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Synopsis The north-striking Hubbell Spring fault is an intrabasin 18-km-
wide zone of normal faults composed of numerous subparallel,
anastomosing, predominately west-dipping faults in the central
Rio Grande rift. The fault forms the western edge of a prominent
intrabasin topographic bench called the Hubbell bench, which is
5–11 km west of the steep escarpment at the foot of the Manzano
Mountains. At its northern end, the active trace of the Hubbell
Spring fault merges with and offsets the Tijeras-Cañoncito fault
system [2033] near the Travertine Hills on Sandia National
Laboratory. It extends southward to include several previously
unnamed faults [2117]. Fault scarps are 4–30 m high on deposits
ranging from late to early Pleistocene age. The Hubbell Spring



ranging from late to early Pleistocene age. The Hubbell Spring
fault has been recurrently active throughout the Quaternary.

Name
comments

The Hubbell Spring fault was originally mapped and named the
Ojuelos fault by Read and others (1944 #1416). Numerous other
investigators have used the names "Ojuelos fault", "Ojuelos-
Hubbell Springs fault", and "Hubbell Spring (or Springs) fault"
interchangeably for this structure (Reiche, 1949 #1417; Kelley,
1954 #1222; Stark, 1956 #1419; Titus, 1963 #1421; Baltz, 1976
#1431; Kelley, 1977 #1106). The namesake for the fault is
Hubbell Spring, a spring that flows from the fault zone near its
northern end, so the name "Hubbell Spring fault", as used in more
recent publications (Machette, 1982 #1401; Machette and
McGimsey, 1983 #1024; GRAM Incorporated and William Lettis
& Associates Incorporated, 1995 #1430; Love and others, 1996
#1762) is retained herein. Following mapping of Olig and
Zachariasen (2010 #7219) we included in the Hubbell Spring
fault, the Palace-Pipeline fault and McCormick Ranch faults of
Maldonado and others (2007 #7218), the unnamed faults on the
Llano de Manzano of Machette and McGimsey (1983 #1024), and
the Contreras Cemetery fault of McCraw and others (2006).

Fault ID: Fault no. 4 of Machette (1982 #1401), fault no. 3 of
Machette and McGimsey (1983 #1024).

County(s) and
State(s)

VALENCIA COUNTY, NEW MEXICO 
BERNALILLO COUNTY, NEW MEXICO 

Physiographic
province(s) BASIN AND RANGE 

Reliability of
location

Good
Compiled at 1:250,000 scale.

Comments: We include the numerous subparallel, anastomosing
and branching normal faults interpreted from high-resolution
aeromagnetic data and geomorphic mapping (Grauch and
Hudson, 2007 #7243; Olig and Zachariasen, 2010 #7219) to
augment fault traces mapped by Machette and McGimsey (1983
#1024), GRAM, Incorporated and William Lettis and Associates,
Incorporated (1995 #1430), Love and others (1996 #1762). The
southern extent of the Hubbell Spring fault is extended to include
the Palace Pipeline and McCormick Ranch faults of Maldonado
and others (2007 #7218), the unnamed faults on the Llano de
Manzano of Machette and McGimsey (1983 #1024), and the
Contreras Cemetery fault of McCraw and others (2006 #7255),



Contreras Cemetery fault of McCraw and others (2006 #7255),
which nearly doubles the previous length of the fault.

Geologic setting The Hubbell Spring fault forms the western edge of the Hubbell
bench, which is west of the steep escarpment at the foot of the
Manzano Mountains. The Hubbell Spring fault marks the eastern
margin of the Rio Grande rift in this part of the Albuquerque-
Belen basin. The 3D geophysical model of Grauch and Connell,
2013 #7268) suggests a steep eastern edge of the Belen basin
resulting from 2–4 km of overall vertical displacement. The
structure of the Rio Grande rift determined by analyzing gravity
and magnetic data suggests the largest total offset across the
Hubbell Spring fault is 5 km west of the fault scarps at the surface
where the depth to the top of the Precambrian is greater than 6
km; however, the location of this offset is not well constrained in
the resistivity model (Grauch and Connell, 2013 #7268;
Rodriguez and Saywer, 2013 #7267).

Length (km) 74 km.

Average strike N3°E

Sense of
movement Normal

Dip 48°–85° W 

Comments: Measurements of fault dip are from shallow
exposures at the Hubbell Spring and Carrizo Spring trench sites.
At Hubbell Spring, the fault is reported to dip 70°–85° W. (S.F.
Personius, unpublished data, 1997), and individual faults dip 48°–
52° W., 65°–73° W., and 70°–85°W. in the Carrizo Spring trench
exposure (Olig and others, 2011 #7184).

Paleoseismology
studies

Hubbell Spring trench (site 2120-1). A 60-m-long trench and two
soil test pits were excavated across a 8-m-high scarp near the
northern end of the Hubbell Spring fault in the fall of 1997
(Personius, 1998 #1415). The trench exposed two west-dipping
fault zones and an intervening 16-m-wide horse block broken by
numerous small displacement east- and west-dipping faults
(Personius and others, 2000 #5249). Well-sorted sands of the
lower Pleistocene upper Santa Fe Group are overlain by middle
Pleistocene alluvial-fan deposits in the upthrown block; three
wedges or sheets of mixed eolian sand and minor colluvium
overlie the fan deposits in the downthrown blocks. Three sand
wedges and net vertical offset determined by near-field



wedges and net vertical offset determined by near-field
projections of the alluvial-fan surface exposed in the trench and
auger cores yield about 4.7 m of throw across the fault zone
suggesting average vertical offsets of about 1.6 m; the average
could be larger as the far-field vertical displacement is 8 m.
Vertical displacement per event is reported as 1–2 m at one trench
site (Personius and Mahan, 2003 #6908), but total vertical
displacement would be larger if other fault splays also ruptured
during these events, as suggested by overlap of event ages with
those at the Carrizo Spring site (Olig and others, 2011 #7184).
Eleven samples yielded thermoluminescence (TL) and infrared
stimulated luminescence (IRSL) ages that are generally consistent
and in correct stratigraphic order (Personius and Mahan, 2003
#6908).

Carrizo Spring trench (site 2120-2). The trench was over 60-m-
long and up to 4.5-m deep; this study also included surficial
mapping of previously unrecognized faults and drilling (Olig,
2004 #7223; Olig and others, 2011 #7184). Eleven samples
submitted for luminescence analyses constrain the timing of 4–5
surface-rupturing earthquakes at the site. Similar to the findings
from the Hubbell Spring site, Olig and others (2011 #7184)
interpret large per-event displacements that are similar in age to
those at the Hubbell Spring site. Olig and others (2011 #7184)
conclude that displacement occurred in the same earthquakes at
the two sites.

Geomorphic
expression

The Hubbell Spring fault is well expressed as fault scarps and
aligned springs along the western margin of the Hubbell bench.
Individual scarps in unconsolidated deposits on the Llano de
Manzano surface range from 0 to 31 m high, and cumulative
vertical surface displacement is about 27.6–54.4 m and 41.4–83.1
m across two transects that crosses the entire fault zone (Olig and
Zachariasen, 2010 #7219).

Age of faulted
surficial
deposits

The Hubbell Spring fault offsets alluvial deposits of early, middle
(Love and others, 1996 #1762), and late Pleistocene (Machette
and McGimsey, 1983 #1024; GRAM Incorporated and William
Lettis & Associates Incorporated, 1995 #1430) age along much of
its length.

Historic
earthquake

Most recent
prehistoric

latest Quaternary (<15 ka) 



prehistoric
deformation Comments: At both trench sites, the most recent surface rupture

occurred after 15 ka. The timing of the most recent earthquake at
the Hubbell Spring site is 11.9±0.3 ka (Personius and Mahan,
2003 #6908), and the most recent earthquake at the Carrizon
Spring site occurred between 6 and 15 k.y. ago (Olig and others,
2011 #7184). These conclusions support those of earlier studies
including fault scarp morphology (Machette, 1982 #1401;
Machette and McGimsey, 1983 #1024) and surficial geologic
mapping (GRAM Incorporated and William Lettis & Associates
Incorporated, 1995 #1430).

Recurrence
interval

12–70 k.y. 

Comments: Based on luminescence dating, Personius and Mahan
(2003 #6908) conclude that the best age estimate for the last three
surface-rupturing events at the Hubbell Spring site is 55.6±1.3,
28.6±0.8, and 11.9±0.3 ka, which results in recurrence intervals of
27 and 17 k.y. between events and an elapsed time of 12 k.y. since
the most recent surface-rupturing paleoearthquake. Olig and
others (2011 #7184) identify four or possibly five
paleoearthquakes since deposition of piedmont deposits on the
Llano de Manzano surface ceased about 83.6±6.0 ka. Individual
recurrence-interval estimates of 14–27 k.y., further characterized
by an average recurrence of 19 (+5/−4) k.y.

Slip-rate
category

Between 0.2 and 1.0 mm/yr 

Comments: Vertical displacement is highly variable from event to
event and it is important to note that data reported for individual
trench sites will underestimate total slip. Olig and others (2011
#7184) report cumulative vertical surface displacement of about
28–54 m and 41–83 m across a northern and southern transect,
respectively. They assign an age of 80–130 ka to the faulted
surface and report a long-term cumulative average vertical-
displacement rate of 0.2–0.7 mm/yr for the northern transect and
0.3–1.0 mm/yr for the southern transect. Olig and others (2011
#7184) estimate variable single-event displacements of 3.7, 0.4,
1.7, 4.7, and 2.8 m at their trench site and conclude that vertical-
displacement rates for individual seismic cycles vary by an order
of magnitude, ranging from 0.044 mm/yr to 0.46 mm/yr. The
variation is not due to temporal clustering of earthquakes but
instead is primarily due to large variations in slip per event. The
reported preferred average vertical-displacement rates of
Personius and Mahan (2003 #6908) rate since 56 ka is 0.05



Personius and Mahan (2003 #6908) rate since 56 ka is 0.05
mm/yr, and interval vertical-displacement rates between the last
three events are 0.06 and 0.09 mm/yr represents a minimum
because the exposure did not extend across the entire fault zone.

Date and
Compiler(s)

2015 
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