Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

unnamed fault zone southeastern Truckee Range (Class A) No. 1672

Last Review Date: 1999-06-09

citation for this record: Adams, K., and Sawyer, T.L., compilers, 1999, Fault number 1672, unnamed fault zone southeastern Truckee Range, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:26 PM.

Synopsis	This group of possibly related short discontinuous faults consists
	of: (1) north-striking intermontane faults at southern end of
	Truckee Range, (2) northeast-striking range front, piedmont, and
	intermontane faults bounding southeastern side of Truckee Range
	from south of Two Tips to Hot Springs Flat, and (3) northeast-
	striking intra basin and intermontane faults extending from
	eastern side of Hot Springs Flat northeast to southwestern tip of
	Trinity Range. A prominent right-step of about three kilometers
	separates faults along southeastern side of Truckee Range from
	faults in Hot Springs Flat area, but all faults are included in the
	same group because of similar orientation and proximity.
	Reconnaissance photogeologic mapping and regional geologic
	mapping are the sources of data. Trench investigations and
	detailed studies of scarp morphology have not been conducted.

Name	Refers to faults mapped by Slemmons (1968, unpublished Reno
comments	1?x2? sheet), Bell (1984 #105), and Greene and others (1991
	#3487) extending from southeastern side of Truckee Range,
	across Hot Springs Flat, to southwestern end of Trinity Range.
	Fault ID: Refers in part to fault zones R22 (Fastern Truckee
	Range fault zone) and R23 (Brady's Hot Springs fault) of dePolo
	(1998 #2845).
County(s) and	WASHOF COUNTY NEVADA
State(s)	CHURCHILL COUNTY, NEVADA
Physiographic	BASIN AND RANGE
Reliability of	Good Compiled at 1:100 000 cools
location	Complied at 1:100,000 scale.
	<i>Comments:</i> Fault locations are based on 1:250,000-scale maps of
	Bell (1981 #2875; 1984 #105). Mapping is from photogeologic
	analysis of 1:40,000-scale low sun-angle aerial photography,
	supplemented with 1:12,000-scale aerial photography of selected
	areas, several low-altitude aerial reconnaissance flights, and field
	reconnaissance of major structural and stratigraphic relationships.
Geologic setting	This group of possibly related short discontinuous faults consists of (1) north striking intermentance foults at southern and of
	Truckee Range (2) northeast-striking range front piedmont and
	intermontane faults bounding southeastern side of Truckee Range
	from south of Two Tips to Hot Springs Flat, and (3) northeast-
	striking intra basin and intermontane faults extending from
	eastern side of Hot Springs Flat northeast to southwestern tip of
	Trinity Range (Bell, 1984 #105; Greene and others, 1991 #3487).
	A prominent right-step of about 3 km separates faults along
	southeastern side of Truckee Range from faults in Hot Springs
	Flat area, but all faults are included in same group because of
Length (km)	34 km.
Avorago striko	N20°E
Average strike	
Sense of	Normal
movement	Comments: Not studied in detail: sense of movement from
	Slemmons (1968 unpublished Reno 19x29 sheet) and dePolo
	preminons (1700, unpublished Kello 1 (A2 (Sheet) and del 010

	(1998 #2845), inferred from topography, and inferred from sense of motion for other northeast-striking faults in region.
Dip Direction	SE
Paleoseismology studies	
Geomorphic expression	The intermontane faults at south end of Truckee Range are expressed as prominent topographic lineaments on Tertiary volcanic bedrock. Faults along southeastern side of Truckee Range are expressed as southeast-facing scarps, abrupt southeast- facing topographic escarpments, and prominent topographic lineaments on Tertiary volcanic bedrock. Faults in Hot Springs Flat area are expressed by northeast-trending scarps, some of which are facing southeast, and alignment of hot springs and fumaroles (Slemmons, 1968, unpublished Reno 1?x2? sheet, Bell, 1984 #105).
Age of faulted surficial deposits	late Pleistocene; Quaternary; Tertiary. Faults displace deposits of late Pleistocene Lake Lahontan, juxtapose undifferentiated Quaternary alluvium against Tertiary bedrock, and displace Tertiary volcanic and sedimentary rocks (Greene and others, 1991 #3487).
Historic earthquake	
Most recent prehistoric deformation	latest Quaternary (<15 ka) <i>Comments:</i> Although timing of most recent event is not well constrained, a latest Quaternary time is suggested based on reconnaissance photogeologic mapping of Bell (1984 #105) and from the studies of Slemmons (1968, unpublished Reno 1? X 2? sheet) and Dohrenwend and others (1996 #2846).
Recurrence interval	
Slip-rate category	Less than 0.2 mm/yr <i>Comments:</i> No detailed data exists to determine slip rates for this fault. dePolo (1998 #2845) assigned a reconnaissance vertical slip rate of 0.01 mm/yr for the fault based on the presence of scarps on alluvium and the absence of basal facets. The late Quaternary characteristics of these faults (overall geomorphic expression,

	continuity of scarps, age of faulted deposits, etc.) support a low slip rate. Accordingly, the less than 0.2 mm/yr slip-rate category has been assigned to this fault.
Date and Compiler(s)	1999 Kenneth Adams, Piedmont Geosciences, Inc. Thomas L. Sawyer, Piedmont Geosciences, Inc.
References	 #2875 Bell, J.W., 1981, Quaternary fault map of the Reno 1° by 2° quadrangle, Nevada-California: U.S. Geological Survey Open- File Report 81-982, 62 p., http://pubs.er.usgs.gov/publication/ofr81982. #105 Bell, J.W., 1984, Quaternary fault map of Nevada—Reno sheet: Nevada Bureau of Mines and Geology Map 79, 1 sheet, scale 1:250,000. #2845 dePolo, C.M., 1998, A reconnaissance technique for estimating the slip rate of normal-slip faults in the Great Basin, and application to faults in Nevada, U.S.A.: Reno, University of Nevada, unpublished Ph.D. dissertation, 199 p. #2846 Dohrenwend, J.C., Schell, B.A., Menges, C.M., Moring, B.C., and McKittrick, M.A., 1996, Reconnaissance photogeologic map of young (Quaternary and late Tertiary) faults in Nevada, <i>in</i> Singer, D.A., ed., Analysis of Nevada's metal-bearing mineral resources: Nevada Bureau of Mines and Geology Open-File Report 96-2, 1 pl., scale 1:1,000,000. #3487 Greene, R.C., Stewart, J.H., John, D.A., Hardyman, R.F., Silbarling, N.L. and Sorenson, M.L., 1901, Geologia map of the
	Silberling, N.J., and Sorensen, M.L., 1991, Geologic map of the Reno 1° by 2° quadrangle, Nevada and California: U.S. Geological Survey Miscellaneous Field Studies Map MF-2154-A, scale 1:250,000.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal