Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Eastern Granite Range fault (Class A) No. 1611

Last Review Date: 1999-03-06

citation for this record: Sawyer, T.L., and Adams, K., compilers, 1999, Fault number 1611, Eastern Granite Range fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:29 PM.

Synopsis	The Eastern Granite Range fault is the range-bounding normal
	fault that bound the eastern front of the Granite Range from the
	south end of Granite Basin along the west side of Hualapa Flat, to
	near mouth of South Fork of Negro Creek. The Granite Range is
	an east-tilted fault block. Included with the main range-front fault
	is a piedmont fault in Hualapa Flat southeast of Iverson Reservoir.
	The range-bounding fault juxtaposes Quaternary sediment against
	bedrock and is expressed as prominent escarpments on Tertiary
	bedrock. The piedmont fault is marked by a southeast-facing
	scarp on deposits as young as latest Pleistocene. Reconnaissance
	photogeologic mapping and regional geologic mapping are the
	sources of data. Trench investigations and detailed studies of
	scarp morphology have not been conducted.
Name	Refers to faults mapped by Bonham (1969 #2999), Slemmons
comments	(1974, unpublished Lovelock 1? X 2? sheet), and Dohrenwend

	and others (1991 #285) along east side of the Granite Range. dePolo (1998 #2845) referred to these faults as the Eastern Granite Range fault
	Fault ID: Refers to faults LL9A and LL9B of dePolo (1998 #2845).
County(s) and State(s)	WASHOE COUNTY, NEVADA
Physiographic province(s)	BASIN AND RANGE
Reliability of location	Good Compiled at 1:100,000 scale.
	<i>Comments:</i> Fault locations are primarily based on 1:250,000-scale map of Dohrenwend and others (1991 #285) which was produced by analysis of 1:58,000-nominal-scale color-infrared photography transferred directly to 1:100,000-scale topographic quadrangle maps enlarged to scale of the photographs. Fault locations were checked against 1:250,000-scale photogeologic map of Slemmons (1974, unpublished Lovelock 1? X 2? sheet) and 1:250,000-scale bedrock map of Bonham (1969 #2999).
Geologic setting	This range-bounding normal fault bounds the eastern front of the Granite Range (Dohrenwend and Moring, 1991 #281), which is an east-tilted fault block according to Stewart (1978 #2866).
Length (km)	32 km.
Average strike	N°W
Sense of movement	Normal <i>Comments:</i> As shown by Dohrenwend and others (1991 #285).
Dip Direction	Ε
Paleoseismology studies	
Geomorphic expression	Range-bounding faults juxtapose Quaternary sediment against bedrock and are expressed as prominent escarpments on Tertiary bedrock (Bonham, 1969 #2999; Dohrenwend and others, 1991 #285). dePolo (1998 #2845) reported that fault scarps are present along the range front; however, Dohrenwend and others (1991

	#285) did not show any. The piedmont fault in Hualapa Flat is
	marked by a southeast-facing scarp on deposits as young as latest
	Pleistocene. dePolo (1998 #2845) reports a maximum preferred
	basal fault facet height of 207 m (183-232 m) along the northern
	part of the fault and 98 m (73-122 m) along the southern part.
Age of faulted	Little is known about the specific age of faulted deposits, but
surficial	Quaternary alluvium appears to be juxtaposed against bedrock
deposits	along the range-front faults depression (Dohrenwend and others,
-	1991 #285). The fault scarp in Hualapa Flat is on deposits as
	young as latest Quaternary.
Historic	
earthquake	
Most recent	undifferentiated Quaternary (<1.6 Ma)
prehistoric	
deformation	<i>Comments:</i> The timing of most recent event is not well
	constrained. Age assignment reflects the inferred age from the
	mapping of Dohrenwend and others (1991 #285) for the range-
	front fault. The timing of the most recent event may be
	considerably younger if the post-Lake Lahontan scarp in Hualapa
	Flat is related to faulting on the range-front fault.
Decumponee	
intorvol	
Slip-rate	Less than 0.2 mm/yr
category	
	<i>Comments:</i> No detailed data exists to determine slip rates for this
	fault. dePolo (1998 #2845) assigned a reconnaissance vertical slip
	rate of 0.389 mm/yr to the northern part of the fault and 0.199
	mm/yr to the southern part based on an empirical relationship
	between his preferred maximum basal facet height and vertical
	slip rate. The size of the facets (tens to hundreds of meters, as
	measured from topographic maps) indicates they are the result of
	many seismic cycles, and thus the derived slip rate reflects a long-
	term average. However, the late Quaternary characteristics of this
	rauit (overall geomorphic expression, continuity of scarps, age of
	rauited deposits, etc.) and the height of the topographic
	escarpinents on Tertiary basalt suggest the slip rate is of a lesser
	inaginude. Accordingly, the less than 0.2 mm/yr slip-rate
	category has been assigned to this fault.
Date and	1999
Compiler(s)	Thomas L. Sawyer, Piedmont Geosciences, Inc.

	Kenneth Adams, Piedmont Geosciences, Inc.
References	#2999 Bonham, H.F., 1969, Geology and mineral deposits of Washoe and Storey Counties, Nevada: Nevada Bureau of Mines and Geology Bulletin 70, 140 p., 1 pl., scale 1:250,000.
	#2845 dePolo, C.M., 1998, A reconnaissance technique for estimating the slip rate of normal-slip faults in the Great Basin, and application to faults in Nevada, U.S.A.: Reno, University of Nevada, unpublished Ph.D. dissertation, 199 p.
	#285 Dohrenwend, J.C., McKittrick, M.A., and Moring, B.C., 1991, Reconnaissance photogeologic map of young faults in the Lovelock 1° by 2° quadrangle, Nevada and California: U.S. Geological Survey Miscellaneous Field Studies Map MF-2178, 1 sheet, scale 1:250,000.
	#2866 Stewart, J.H., 1978, Basin-range structure in western North America—A review, <i>in</i> Smith, R.B., and Eaton, G.P., eds., Cenozoic tectonics and regional geophysics of the western cordillera: Geological Society of America Memoir 152, p. 1-31, scale 1:2,500,000.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal