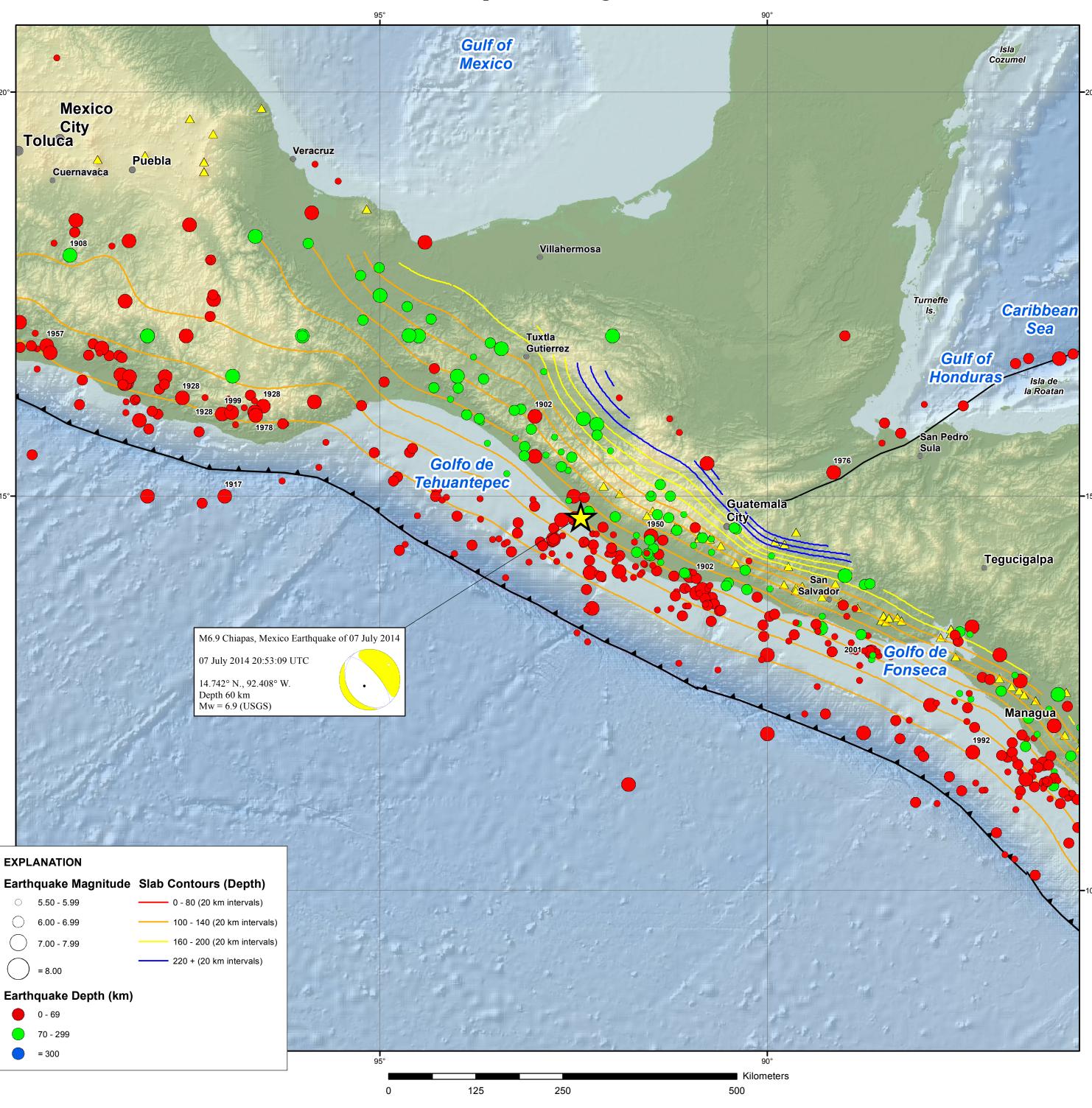

U.S. GEOLOGICAL SURVEY


M6.9 Chiapas, Mexico Earthquake of 07 July 2014

Seismic Hazard

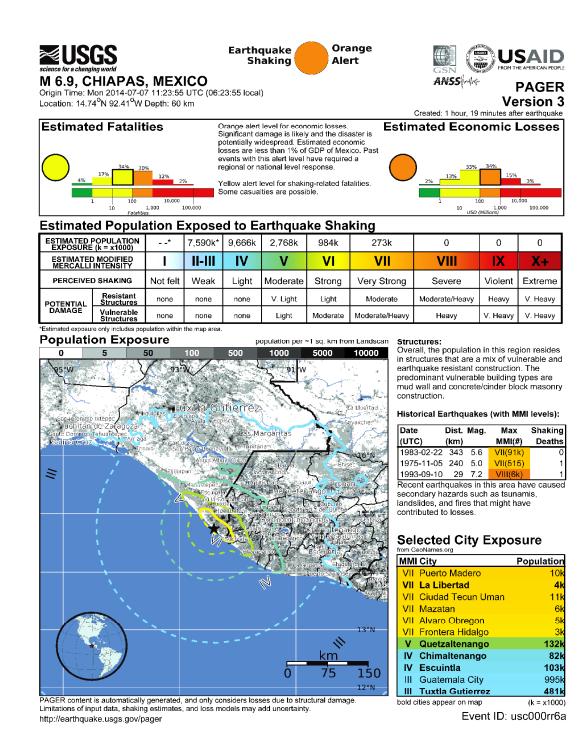
Epicentral Region

TECTONIC SUMMARY

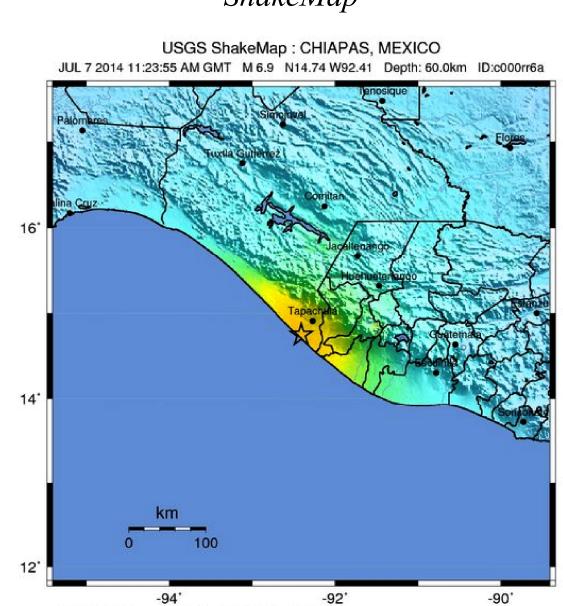
The July 7, 2014 M 6.9 earthquake near the coast of Chiapas, Mexico occurred as the result of normal faulting at a depth of 60 km. The earthquake occurred near the border between Mexico and Guatemala, near Puero Madero, Mexico, and about 200 km from Guatemala City, Guatemala, which has a population of one million people. At the location of the earthquake, the Cocos plate subducts to the northeast beneath the North America plate at a velocity of approximately 79 mm/yr, forming the Middle America subduction zone. The mechanism of the earthquake is consistent with extension within the down-going Cocos slab. The earthquake occurred below and to the east of the slab interface where larger, thrust-type

The region around the July 7 earthquake is highly seismically active, having produced 12 events of M7.0 or greater since 1902 within 200 km of the epicenter. Most recently, an M7.4 event occurred in November 2012 on the subduction zone interface 123 km southeast of the July 7 event. Other notable events include an M7.2 in 1993 which caused 1 casualty in western Guatemala; an M7.7 in 1942 with 38 casualties and widespread damage, and two events of M7.8 and 7.5 in 1902.

_			_		_			1947	01	2
⁄ear I	Mon	Da	v Time	e Lat	Lona I	Dep I	Mag	1948	01	(
					-90.000	0 7		1950	10	2
1901	10	80	0214	13.000	-87.000	0 7	7.1	1950	12	1
902	04	19	0223		-91.000	0 7	7.5	1951	12	1
902	09	23	2018	16.000	-93.000	0 7	7.8	1956	10	2
1903	01	14	0147	15.000	-98.000	0 7	7.4	1957	07	2
1907	12	30	0526	12.100	-86.300	0 7	7.2	1959	05	2
1908	03	26	2303	18.000	-99.000	80	7.7	1962	05	1
1912	12	09	0832	15.500	-93.000	0 7	7.1	1965	80	2
914	03	30	0041	17.000	-92.000	150	7.2	1968	80	C
915	09	07	0120	14.000	-89.000	80	7.4	1970	04	2
916	02	27	2020	12.000	-90.000	0 7	7.3	1973	80	2
1916	06	02	1359	17.500	-95.000	150	7.0	1976	02	C
1917	12	29	2250	15.000	-97.000	0 7	7.7	1978	11	2
1921	02	04	0822		-90.780	35	7.4	1980	10	2
1921	03	28	0749	13.356	-87.361	35	7.2	1982	06	1
1926	02	80	1517	12.011	-88.758	35	7.1	1983	12	(
1926	11	05	0755		-86.736	35		1992	09	
1928	03		0417		-96.505	35		1993	09	1
1928	06		0319		-97.036	35		1995	09	1
1928	80	04	1826	-	-98.266	35		1995	10	2
1928	_	09	0301		-97.550	35		1996	02	2
931	01	15	0150		-96.614	35	-	1999	06	1
	12	14			-92.484			1999	09	
937	07	26	0347		-95.878			2001	01	1
937		23	1318	_	-98.287	35		2004	10	C
942	80	06	2337	13.780	-90.913	35	7.7	2009	05	2


Significant Earthquakes Mag >= 7.0 26 1006 12.500 -86.250 170 7.0

06 1725 17.000 -98.000 80 7.0 23 1613 14.500 -91.500 0 7.5 14 1415 17.000 -97.500 0 7.3 12 0137 16.500 -96.900 160 7.0 24 1442 11.619 -86.436 35 7.2 28 0840 16.881 -99.297 37.2 7.8 24 1917 17.450 -97.145 69.6 7.0 11 1411 17.171 -99.651 35 7.3 23 1946 16.178 -95.846 10.5 7.4 02 1406 16.494 -97.771 49.8 7.3 29 1401 14.461 -92.760 50.9 7.3 28 0950 18.233 -96.608 80.7 7.3 04 0901 15.297 -89.145 12.1 7.5 29 1952 16.012 -96.602 24.5 7.8 24 1453 18.176 -98.236 64.9 7.2 19 0621 13.337 -89.312 73.1 7.3 02 0309 14.055 -91.914 31 7.0 02 0016 11.766 -87.352 45 7.7 10 1912 14.702 -92.656 34 7.2 14 1404 16.852 -98.588 23 7.4 21 0238 16.842 -93.434 159 7.2 25 0308 15.949 -98.104 22.6 7.1 15 2042 18.374 -97.457 63 7.0 30 1631 16.046 -96.912 40 7.5 13 1733 13.038 -88.661 38 7.7 09 2126 11.422 -86.665 35 7.0 28 0824 16.720 -86.233 10 7.3 1944 06 28 0758 15.000 -92.500 0 7.1 2012 03 20 16.493 -98.231 20 7.4


Prepared in cooperation with the Global Seismographic Network

PAGER

ShakeMap

Map Version	3 Process	sed Mon J	Jul 7, 20	14 06:40:48 /	AM MDT				
PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.05	0.3	2.8	6.2	12	22	40	75	>139
PEAK VEL.(cm/s)	<0.02	0.1	1.4	4.7	9.6	20	41	86	>178
INSTRUMENTAL INTENSITY	ı	11-111	IV	V	VI	VII	VIII	IX	X+

DATA SOURCES

EARTHQUAKES AND SEIS USGS, National Earthquake Information Center NOAA, National Geophysical Data Center IASPEI, Centennial Catalog (1900 - 1999) and extensions (Engdahl and Villaseñor, 2002) EHB catalog (Engdahl et al., 1998) HDF (unpublished earthquake catalog, Engdahl, 2003) Global Seismic Hazard Assessment Program

PLATE TECTONICS AND FAULT MODEL

PB2002 (Bird, 2003) Ji, C., D.J. Wald, and D.V. Helmberger, Source description of the 1999 Hector Mine, California earthquake; Part I: Wavelet domain inversion theory and resolution analysis, Bull. Seism. Soc. Am., Vol 92, No. 4. pp. 1192-1207, 2002. DeMets, C., Gordon, R.G., Argus, D.F., 2010. Geologically current plate motions, Geophys. J. Int. 181, 1-80.

BASE MAP NIMA and ESRI, Digital Chart of the World USGS, EROS Data Center NOAA GEBCO and GLOBE Elevation Models

REFERENCES

Bird, P., 2003, An updated digital model of plate boundaries: Geochem. Geophys. Geosyst., v. 4, no. 3, pp. 1027-80.

Engdahl, E.R., and Villasenor, A., 2002, Global Seismicity: 1900-1999, chap. 41 of Lee, W.H.K., and others, eds., International Earthquake and Engineering Seismology, Part A: New York, N.Y., Elsevier Academic Press, 932 p.

Engdahl, E.R., Van der Hilst, R.D., and Buland, R.P., 1998, Global teleseismic earthquake relocation with improved travel times and procedures for depth determination; Bull. Seism. Soc. Amer., v. 88, p. 722-743. DISCLAIMER

Base map data, such as place names and political boundaries, are the best available but may not be current or may contain inaccuracies and therefore should not be regarded as having official signifiance. Map updated by U.S. Geological Survey National

http://earthquake.usgs.gov/ Map not approved for release by Director USGS