Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

La Bajada fault (Class A) No. 2032

Last Review Date: 2016-07-25

Compiled in cooperation with the New Mexico Bureau of Geology & Mineral Resources

citation for this record: Personius, S.F., and Jochems, A.P., compilers, 2016, Fault number 2032, La Bajada fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:23 PM.

Synopsis	The La Bajada fault forms the margin between the Santo
U I	Domingo basin, the Española basin, and the eastern edge of the
	Rio Grande rift, and truncates the western edge of the Cerros del
	Rio volcanic field. A several-hundred-meter-high, west-facing
	escarpment marks the trace of the La Bajada fault along the
	northern part of the fault. Much of the footwall is capped by the
	resistant flows of the Plio-Pleistocene Cerros del Rio volcanic
	field, which help maintain the steep escarpment. The fault has
	been active in the Quaternary because it cuts upper Pliocene and
	lower Pleistocene volcanic rocks northeast of Cochiti Dam.
	However, the fault trace is commonly covered by extensive toreva
	block landslides; no fault scarps on surficial deposits have been

	found. These relations indicate an active period of faulting during the latest Pliocene and early Pleistocene, perhaps associated in part with volcanic activity in the Jemez and Cerros del Rio volcanic fields. The fault appears to have been quiescent for the last several hundred thousand years.
Name comments	The La Bajada fault extends from just beyond its intersection with the Rio Grande to at least 15 km south of Galisteo Creek; some workers suggest that the La Bajada fault extends in the subsurface to the Tijeras-Cañoncito fault system further south (e.g., Maynard, 2002 #7521). The southern part of the fault, from Tetilla Peak southward to beyond Galisteo Creek, was originally named the Rosario fault (Stearns, 1953 #1127), but most compilations since that time have included at least the northern part of the Rosario fault in the La Bajada fault (Kelley, 1954 #1222; Baltz, 1976 #1431; Kelley, 1977 #1106; Kelley, 1978 #1107; Wong and others, 1995 #1155; Hawley and Whitworth, 1996 #1303; Sawyer and Minor, 2006 #7584; Koning and Read, 2010 #7582). Herein we use the name "La Bajada fault" for the entire structure, because of confusion about where to divide the Rosario and La Bajada faults. Displacement on the La Bajada fault decreases south of Rosario, and may decrease to zero about 10 km north of its apparent intersection with the Tijeras- Cañoncito fault system [2033] near Golden (Bachman, 1975 #1283; Baltz, 1976 #1431). At its northern end, the La Bajada fault intersects with (Smith and others, 1970 #1125; Dethier and others, 2011 #7436) and may be truncated by (Wong and others,
County(s) and State(s)	SANDOVAL COUNTY, NEW MEXICO SANTA FE COUNTY, NEW MEXICO
Physiographic province(s)	BASIN AND RANGE SOUTHERN ROCKY MOUNTAINS
Reliability of location	Good Compiled at 1:24,000 scale. <i>Comments:</i> Fault trace from 1:24,000-scale maps of Smith and Kuhle (1998 #1770), Maynard and others (2002 #7585), and Sawyer and others (2002 #7586) as compiled by Koning and Read (2010 #7582), as well as 1:24,000-scale maps of Maynard (2002 #7521) and Dethier and others (2011 #7436). Parts of the fault were also mapped by Smith and others (1970 #1125), Bachman (1975 #1283), Thompson and others (1997 #1420) and

Geologic setting	Sawyer and others (1998 #1780). Parts of the fault trace are covered by extensive toreva block landslides, so fault locations in these areas are imprecise. The La Bajada fault forms the eastern edge of the Rio Grande rift as well as the boundary between the Española and Santo Domingo basins. This boundary area, termed the La Bajada constriction, is marked by a narrowing of the Rio Grande rift where more than 200 m of basin-fill sediments are preserved (Kelley, 1952 #7564; Minor and others, 2006 ##7583; Sawyer and Minor, 2006 #7584). Narrowing of the Rio Grande rift in this area has occurred in part via a northwestward shift in fault activity along the La Bajada fault since about 2.7 Ma (Minor and others, 2013 #7437). At least some movement along the fault during this interval may relate to volcanic activity in the adjacent Cerros del Rio volcanic field.
Length (km)	48 km.
Average strike	N9°W
Sense of movement	Normal <i>Comments:</i> The La Bajada fault exhibits predominantly normal slip (Minor and others, 2006 #7583), but some bedrock exposures indicate a component of localized strike-slip movement in the intersection zone with the Pajarito fault [2008], and in local areas where slip is transferred across smaller scale relay or accommodation zones (S.M. Minor, written commun., 1996– 1997).
Dip	55° W to vertical <i>Comments:</i> Measurements of fault planes in bedrock exposures along the surface traces of the main and subsidiary strands of the La Bajada fault mostly range from 55° to 90° (Sawyer and others, 2002 #7586; Minor and others, 2006 #7583)
Paleoseismology studies	
Geomorphic expression	A well-developed, several-hundred-meter-high, west-facing escarpment marks the trace of the La Bajada fault along most of its length. Much of the footwall is capped by the resistant flows of the Pliocene Cerros del Rio volcanic field, which help maintain

	the steep escarpment. The fault trace is commonly covered by extensive toreva-block landslides. Wong and others (1995 #1155, p. 2-14, 7–11) briefly describe lineaments and topographic scarps, presumably in surficial deposits, but field investigations by the primary compiler (S.F. Personius, unpublished data, 1996) found no evidence of fault offsets in surficial deposits of Quaternary age along the trace of the La Bajada fault.
Age of faulted surficial deposits	Parts of the La Bajada fault are covered by extensive toreva-block landslides, but the fault clearly cuts upper Pliocene and lower Pleistocene volcanic rocks at its northern end (Smith and others, 1970 #1125; Aubele, 1978 #1282; Sawyer and others, 2002 #7586; Dethier and others, 2011 #7436). These rocks include basalts of Cerros del Rio (1.1–2.7 Ma; Bachman and Mehnert, 1978 #1265; WoldeGabriel and others, 1996 #1426; Thompson and others, 2006 #7587), which are overlain by the 1.6 Ma Guaje pumice (the base of the Otowi Member of the Bandelier Tuff; Smith and others, 1970 #1125; Izett and Obradovich, 1994 #1305). The basaltic andesite of Cochiti Cone (also mapped as the "basaltic andesite of Tank Nineteen" by Smith and others, 1970 #1125, and "upper unit lava flows of the andesite of Cochiti volcano" by Dethier and others, 2011 #7436) is the youngest bedrock unit offset along the La Bajada fault zone, and has been dated at approximately 1.14 Ma (Thompson and others, 2006 #7587). This age is consistent with stratigraphic relations, because the unit overlies and thus post-dates the Otowi and probably the Tshirege members of the Bandelier Tuff (Thompson and others, 1997 #1420).
Historic earthquake	
Most recent prehistoric deformation	undifferentiated Quaternary (<1.6 Ma) <i>Comments:</i> Wong and others (1995 #1155, p. 2-14, 7–11) briefly describe lineaments and topographic scarps, presumably in surficial deposits, but field investigations by the primary compiler (S.F. Personius, unpublished data, 1996) found no evidence of fault offsets in surficial deposits of Quaternary age along the trace of the La Bajada fault. Surficial deposits that lie undeformed across the fault trace include extensive toreva-block landslides, some with well developed (stage IV) calcium carbonate soil horizons, piedmont surfaces with well developed (stage III) calcium carbonate soil horizons, a 15-m-high terrace along the Santa Fe River, a 20-m-high terrace along Galisteo Creek, and a

	30-m-high terrace along the Rio Grande (S.F. Personius, unpublished data, 1996). The ages of these deposits are unknown, but regional correlations suggest that the unfaulted Rio Grande terrace is probably several hundred thousand years old (Dethier, 1997 #1091; D.P. Dethier, written commun., 1996). In addition, the fault is buried by the Pliocene to Pleistocene Tuerto Gravel of Stearns (1953 #1127) south of Galisteo Creek (Bachman, 1975 #1283; Koning and Read, 2010 #7582). Thus, the most recent data point to an active period of faulting in late Pliocene and early Pleistocene time, perhaps associated with the volcanic activity in the Jemez and Cerros del Rio volcanic fields. The fault appears to have been quiescent for the last several hundred thousand years.
Recurrence interval	
Slip-rate category	Less than 0.2 mm/yr <i>Comments:</i> Wong and others (1995 #1155, table 7-1) calculated a post-Cerros del Rio (late Pliocene) rate of 0.06 mm/yr. However, slightly higher long-term (Plio-Pleistocene) slip rates across the La Bajada fault are indicated by the offsets of the basalt of Cerros del Rio and the basaltic andesite of Cochiti Cone (Smith and others, 1970 #1125; Thompson and others, 2006 #7587) northeast of Cochiti Dam near the northern end of the fault. Offsets of these units are about 250 m and 90 m, respectively (S.F. Personius, unpublished data, 1996). The basalt of Cerros del Rio was mostly deposited about 2.2–2.7 Ma and the basaltic andesite of Cochiti Cone was deposited about 1.14 Ma (Thompson and others, 2006 #7587). Further south, correlation of basalts in a Bureau of Indian Affairs water well with Cerros del Rio basalts in the footwall of the La Bajada fault indicate offset of about 375 m (Smith and Kuhle, 1998 #1772; Sawyer and others, 1998 #1780).
Date and Compiler(s)	2016 Stephen F. Personius, U.S. Geological Survey Andrew P. Jochems, New Mexico Bureau of Geology & Mineral Resources
References	 #1282 Aubele, J.C., 1978, Geology of the Cerros del Rio volcanic field, Santa Fe, Sandoval, and Los Alamos Counties, New Mexico: Albuquerque, University of New Mexico, unpublished M.S. thesis, 136 p., 1 pl. #1283 Bachman, G.O., 1975, Geologic map of the Madrid

quadrangle, Santa Fe and Sandoval Counties, New Mexico: U.S. Geological Survey Geologic quadrangle Map GQ-1268, 1 sheet, scale 1:62,500.

#1265 Bachman, G.O., and Mehnert, H.H., 1978, New K-Ar dates and the late Pliocene to Holocene geomorphic history of the central Rio Grande region, New Mexico: Geological Society of America Bulletin, v. 89, p. 283-292.

#1431 Baltz, E.H., 1976, Seismotectonic analysis of the central Rio Grande rift, New Mexico—A progress report on geologic investigations: U.S. Geological Survey Administrative Report, 93 p., 2 pls.

#1091 Dethier, D.P., 1997, Geology of White Rock quadrangle, Los Alamos and Santa Fe Counties, New Mexico: New Mexico Bureau of Mines and Mineral Resources Geologic Map GM-73, 1 sheet, scale 1:24,000.

#7436 Dethier, D.P., Thompson, R.A., Hudson, M.R., Minor,S.A., and Sawyer, D.A., 2011, Geologic map of the Cochiti Dam quadrangle, Sandoval County, New Mexico: U.S. Geological Survey Scientific Investigations Map SIM-3194, scale 1:24,000.

#1303 Hawley, J.W., and Whitworth, T.M., compilers, 1996, Hydrogeology of potential recharge areas for the basin- and valley-fill aquifer systems, and hydrogeochemical modeling of proposed artificial recharge of the upper Santa Fe aquifer, northern Albuquerque basin, New Mexico: New Mexico Bureau of Mines and Mineral Resources Open-File Report 402-D, 575 p.

#1305 Izett, G.A., and Obradovich, J.D., 1994, ⁴⁰Ar/³⁹Ar age constraints for the Jaramillo Normal Subchron and Matuyama-Brunhes geomagnetic boundary: Journal of Geophysical Research, v. 99, no. B2, p. 2925-2934.

#7564 Kelley, V.C., 1952, Tectonics of the Rio Grande depression of central New Mexico, *in* Johnson, R.B., and Read, C.B., eds., Rio Grande County: New Mexico Geological Society, 3rd Field Conference, October 3–5, 1952, Guidebook, p. 92–105.

#1222 Kelley, V.C., 1954, Tectonic map of a part of the upper Rio Grande area, New Mexico: U.S. Geological Survey Oil and Gas Investigations Map OM-157, 1 sheet, scale 1:190,080. #1107 Kelley, V.C., 1978, Geology of Española basin, New Mexico: New Mexico Bureau of Mines and Mineral Resources Geologic Map 48, 1 sheet, scale 1:125,000.

#7582 Koning, D.J. and Read, A.S., 2010, Geologic Map of the southern Española Basin, New Mexico Bureau of Geology and Mineral Resources, Open-File Report 531, 2 pl. and GIS data, scale 1:48,000, CD-ROM.

#7521 Maynard, S.R., 2002, Geologic map of the Golden 7.5minute quadrangle, Santa Fe County, New Mexico: New Mexico Bureau of Geology and Mineral Resources Open-File Geologic Map 36, scale 1:24,000.

#7585 Maynard, S.R., Sawyer, D., and Rogers, J., 2002, Geologic map of the Madrid 7.5-minute quadrangle, Santa Fe County, New Mexico: New Mexico Bureau of Geology and Mineral Resources Open-File Geologic Map 40, scale 1:24,000.

#7437 Minor, S.A., Hudson, M.R., Caine, J.S., and Thompson, R.A., 2013, Oblique transfer of extensional strain between basins of the middle Rio Grande rift, New Mexico—Fault kinematic and paleostress constrains, *in* Hudson, M.R., and Grauch, V.J.S., eds., New perspectives on Rio Grande rift basins: From Tectonics to Groundwater: Geological Society of America Special Paper 494, p. 345–382.

#7583 Minor, S.A., Hudson, M.R., Grauch, V.J.S., and Sawyer, D.A., 2006, Structure of the Santo Domingo Basin and La Bajada constriction area, Chapter E, *in* Minor, S.A., ed., The Cerrillos uplift, the La Bajada constriction, and hydrogeologic framework of the Santo Domingo basin, Rio Grande rift, New Mexico: U.S. Geological Survey Professional Paper 1720, p. 91–115.

#7584 Sawyer, D.A., and Minor, S.A., 2006, Geologic setting of the La Bajada constriction and Cochiti Pueblo area, New Mexico, Chapter A, *in* Minor, S.A., ed., The Cerrillos uplift, the La Bajada constriction, and hydrogeologic framework of the Santo Domingo basin, Rio Grande rift, New Mexico: U.S. Geological Survey Professional Paper 1720, p. 1–3.

#7586 Sawyer, D.A., Shroba, R.R., Minor, S.A., and Thompson, R.A., 2002, Geologic map of the Tetilla Peak quadrangle, Santa

Fe and Sandoval Counties, New Mexico: U.S. Geological Survey Miscellaneous Field Studies Map MF-2352, scale 1:24,000.

#1780 Sawyer, D., Deszcz-Pan, M., Grauch, V.S.J., Smith, G., Dethier, D., Thompson, R., Minor, S., Shroba, R., Rodriguez, B., and Kuhle, A., 1998, Geology of the Cochiti Pueblo area and the Cerrillos uplift based upon geologic mapping, airborne and ground geophysics, and limited subsurface information, *in* Slate, J.L., ed., U.S. Geological Survey Middle Rio Grande basin study —Proceedings of the Second Annual Workshop, Albuquerque, New Mexico, February 10-11, 1998: U.S. Geological Survey Open-File Report 98-337, p. 17-18.

#1770 Smith, G.A., and Kuhle, A.J., 1998, Geologic map of the Santo Domingo Pueblo quadrangle, Sandoval County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Open-File Geologic Map OF-DM 15, 1 sheet, scale 1:24,000.

#1772 Smith, G.A., and Kuhle, A.J., 1998, Hydrostratigraphic implications of new geological mapping in the Santo Domingo basin, New Mexico: New Mexico Geology, v. 20, p. 21-27.

#1125 Smith, R.L., Bailey, R.A., and Ross, C.S., 1970, Geologic map of the Jemez Mountains, New Mexico: U.S. Geological Survey Miscellaneous Investigations Map I-571, 1 sheet, scale 1:125,000.

#1127 Stearns, C.E., 1953, Tertiary geology of the Galisteo-Tonque area, New Mexico: Geological Society of America Bulletin, v. 64, p. 459–508.

#1420 Thompson, R.A., Minor, S.A., and Sawyer, D.A., 1997, The Cerros del Rio volcanic field and the La Bajada fault system —Geologic overview and status report, *in* Bartolino, J.R., ed., U.S. Geological Survey Middle Rio Grande basin study— Proceedings of the First Annual Workshop, Denver, Colorado, November 12-14, 1996: U.S. Geological Survey Open-File Report 97-116, p. 26-27.

#7587 Thompson, R.A., Sawyer, D.A., Hudson, M.R., Grauch,
V.J.S., and McIntosh, W.C., 2006, Cenozoic volcanism of the La
Bajada constriction area, New Mexico, Chapter C, *in* Minor, S.A.,
ed., The Cerrillos uplift, the La Bajada constriction, and
hydrogeologic framework of the Santo Domingo basin, Rio

Grande rift, New Mexico: U.S. Geological Survey Professional Paper 1720, p. 43–60.
#1426 Woldegabriel, G., Laughlin, A.W., Dethier, D.P., and Heizler, M., 1996, Temporal and geochemical trends of lavas in White Rock Canyon and the Pajarito Plateau, Jemez volcanic field, New Mexico, USA, <i>in</i> Goff, F., Kues, B.S., Rogers, M.A., McFadden, L.D., and Gardner, J.N., eds., The Jemez Mountains region: New Mexico Geological Society, 47th Field Conference, September 25-28, 1996, Guidebook, p. 251-261.
 #1155 Wong, I., Kelson, K., Olig, S., Kolbe, T., Hemphill-Haley, M., Bott, J., Green, R., Kanakari, H., Sawyer, J., Silva, W., Stark, C., Haraden, C., Fenton, C., Unruh, J., Gardner, J., Reneau, S., and House, L., 1995, Seismic hazards evaluation of the Los Alamos National Laboratory: Technical report to Los Alamos National Laboratory, Los Alamos, New Mexico, February 24, 1995, 3 volumes, 12 pls., 16 appen.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal