Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Oak Ridge fault, mid-Channel structure (Class A) No. 138

Last Review Date: 2006-07-18

citation for this record: Fisher, M.A., compiler, 2006, Fault number 138, Oak Ridge fault, mid-Channel structure, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:14 PM.

Synopsis	The Oak Ridge fault, mid-Channel structure is a left-oblique blind reverse fault the
	moderately south (~45°) and offsets Quaternary sediment.
Name	
comments	
County(s) and State(s)	VENTURA COUNTY, CALIFORNIA
State(s)	
Physiographic	
province(s)	
Reliability of	Poor
location	Compiled at 1: scale.
	<i>Comments:</i> Location of fault from Qt_flt_ver_3-0_Final_WGS84_polyline.shp (I

	W.A., written communication to K.Haller, August 15, 2017) attributed to Cao and (2003).
Geologic setting	The structural interpretation of the offshore Oak Ridge fault is controversial beca and Yeats (1995) described reverse motion along this part of the fault whereas Sh Suppe (1994) proposed that instead of being a fault, the offshore Oak Ridge trend active kink band developed above the deep (3–5 km) Lower Pitas Point-Montalvo [492] and Upper Pitas Pitas Point-North Channel fault zone [180]. Further contro involves the sense of structural vergence. The Oak Ridge fault of Huftile and Yea verges northward whereas Shaw and Suppe (1994) propose that the kink band wi Oak Ridge trend results from southward vergence. See discussions in Stone (1996) others (1996) and Yeats (1998). The onshore Oak Ridge fault forms the south boundary of the Ventura Basin (Yea 1988). This reverse fault extends offshore, west of this basin, to form the Mid Ch structure under the Santa Barbara Channel. In this trend the Oak Ridge dips steep shallow depth (>3 km) but moderately (~45°) at greater depth (Redin and others, 2005 #8474; Sorlien and others, 2000). Sorlien and others (2000) derive structura
Length (km)	41 km.
Average strike	270
Sense of movement	Reverse
Dip	45° S.
	<i>Comments:</i> 45° S. at depths > 3 km (Sorlien and others, 2000; Redin and others, 2
Paleoseismology studies	
Geomorphic expression	A bathymetric high called the Mid-Channel trend extends along the fault's trace.
Age of faulted surficial deposits	The fault offsets Quaternary sediment (Redin and others, 2005 #8473, 2005 #847 and others, 2000).
Historic earthquake	
Most recent	undifferentiated Quaternary (<1.6 Ma)
prehistoric deformation	Comments:

	1
Recurrence	
interval	
Slip-rate	Between 1.0 and 5.0 mm/yr
category	Commenter Slip and is an extensional best more by similar to the slip share the Or
	fault to the east <i>i.e.</i> about 8 mm/yr left lateral oblique (Meade and Hager 2005)
Data and	2002
Compiler(s)	Michael A Fisher U.S. Geological Survey
Defenences	#7851 Cap T Pryont W A Powshandal P Pronum D and Wills C I 2003
Keierences	2002 California probabilistic seismic hazard maps June 2003. California Geolog
	web page
	http://www.consrv.ca.gov/CGS/rghm/psha/fault_parameters/pdf/2002_CA_Hazar
	#8149 Hullile, G.J., and Yeals, R.S., 1995, Convergence rates across a displacem
	Research, v. 88, no. B2, p. 2043–2067.
	#8394 Meade, B.J., and Hager, B.H., 2005, Block models of crustal motion in so
	California constrained by GPS measurements: Journal of Geophysical Research, doi:10.1020/2004/IB003200.10 p
	doi.10.1029/2004JD003209, 19 p.
	#8473 Redin, T., Kamerling, M., and Forman, J., 2005, Santa Barbara Channel st
	correlation section CS35: Bakersfield, California, Pacific Section AAPG, 1 sheet
	#8474 Redin T Kamerling M and others 2005 Santa Barbara Channel structu
	correlation section CS-32, <i>in</i> Hopps, T. E., ed.: Bakersfield, California, American
	of Petroleum Geologists, Pacific Section, 1 sheet.
	#8475 Shaw, J.H., and Suppe, J., 1994, Active faulting and growth folding in the
	Santa Barbara Channel. Geological Society America Burletin, v. 100, p. 007–020
	#8466 Shaw, J., Hook, S.C., and Suppe, J., 1996, Structural trend analysis by axia
	mapping, Reply: American Association Petroleum Geologists Bulletin, v. 80, p. 7
	#9469 Sortion C.C. Grotion I.D. Luyanduk D.D. Harnafing I.S. and Hanna T.
	restoration of folded and faulted late Cenozoic strata across the Oak Ridge fault.
	offshore Ventura Basin, California: Geological Society of America Bulletin, v. 11
	1090.
	#9460 Stops D.S. 1006 Standard and sectoric loss of the sector in D'
	Hotoy Stone, D.S., 1990, Structural trend analysis by axial surface mapping: Disc American Association Petroleum Geologists Bulletin v 80 p 770–779

#8476 Yeats, R. S., 1998, North-vergent thick-skinned or south-vergent thin skini Ridge fault—A view from the coast [abs.]: American Association Petroleum Geo Bulletin, v. 82, no. 5A, p. 863.
#8470 Yeats, R.S., 1983, Large-scale Quaternary detachments in Ventura Basin, s California: Journal of Geophysical Research, v. 88, p. 569–583.
#8471 Yeats, R.S., 1988, Late Quaternary slip rate on the Oak Ridge fault, Transv Ranges, California: Implications for seismic risk: Journal of Geophysical Researc 12,137–12,150.

Questions or comments?

Facebook Twitter Google Email

Hazards

Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios EarthquakesHazardsDataEducationMonitoringResearch

Search...

Search

HomeAbout UsContactsLegal