Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Oceanside fault (Class A) No. 187

Last Review Date: 2007-12-18

citation for this record: Ryan, H.F., compiler, 2007, Fault number 187, Oceanside fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:25 PM.

Synopsis	The Oceanside fault has been described as a major east dipping
	low-angle normal fault underlying the inner continental
	borderland from Laguna Beach south to the Mexican border. This
	low angle fault formed in early Miocene time (Crouch and Suppe,
	1993; Bohannon and Geist, 1998). Compressive, fault-related
	folds in the hanging wall of the Oceanside detachment (Crouch
	and Bachman, 1989; Fischer and Mills, 1991) suggest that the
	detachment surface has been, at least locally, reactivated as a
	blind thrust (Rivero and others 2000). The best documented
	evidence for the reactivation of the Oceanside detachment surface
	as a blind thrust occurs along the continental slope off of San
	Mateo Point (see San Mateo thrust section of the San Onofre fault
	zone [294a]). Evidence for large-scale reactivation of the entire
	Oceanside detachment surface as a blind thrust include uplift of
	marine terraces (Lajoie and others, 1992) and the surficial bowing
	of the continental slope between Dana Pt and Oceanside (Fisher
	and Mills, 1991). The lack of along-strike continuity of fault-
	related folds, the areal extent of the marine terraces beyond the

	southern end of the Oceanside fault, and geodetic modeling (Hanson and others, 2002) argue against reactivation of the entire detachment surface. Industry multichannel reflection profiles do not show evidence that an active thrust fault extends uninterrupted from as far north as Laguna Beach to as far south as Mexican border (USGS, 2006). Based on the relocation of microseismicity, Grant and Shearer (2004) suggest that the Oceanside fault is terminated in its down-dip direction by the Newport-Inglewood/Rose Canyon fault zone [127].
Name comments	The Oceanside fault is a name that has been applied to the reactivation of the Oceanside detachment surface (Crouch and Suppe, 1993; Bohannon and Geist, 1998) as a blind thrust (Rivero and others, 2000). Fold and thrust belts associated with the Oceanside fault include the San Mateo thrust (Fischer and Mills, 1991), and the San Joaquin Hills thrust [186] (Grant and others, 1999).
County(s) and State(s)	SAN DIEGO COUNTY, CALIFORNIA ORANGE COUNTY, CALIFORNIA
Physiographic province(s)	PACIFIC BORDER
Reliability of location	Poor Compiled at 1: scale. <i>Comments:</i> Location of fault from Qt_flt_ver_3- 0_Final_WGS84_polyline.shp (Bryant, W.A., written communication to K.Haller, August 15, 2017) attributed to Plesch and others (2007). Location is based on an extensive suite of migrated deep-penetration seismic reflection data (Rivero and others, 2000), although evidence for reactivation of the surface as a blind thrust fault is equivocal and only well-documented off of San Mateo Point.
Geologic setting	
Length (km)	143 km.
Average strike	335
Sense of movement	Thrust <i>Comments:</i> The detachment surface originated as a normal fault (Crouch and Suppe, 1993; Bohannon and Geist, 1998). It is reactivated as a thrust fault in the areas where southwest-verging

	folds are imaged at or near the sea floor (Fisher and Mills, 1991).
Dip	3–25° NE.
	<i>Comments:</i> Dip on the Oceanside detachment surface is calculated from seismic reflection profiles (Bohannon and Geist, 1998; Rivero and others, 2000; USGS, 2006).
Paleoseismology studies	
Geomorphic expression	The detachment surface is concealed and has no geomorphic expression. However, the surficial bowing of the continental slope may be a geomorphic expression of movement on the detachment surface.
Age of faulted surficial deposits	
Historic earthquake	
Most recent prehistoric deformation	undifferentiated Quaternary (<1.6 Ma) <i>Comments:</i> No ages are available for the time of most recent coseismic offset on fault zone.
Recurrence interval	
Slip-rate category	Between 0.2 and 1.0 mm/yr <i>Comments:</i> Rivero and others (2000) calculate an uplift rate of between 0.27 and 0.41 mm/yr based on the uplift of the San Joaquin Hills (Grant and others, 1999).
Date and Compiler(s)	2007 Holly F. Ryan, U.S. Geological Survey
References	#8389 Bohannon, R. G., and Geist, E. L., 1998, Upper crustal structure and Neogene tectonic development of the California continental borderland: Geological Society of America Bulletin, v. 110, p. 779–800.
	#8491 Crouch, J. K., and Bachman, S. B., 1989, Exploration

potential of offshore Newport-Inglewood fault zone [abs.]: American Association of Petroleum Geologists Bulletin, v. 73, p. 456.

#7886 Crouch, J.K., and Suppe, J., 1993, Late Cenozoic tectonic evolution of the Los Angeles basin and inner California borderland — A model for core complex-like crustal extension: Geological Society of America, v. 105, p. 1415–1434.

#8492 Fischer, P.J., and Mills, G. I., 1991, The offshore Newport-Inglewood-Rose Canyon fault zone, California—Structure, segmentation and tectonics, *in* Abbott, P.L., and Elliott, W.J., eds. Environmental perils, San Diego region: San Diego, California, San Diego Association of Geologists, p. 17–36.

#8493 Grant, L.B., and Shearer, P. M., 2004, Activity of the offshore Newport-Inglewood Rose Canyon fault zone, coastal southern California, from relocated microseismicity: Bulletin of the Seismological Society of America, v. 94, p 747–752.

#8480 Grant, L.B., Mueller, K.J., Gath, E.M., Cheng, H.,
Edwards, R.L., Munro, R., and Kenney, G.L., 1999, Late
Quaternary uplift and earthquake potential of the San Joaquin
Hills, southern Los Angeles Basin, California: Geology, v. 27, p. 1031–1034.

#8494 Hanson, K.L., Angell, M., Foxall, W., and Rietman, J., 2002, Evaluation of seismic source characterization of models for the inner borderlands of southern California: Eos, Transactions American Geophysical Union, v. 83, no. 47, Abstract S21A-0973, p. F1067.

#8495 Lajoie, K.R., Ponti, D.J., Powell, C.L., Mathieson, S.A., and Sarna_Wojcicki, A.M., 1992, Emergent marine strandlines and associated sediments coastal California—A record of Quaternary sea-level fluctuations, vertical tectonic movements, climatic changes and coastal processes, *in* Heath, E., and Lewis, L., eds., The regressive Pleistocene shoreline in southern California: Santa Ana, California, South Coast Geological Society Annual Field Trip Guidebook 20, p. 81–104.

#8407 Plesch, A., Shaw, J.H., Benson, C., Bryant, W.A., Carena,S., Cooke, M., Dolan, J., Fuis, G., Gath, E., Grant, L., Hauksson,E., Jordan, T., Kamerling, M., Legg, M., Lindvall, S., Magistrale,

H., Nicholson, C., Niemi, N., Oskin, M., Perry, S., Planansky, G., Rockwell, T., Shearer, P., Sorlien, C., Süss, M.P., Suppe, J., Treiman, J., and Yeats, R., 2007, Community Fault Model (CFM) for southern California: Bulletin of the Seismological Society of America, v. 97, p. 1793–1802.
 #8486 Rivero, C., Shaw, J.H., and Mueller, K., 2000, Oceanside and Thirtymile Bank blind thrusts—Implications for earthquake hazards in coastal southern California: Geology, v. 28, p. 891-894. #8405 USGS, 2005, NAMSS: National Archive of Marine Seismic Surveys, http://walrus.wr.usgs.gov/NAMSS/

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal