1976, Preliminary geologic map of the Montrose 1° x 2° quadrangle, southwestern Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-761.
#2776 Unruh, J.R., Sawyer, T.L., and Lettis, W.R., 1992, Seismotectonic evaluation of Green Mountain Dam, Shadow Mountain Dam, Grandby Dam, and Willow Creek Dam, Colorado-Big Thompson Project: Technical report to U.S. Bureau of Reclamation, Denver, Colorado, 78 p.
#3441 Widmann, B.L., Kirkham, R.M., and Rogers, W.P., 1998, Preliminary Quaternary fault and fold map and database of Colorado: Colorado Geological Survey Open-File Report 98-8, 331 p., 1 pl., scale 1:500,000.
#2792 Witkind, I.J., 1976, Preliminary map showing known and suspected active faults in Colorado: U.S. Geological Survey Open-File Report 76-154.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal