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Abstract 

This study presents a correction factor for ground-motion model (GMM) site terms in California derived 
from horizontal-to-vertical spectral ratio (HVSR) data. Spatially continuous, non-ergodic models are 
becoming a popularized method for GMM development. We propose enhancing these models with local 
geotechnical information, i.e., HVSR data, when it is available. The model was developed from 
microtremor-based (mHVSR) data from the Wang et al. (2022) Horizontal-to-Vertical Spectral Ratio 
Database, and earthquake ground motion-based (eHVSR) data from the Ji et al. (2022) DesignSafe 
Ground Motion Database. The HVSR data were processed and classified as either having a clear 
fundamental resonance peak, being flat with no fundamental resonance at the site, or failing to meet either 
of these classifications. The fundamental resonance frequency, amplitude, and half-power bandwidth 
parameters were derived from the passing HVSRs. The consistency between the eHVSR and mHVSR 
curves was assessed for both the HVSR classification and parameter extraction at passing stations. The 
classification of the HVSR data and the HVSR parameters at stations with a fundamental resonance 
frequency are analyzed for their ability to reduce intersite (site-to-site) variability of peak ground 
acceleration (PGA), peak ground velocity (PGV), and pseudo-spectral accelerations from 0.01 to 10 
seconds. The ground-motion parameters are decomposed from the residuals of the Boore et al. (2014) 
(BSSA14) GMM, modified with a non-ergodic geospatial based site term (Roberts et al., 2024). Two sets 
of models are compared, ones that are fit using mHVSR data only, and ones that are fit using a weighted 
combination of mHVSR and eHVSR data, based on the added variability when using eHVSR to fit a 
model intended for use with mHVSR site parameters. A novel correction factor is developed that uses a 
linear term for passing stations based on the fundamental peak frequency of the site, fit using mHVSR 
and eHVSR data, and a constant correction factor for sites with a flat mHVSR curve defined by our 
proposed flat criteria. The HVSR correction factor shows a reduction in site-to-site variability across all 
frequencies compared to the non-ergodic geospatial-based site terms with no correction factors. This 
study illustrates the effectiveness of using HVSR data to enhance site effects models, and highlights the 
potential for gaining site information from both eHVSR and mHVSR data, considering stations that have 
clear fundamental resonance frequencies and those that do not. 
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1. Introduction 
Horizontal-to-vertical spectral ratios (HVSRs, Nogoshi and Igarashi 1971; Nakamura 1989) are an on-site 
technique for analyzing site effects. The HVSR is computed as the ratio of the amplitude spectrum of the 
horizontal components to the amplitude spectrum of the vertical component, using recordings from either 
microtremors or earthquake ground motions (termed as mHVSR and eHVSR, respectively). HVSR is 
predominantly used for approximating the site fundamental frequency f0 from the fundamental resonance 
peak of the HVSR (Nakamura, 1989). It is widely recognized that HVSRs are adequate at predicting the 
site fundamental frequency but not the corresponding amplitude (Nakamura, 1989; Lermo and Chávez-
García, 1993; Carpenter et al., 2020). 

The Site Effects Assessment Using Ambient Excitations (SESAME) project, a European Commission 
contract to build consensus on HVSR use guidelines, provides a set of criteria for determining if an 
HVSR curve has a clear peak. SESAME outlines a set of criteria for both reliability of the HVSR curves 
and the clarity of the peak that need to be met to identify a resonance peak from an HVSR recording. The 
SESAME criteria ensure that peak detection is a standardized process across studies (SESAME, 2004). 

Utilizing HVSR to determine f0 has been particularly useful in classifying site response in resonant 
sediments due to its simplicity and low cost (Lermo and Chávez‐Garcia, 1993; Carpenter et al., 2018; Zhu 
et al., 2020). Additionally, the use of f0 as a predictor variable to estimate site effects in GMMs has shown 
success in locations globally (eg., Braganza et al., 2016; Gallipoli and Mucciarelli, 2009; Hassani and 
Atkinson, 2016, 2018; Yazdi et al., 2023). These models utilize the f0, and in some cases the amplitude of 
the peak, but do not leverage the full power of HVSR data. In this work, we extract parameters from both 
eHVSR and mHVSR curves to present an analysis of information that can be gained from both eHVSR 
and mHVSR with the goal of using both to develop a GMM site term correction factor. The parameters 
evaluated are the frequency of the fundamental resonance peak, peak amplitude, and the half-power 
bandwidth (HPB, the difference between the frequencies corresponding to 1/√2 * peak amplitude), 
shown in Figure 1, as well as a new classification system that defines flat recordings. 

 

Figure 1. Illustration of HVSR parameters evaluated in this study: fundamental resonance peak (f0), peak 
amplitude, and the half-power bandwidth (HPB) (bounded by the frequencies fa and fb). 
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The correlation and differences between obtaining HVSR curves from earthquake ground motions and 
from microtremors have been documented in the literature. Results from mHVSR have been shown to be 
able to be corrected to eHVSR in Japan (Kawase et al. 2019). Similarly, in California, the f0 derived from 
eHVSR was found to scale linearly with mHVSR measurements up to 300 meters away (Hassani et al., 
2019). However, despite the correlation between the two measurements, they are not always equal at a 
site. Comparisons of peak frequencies of eHVSR and mHVSR obtained in California show that 68% of 
observed flat eHVSR resonances were also flat for mHVSR, and 85% of observed eHVSR with at least 
one clear resonance also had at least one clear resonance for mHVSR (Vantassel et al., 2024). This 
presents a challenge when trying to create and utilize HVSR datasets, particularly for developing ground 
motion models (GMMs), because the two methods do not always produce equivalent results. Despite 
differences in the two recording types, models developed for Taiwan showed that for PGA, station terms 
developed for mHVSR were comparable to terms developed for eHVSR (Choa et al., 2021). The body of 
work surrounding eHVSR and mHVSR suggests that while the two recordings are not always equivalent, 
there is correlation and a level of consistency between the two. We consider this correlation and the 
known inequalities for our study in California.  

We have previously developed a geospatial-based site term for use with NGA-West2 GMMs (Roberts et 
al., 2024). This model uses continuously available geospatial parameters (regional geologic unit and 
topographic position index) to estimate the linear soil amplification term. Geotechnical information, such 
as HVSR data, should be added to this model when available to improve its accuracy. This study 
investigates the use of HVSR to correct the GMM site terms with local site data. We look to extract the 
greatest amount of site information possible from HVSR curves by investigating the relationship between 
eHVSR and mHVSR curves, developing a classification system for flat curves, and examining multiple 
HVSR parameters (f0, amplitude, and half-power bandwidth) to inform development of comprehensive 
HVSR site terms for use with GMMs in California. 
 

2. Data and Methods 

eHVSR Data and Processing 

Earthquake ground motions were obtained from the Ji et al. (2022) DesignSafe Ground Motion Database 
(DSGMD). Ground motions in the DSGMD were queried from the USGS Comprehensive Catalog 
(ComCat; Guy et al., 2015). The DSGMD contains more than 287,804 processed ground motions from 
2,641 earthquakes recorded at 3,709 stations in and near California from 1999 to 2021. For this study, we 
only used stations that are located in California and have at least four earthquake recordings, in order to 
produce reasonable mean and standard deviation statistics of eHVSR curves, resulting in 1,658 processed 
stations. Earthquake recordings were measured by both accelerometers (43% of stations) and 
velocimeters (57% of stations). Figure 2 shows the spatial distribution of the selected stations for 
computing eHVSR. 
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Figure 2. eHVSR station locations for the study area in California. 

The pre-processed ground motions were downloaded from the DSGMD and then processed using hvsrpy 
(Vantassel, 2020). Hvsrpy is an open-source Python package for processing eHVSR and mHVSR data. 
The full earthquake record was processed for each recording at all stations. The ground motions were 
processed using a 20% Tukey window (10% off either end) in the time domain, smoothing the horizontal 
and vertical spectra using a Konno and Ohmachi (1998) window with a coefficient (b) of 40, resampling 
between 0.4 and 10 Hz with 128 points on a logarithmic scale, and combining the horizontal components 
using the geometric mean. To account for differences in sampling rates between earthquakes, frequency 
domain resampling was performed, and to account for differences in orientation, all earthquake 
recordings were rotated to magnetic north using hvsrpy. These processing settings are consistent with 
prior eHVSR processing performed in California (Vantassel et al., 2024).  

The fully automated frequency-domain window-rejection algorithm (Cox et al., 2020) in hvsrpy was then 
applied to all the processed stations. The window-rejection algorithm increases HVSR data quality by 
rejecting windows with extreme f0 values that are not representative of the site conditions and are instead 
contaminated by factors such as variability from ambient noise and environmental conditions. The median 
and standard deviation values of HVSR were then calculated using all valid waveform windows, 
assuming a log-normal distribution; this is consistent with the methodology proposed by SESAME (2004) 
and Cox et al. (2020).  

The SESAME criteria were then applied using hvsrpy to the log-normal median and standard deviation 
curves to identify if a clear peak could be determined for each station. The SESAME guidelines require 
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passing the three reliability criteria and at least five of the six clarity criteria in order to verify a clear 
peak. These guidelines were strictly followed for all eHVSR stations. The fundamental resonance peak, 
peak amplitude, and half-power bandwidth parameters were extracted for all stations with a clear peak 
using hvsrpy. A schematic of the window processing and parameter extraction is shown in Figure 3 
(modified from the hvsrpy output). Passing peaks were identified at 252 stations, and 1,406 stations failed 
to have a peak identified.  

 

 

Figure 3. eHVSR processing schematic for a station, including: (a) the horizontal and vertical 
components of the recordings, (b) all processed recordings, (c) the windows identified for rejection and 
accepted windows with the mean and standard deviation curves, (d) the SESAME criteria, and (e) the 
resulting peak and amplitude parameters. This figure was adapted from hvsrpy output (Vantassel, 2020). 

  



8 

mHVSR Data and Processing 

Microtremor HVSR data were obtained from a subset of the Wang et al. (2022) Horizontal-to-Vertical 
Spectral Ratio Database, accessed via DesignSafe. The database is part of a larger effort by the California 
Strong Motion Instrumentation Program (CSMIP) to create a reliable site parameter database. The 
database is a relational database that provides mean and standard deviation HVSR curves, as well as 
station and recording information for 1423 microtremor recordings at 703 stations, primarily in 
California. Figure 4 shows the spatial distribution of the subset of the dataset used for this study, which 
includes the 848 recordings from the 490 stations located in California at earthquake seismic stations. The 
number of recordings per station ranges from one to six. 

 

Figure 4. mHVSR station locations for the study area in California. 

The recordings are obtained from three-component seismometers (both temporary and permanent) that 
record microtremor ground vibrations. Microtremor recordings were processed using the processing 
package hvsrProc (Wang, 2021) when time-series data were available (most recordings) and using the 
open source Geopsy software (Wathelet et al, 2020) on all other recordings to produce the mean and 
standard deviation curves available in the database.  Using the station mean mHVSR curves and their 
associated standard deviations, the SESAME criteria were applied to identify if a clear peak could be 
determined for each station. The peak frequencies, peak amplitudes, and the half-power bandwidth 
parameters were extracted for all mHVSR stations with a clear peak using hvsrpy. Passing peaks were 
identified for 211 recordings, and 637 recording failed to have a peak identified.  
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HVSR-based Seismic Site Classification 

In the case of both eHVSR and mHVSR in California, the majority of HVSR recordings fail to have a 
clear resonance peak identified. In this study, 85% of eHVSR and 75% of mHVSR recordings failed to 
have a peak identified. This is due in part to the number of sites across the state that are located on deep 
soil profiles without a strong impedance contrast, or stations that are located on rock.  On the other hand, 
there are some stations that fail to have a peak identified due to the variability and inconsistency in HVSR 
measurements from ambient noise and environmental conditions.  We look to identify these stations that 
do not have an impedance contrast and would consistently not produce a clear HVSR peak, and separate 
them from HVSR recordings that fail to have a peak identified due to the variability and inconsistency in 
HVSR measurements. 

In previous HVSR studies, recordings have been deemed “flat” if they fail to have a clear peak identified. 
In this study, we make a distinction between (a) recordings that are completely flat with no peaks present, 
and (b) recordings that failed to have a clear peak identified (using SESAME criteria), but are not 
completely flat (i.e. a peak that is too wide, not distinct enough, or has too high a standard deviation to be 
classified as a clear peak). We view the failed non-flat HVSR data as being inconclusive (i.e., it would be 
difficult to glean and site information). However, the failed flat HVSR data do tell us information about 
the site characteristics and the lack of impedance contrast at the site. Classifying a subset of failing HVSR 
measurements as flat allows us to gain insights about site characterization and inform GMMs from both 
recordings with a passing fundamental resonance peak, as well as recordings that are flat. Additionally, by 
removing the recordings that do not produce reliable results (i.e., failed, but not flat recordings), we are 
better able to determine the extent to which eHVSR and mHVSR match at a given site.  

Recordings were determined to be flat if they failed SESAME clarity Criteria 1 and 2 and had a peak H/V 
amplitude below 1.5. These criteria are outlined in Figure 5. Criteria 1 and 2 involve the height of the 
peak being tested relative to the curve around it; a height of half the amplitude must not be reached within 
half the peak frequency to the peak frequency (Criteria 1) and within the peak frequency to four times the 
peak frequency (Criteria 2). These indicate either that the “peak” being assessed is not tall compared to 
the surrounding record, or that the curve does not taper down in amplitude within the required range. 
Criteria 3 states that the peak amplitude must be less than 1.5, which is similar to SESAME clarity criteria 
3 (the peak amplitude must be above 2), but stricter in order to identify the completely flat curves. Passing 
all three of these criteria indicates that the curve is relatively flat when comparing the peak to its 
surrounding (Criteria 1 and 2) and does not have a section of high amplitude (Criteria 3). 
 

 

Figure 5. (a) Criteria implemented to identify a flat HVSR curve, and (b) definitions of variables in the 
criteria.  
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These three criteria for identifying flat HVSR curves provide a systematic way to classify flat eHVSR and 
mHVSR recordings. This method also has a level of consistency and ease of implementation by being 
based upon the widely used SESAME criteria. When applied to this dataset, 120 out of the 1406 eHVSR 
stations without an identified clear peak were classified as flat. For mHVSR, 76 of the 637 failed 
recordings were classified as flat. Figure 6 showcases the difference between recordings that meet the flat 
criteria and ones that do not have a passing peak, but also do not meet the flat criteria. 

 

Figure 6. mHVSR recordings that both failed to have a clear peak identified: (a) a recording classified as 
flat, and (b) a recording that failed to be classified as flat.  
 

Final Dataset 

The final dataset used for analysis includes the three station classifications of pass (a clear fundamental 
resonance peak identified), flat (meet the three failing criteria), and fail (no clear peak identified, but did 
not meet the flat criteria). Stations with passing peaks have f0, amplitude, and HPB parameters identified 
for each station. Table 1 summarizes the distribution of the dataset for both eHVSR station and mHVSR 
recording classifications, and Figure 7 shows their geographic distribution.  
 

Table 1. eHVSR and mHVSR dataset distribution by recording classification. 

Classification Pass Flat Fail Total 

eHVSR  252 120 1286 1658 

mHVSR 211 76 561 848 
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Figure 7. Geographic distribution of station classifications for (a) mHVSR and (b) eHVSR. 
 

Ground Motion Model Residuals 

In order to develop an HVSR-based correction for GMM site terms, the ground motions from the 
DesignSafe Ground Motion Database (Ji et al., 2022) at the sites in our HVSR final dataset were 
evaluated using BSSA14 GMM (Boore et al. 2014) modified with the geospatial site term we previously 
developed (Roberts et al., 2024). This model was selected because the geospatial site term utilizes only 
continuous variables (regional geologic unit and topographic position index (TPI)) to generate a site term. 
While the geospatial-informed model shows a reduction of site-to-site (S2S) variability (7.6% averaged 
across PGA, PGV and 21 PSAs from 0.01 to 10 seconds) compared to the original model, the geospatial-
informed model could be enhanced with site-specific geotechnical measurements, like HVSR, when they 
are available. The residual (Rij) was calculated for each event (i) at each station (j), as 

			𝑅!",$%%&'(	*!+,	-./012+!23	0!+.	+.45  = ln+𝑌!"- − ln+𝜇!",$%%&'(	*!+,	-./012+!23	0!+.	+.45-, (1) 

where Yij is the observed ground motion IM for event i at station j; and μij is the corresponding median 
ground motion IM predicted using the BSSA14 model with the modified site term. We then decompose 
the ground motion residuals using linear mixed-effects regression (Abrahamson and Youngs, 1992), as 

 			𝑅!",$%%&'(  =  𝑐  + 𝛿𝐸!   +  𝛿𝑆2𝑆"   + 𝜀!", (2) 

where c, 𝛿𝐸!, 𝛿𝑆2𝑆", and  𝜀!" are the bias, event term, site-to-site term, and remaining residual, 
respectively. The event term, site-to-site term (S2S), and remaining residuals are usually assumed to be 
normally distributed with zero mean and standard deviations of 𝜏6, 𝜙%, and 𝜎, respectively. These 
calculations are performed across PGA, PGV, and PSA for 21 periods from 0.01 to 10 s. The 𝛿𝑆2𝑆" term 
is used as the target variable for fitting the HVSR based correction factor. 
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Ordinary and Weighted Least Squares Regression 

We derived two sets of empirical models to predict S2S in California. The first set of models uses only 
mHVSR data from passing and flat stations. The mHVSR-based models are produced by fitting each 
HVSR parameter to the linear functional form in Equation 3 using ordinary least squares (OLS) 
regression: 

 𝛿𝑆2𝑆",  = 9
𝛽7  + 𝜷𝟏𝑿  + 𝜀" ,			𝐻𝑉𝑆𝑅	𝑠𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑙𝑎𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 	𝑝𝑎𝑠𝑠
𝛼	 +	𝜀" ,															𝐻𝑉𝑆𝑅	𝑠𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑓𝑙𝑎𝑡  ,                                                   (3) 

where 𝛽7	is a constant, 𝜷𝟏	is a vector of regression coefficients, X is a vector of the HVSR parameters, 𝜀" 
is the remaining residual, and 𝛼	is a constant derived from the average 𝛿𝑆2𝑆" 	of the flat stations. 

The second set of models uses both mHVSR and eHVSR parameters from passing stations. The models 
are produced using weighted least squares (WLS) regression. WLS regression allows linear regression to 
be performed, but accounts for the unequal variance of data points by assigning weights to them. In this 
case, weights are assigned differently to mHVSR and eHVSR data based on their reliability. eHVSR data 
is considered surrogate data with higher variance, as inconsistencies often exist between eHVSR and 
mHVSR parameters at the same station, so it receives a lower weight. This weight for eHVSR data is set 
using the Nash–Sutcliffe Efficiency Coefficient (E, Nash and Sutcliffe, 1970). The coefficient of 
efficiency is computed as, 

	𝐸 = 1 − &∑ (#!$#"%)#$
!%&
∑ (#!$#')#$
!%&

' ∗ 100% ,                                                                                                             (4) 

where N is the total number of mHVSR and eHVSR pairs, Yi is the mHVSR parameter (the observed 
value), 𝑌9J  is the eHVSR parameter (the predicted value), and the mean of the mHVSR parameter is 
denoted by 𝑌K. The coefficient of efficiency measures the goodness of fit relative to the 1-to-1 line, and 
can range from -∞ to 100%; when E is less than zero, the arithmetic mean of the observed values has 
greater prediction accuracy than the model itself (Nash and Sutcliffe, 1970). Values of E quantify the 
agreement between observations and predictions, considering the dispersion of observations and 
predictions about the 1-to-1 line. The mHVSR data are assigned a weight of one, and eHVSR data are 
weighted by E to reflect the relative reliability of mHVSR predictions using eHVSR values. The second 
set of models are developed using WLS to fit Equation (3) with a weight of one for mHVSR data and E 
for eHVSR data assigned to each parameter evaluated.  

We evaluate the performance of alternative regression models by fitting the models to all but 20% of the 
mHVSR data. The models are then validated on the mHVSR data left out during the regression process. 
The best model is selected as the model with the lowest root mean square error (RMSE) of the test set of 
mHVSR data. 

 

3. Results 

Flat Station Classification 

The stations classified as flat have a distinct geologic and topographic distribution compared to the 
passing and failed stations. Figure 8 shows the roughness and elevation distributions for the three HVSR-
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site groups derived using mHVSR and eHVSR, separately. Roughness and elevation were derived from 
the GMTED 7.5 arc-second digital elevation model (Danielson and Gesch, 2011). “Flat” sites tend to 
have higher roughness and elevation values than “Pass” and “Fail” sites. This trend is consistent across 
mHVSR and eHVSR. 

The distribution of the surficial geologic units for each recording classification are shown in Figure 9. The 
surficial geology of the site was determined using the Wills et al. (2015) surficial geologic unit map for 
California. The surficial geologic units were then aggregated into broader geologic categories, Quaternary 
Alluvium (Qal1, Qal2, Qal3, af/Qi, Qi, Qs), Older Alluvium (Qt, Qoa), Tertiary Sediment (Tss, Tsh), 
Cretaceous-Jurassic Sediment (Kjf, Kss), Crystalline (crystalline), and Volcanic/Metamorphic (Tv, sp). 
Failing and passing classifications show similar distributions across mHVSR and eHVSR data, consisting 
of approximately a third of Quaternary Alluvium recordings (31–39%) and approximately a quarter (15–
28%) of recordings located in Crystalline or Older Alluvium. On the other hand, flat recordings for both 
mHVSR and eHVSR data were majority Crystalline (54% and 73%, respectively) and significantly less 
Quaternary Alluvium (14% and 9%, respectively). For the flat classification, the percentage of Crystalline 
stations more than doubled, and the percent of Quaternary Alluvium was cut by greater than half, 
compared to the passing classification for both mHVSR and eHVSR. These changes in composition were 
more significant for eHVSR. 
 

 

Figure 8. Distribution of roughness and elevation by the recording classifications for mHVSR (parts (a) 
and (b), respectively) and eHVSR (parts (c) and (d), respectively). 
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On average, stations with a flat classification have a higher elevation and roughness, they are also more 
likely to have crystalline surficial geology and less likely to have Quaternary alluvium surficial geology. 
This validates the effectiveness of the flat classification because stations that would have a consistently 
flat HVSR would be ones without impedance contrasts.  Stations with flat classifications include many 
surficial geology types, but they are predominantly rock sites, which are crystalline and can have higher 
roughness and elevation (especially when they are located on mountain/hill sites). It will also be less 
likely that there are softer sediments like Quaternary alluvium at such sites, because there would be an 
impedance contrast in the underlying rock if such materials were encountered.  

These results show that there is a significant difference in the geologic and topographic composition 
between flat stations and failing stations not classified as flat.  This result further indicates the distinctness 
of the flat classification, and that it carries site information different from the other failing stations. The 
composition of the other failing stations align more closely with the passing stations. This result could 
indicate that while the peaks could not be identified using HVSR data, perhaps the peaks are not being 
captured due to variability from noise or environmental factors. For mHVSR stations with multiple 
recordings, 6 out of the 174 stations (3.4%) had a flat and a passing recording, whereas 53 out of the 174 
stations (30.5%) had a failing and passing recording. This indicates that the flat classification improves 
the ability to identify sites without a resonance peak, compared to classifying all failed recordings this 
way. The same geologic and topographic trends are viewed across mHVSR and eHVSR data, indicating 
effectiveness of this method for both HVSR types.  

 
Figure 9. Surficial geologic make-up of the recording classifications for (a) mHVSR, and (b) eHVSR. 
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Including this flat HVSR classification in GMM development would capture the average amplification 
difference for sites without an impedance contrast compared to sites with a clear fundamental resonance 
frequency. Such as classification would be more accurate than simply classifying all failing stations as 
flat, as is evident by the differences between the groups and the consistency of the classification for 
mHVSR stations with multiple recordings. For the remainder of this study, only the flat and passing 
recordings are used due to the lack of conclusive evidence about site characterization from the failed 
recordings. We will handle HVSR measurements for use with GMMs as follows: implement correction 
terms for flat and passing recordings, but apply no correction for failing stations due to a lack of reliable 
results for the site. 
 

Classification Consistency Between mHVSR and eHVSR 

In this section, we examine to what extent eHVSR and mHVSR produce similar results across California, 
to determine how both datasets can be used to inform GMMs. We compare mHVSR recordings within the 
passing and flat classifications to eHVSR results at the same stations. Failed recordings are not considered 
here due to their insufficient information, as described previously. There were 92 mHVSR recordings 
across 65 stations where a passing or flat eHVSR result was obtained at the same stations. These 92 
mHVSR/eHVSR recording pairs were analyzed to see how often they matched. Pairs were determined to 
be a match if (a) they are both flat, or (b) they both pass and the identified peak eHVSR frequency is 
within half to twice the mHVSR peak frequency. Across the set of 92 pairs, there were 58 pairs (64%) 
that matched using these criteria. 

To understand when eHVSR matches mHVSR various prior conditions were analyzed, with the following 
results described here and shown in Figure 10: 

(i.) Given that the eHVSR passes, there is a 75% probability that the mHVSR passes and 
matches. 

(ii.) Given that eHVSR is flat, there is a 45% probability that the mHVSR is flat. 
(iii.) Given that the mHVSR passes, there is a 59% probability that the eHVSR passes and 

matches. 
(iv.) Given that mHVSR is flat, there is a 83% probability that the eHVSR is flat. 
(v.) Given that the mHVSR and eHVSR pass, there is a 79% probability that the peak frequencies 

match. 

These results indicate that the flat classification for eHVSR is not indicative of a flat mHVSR, resulting in 
low matching rates for conditions (ii) and (iii). However, the flat classification from mHVSR is indicative 
of a truly flat HVSR, evident by the eHVSR also being flat 83% of the time. Based on this result, we find 
that eHVSR too often classifies sites as flat, but the mHVSR flat classification is more universal. This 
finding is consistent with results from previous studies that showed when the mHVSR failed to identify a 
clear resonance, it was an indicator that the eHVSR is likely to be flat (Vantassel et al., 2024). However, 
the converse was not true: the lack of an eHVSR resonance was not a good indicator of the lack of an 
mHVSR resonance (Vantassel et al., 2024). It is more difficult to obtain a passing classification using 
eHVSR data in California; this means that the passing classifications are more reliable from eHVSR, with 
some error (25% in this study), but the flat classifications from eHVSR are not reliable when comparing 
to mHVSR. 

Flat results from mHVSR are consistent with eHVSR at the same site, and have a clear distinction from 
passing and failing recordings, as demonstrated in the previous section. A flat classification for mHVSR 
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data allows for the fitting of a correction factor to GMMs that could be applied if a flat mHVSR is 
obtained at a site. However, flat-classified stations from eHVSR should not be included when fitting this 
correction factor. 

 

Figure 10. mHVSR/eHVSR pairs that matched and those that did not match, separated by the 
classification of the data in each pair. 

 

Parameter Consistency within mHVSR Stations 

We evaluate the consistency of the fundamental resonance peak frequency, peak amplitude, and the half-
power bandwidth parameters for stations with multiple mHVSR recordings. For a parameter to be 
beneficial in a GMM, it would need to carry repeatable, consistent information for a site. There are 48 
mHVSR stations with multiple passing recordings. The stations identified each have a range of two to 
four passing recordings.  

To first assess the consistency of the three HVSR parameters, all the unique pairs of recordings within 
each station were identified; this procedure resulted in 92 mHVSR recording pairs. Figure 11 shows the 
fundamental resonance frequency, peak amplitude, and half-power bandwidth parameters for one 
mHVSR recording against its pair at the station. The peak frequencies show minimal scatter at 
frequencies below 4 Hz, but become less consistent across recordings as the frequency increases above 4 
Hz. For peak amplitudes, the amplitudes tend to fall within a tight range of 2 to 6, and there is some 
scatter within this range. For HPB, there is scatter when high HPB values are reported, and these values 
are not repeatable; no HPB value above 4 Hz appeared consistent with other values at the site. 
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Figure 11. Peak fundamental resonance frequency (Hz), peak amplitude, and HPB (Hz) for mHVSR site 
pairs. 

To conduct a more quantitative analysis, the average coefficient of variation (CV, computed as the 
standard deviation normalized by the mean) for fundamental resonance frequency, amplitude, and HPB 
was computed across the 48 stations with multiple passes. The CV is 0.13 for the fundamental resonance 
frequency and 0.14 for peak amplitude. Although the CV for amplitude is similar to that of fundamental 
resonance frequency, amplitude covers a smaller range, so this variability could be problematic for model 
use. The HPB has the largest CV at 0.22; however, the CV reduces to 0.10 if values above 4 Hz are 
removed from the dataset.  

These metrics validate that the mHVSR fundamental resonance frequency is a consistent measure when it 
can be obtained at a site. HPB is also a consistent measure, provided it is only used when it falls below 4 
Hz. For amplitude, the CV was not significantly higher than that of frequency or HPB; however, because 
of the small range amplitude covers, it may not be providing site information sufficient for a GMM. 
 

Parameter Consistency Between mHVSR and eHVSR 

We also explore the consistencies in peak frequency, peak amplitude, and HPB for recordings that passed 
for both eHVSR and mHVSR. There are 56 mHVSR recordings with a corresponding eHVSR pass at the 
same station. The eHVSR peak frequencies vs. mHVSR peak frequencies can be seen in Figure 12.  The 
distribution closely follows the 1-to-1 line, with the exception of a few outliers. Figure 12 also shows the 
eHVSR vs. mHVSR amplitudes and HPBs. The amplitude shows a similar scatter pattern as the mHVSR 
pairs but has greater spread, and would present similar problems in GMM fitting due to the variability in 
the term and the small range of potential amplitudes. The HPB also shows more scatter than it did for 
mHVSR pairs. When only considering HPB values below 4 Hz, as is the recommendation from the 
mHVSR data, the values do show a consistent trend and lack the scatter cloud seen in the amplitude data, 
which could still make HPB a useful parameter in GMM development if the added uncertainty in eHVSR 
HPB is incorporated. 
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Figure 12. Peak fundamental resonance frequency (Hz), peak amplitude, and HPB (Hz) for 
eHVSR/mHVSR site pairs. 

The above approach visualizes the consistency of each parameter, but to further quantify the distributions, 
we evaluated the Nash–Sutcliffe Efficiency Coefficient (E) for goodness of fit to the 1-to-1 line. The E 
value for peak frequency is 53%; however, this increases to 88% when the outlier at an mHVSR 
fundamental resonance frequency of 13.6 Hz (in the upper left corner of the plot, above the legend) is 
removed. Given the uncertainty previously discussed regarding the high mHVSR fundamental resonance 
frequencies, the agreement is likely closer to 88%, and 0.88 will be used for weighting the eHVSR 
frequencies in model fitting. For amplitude, the E value is 3.0%, indicating no agreement between 
observations and predictions. Even with the removal of the outlier at an mHVSR amplitude of 16.7, the E 
value decreases to -30%, which is consistent with the small range of the scatter seen in the data. The E 
value for HPB is 3.8%, again indicating no agreement between observations and predictions. However, 
when the HPB values above 4 Hz were removed, due to their unreliability as seen the mHVSR-only 
dataset, the E value increases to 33%. A weight of 0.33 will be used for eHVSR HPB in model fitting and 
only HPB values below 4 are used for model fitting and use. As discussed previously, a weight of one is 
used for the mHVSR data for model fitting in all cases.	

Given these results, we use fundamental resonance frequencies and HPB values from passing eHVSRs to 
supplement mHVSR data when fitting GMMs, in order to utilize the added site coverage across the state 
of eHVSR data. The uncertainty in whether the eHVSR parameter matches the mHVSR parameter at a 
site is incorporated when fitting the model using the calculated E value as the weight. The amplitude from 
passing eHVSRs is not used when fitting an amplitude-based correction term due to the lack of 
consistency between eHVSR and mHVSR amplitudes. 
 

HVSR-Based GMM Correction Term 

Model Selection  

Five linear HVSR-based correction factors for GMM site terms were evaluated. Three of these models 
were fit using parameters from only mHVSR data using OLS regression following Equation 3. The three 
models were each fit using a different HVSR parameter: fundamental resonance frequency, amplitude, 
and HPB. The other two models were fit using a combination of eHVSR data and mHVSR data, using 
WLS regression following Equation 3. The two models are for fundamental resonance frequency and 
HPB. A model fit to amplitude as the dependent variable using eHVSR and mHVSR data was not 
assessed due to the lack of agreement between mHVSR and eHVSR amplitude data, as discussed 
previously. All five models use only data from passing stations, and the HPB models use only HPB 
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values below 4 Hz. HPB values above 4 Hz were not considered for a correction factor due to their 
unreliability. From all five models, 20% of the passing mHVSR recordings were left out during model 
fitting in order to test the model performance on unseen data. The RMSE was calculated for each model 
on the left-out mHVSR data, and the results can be seen in Figure 13. 
 

 

Figure 13. RMSE of the left-out mHVSR data for each of the five models evaluated. 

 
The eHVSR- and mHVSR-fitted fundamental resonance frequency is the best linear HVSR term for 
passing stations because it has the lowest RMSE for the test set of mHVSR data for PGA, PGV, and all 
21 periods evaluated. The correction term based on fundamental resonance frequency reduces the RMSE 
by an average of 7.2% compared to using no correction factor. Including eHVSR frequency data reduces 
the RMSE by an average of 3.0%, with the significant reduction occurring between periods 0.01 to 0.1 
seconds (average of 4.9%), compared to only using mHVSR frequency data. 

The correction factor for flat stations was also evaluated. The factor is a constant that can be applied to 
stations for which the mHVSR curve meets the flat criteria. To assess the accuracy of this flat correction 
factor, we fit the correction factor to the S2S values from 80% of the flat mHVSR recordings, and then 
tested using this factor for the remaining 20% of flat mHVSR recordings. Only mHVSR data were used 
to fit the flat HVSR correction factor because a flat result from eHVSR is not a reliable indicator of a flat 
mHVSR, as previously discussed. 

The RMSE was calculated for each model on the left-out mHVSR data, and the results can be seen in 
Figure 14. In this figure, we also compare the result to the RMSE of the test data without a correction 
factor. Including a correction factor for the site term of flat stations results in a reduction of RMSE for the 
test set of mHVSR data. The average reduction in RMSE is 15.2%, with largest reduction occurring for 
spectral periods of 0.2 to 1.5 seconds, having an average reduction of 22.0%.  
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Figure 14. RMSE of the left-out mHVSR data for the flat correction term and no correction term. 

 
To evaluate how the models perform in reducing variability in GMMs, in Figure 15 we compare the S2S 
variability of PGA, PGV, and PSAs across 21 periods from 0.01 to 10 seconds both with and without the 
HVSR correction term. Applying the optimal linear model for passing stations, the eHVSR and mHVSR 
fitted term for fundamental resonance frequency, and the flat correction factor for flat stations yields a 
reduction in standard deviation of S2S for the test mHVSR dataset as well. The average reduction in 
standard deviation of S2S across all periods is 10.9%. 
 

 

Figure 15. Comparison of between-site variability (standard deviation of S2S) for the test set of mHVSR 
data. The black line represents no HVSR correction, and the blue line represents the data with the 
correction applied to passing and flat stations. 
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Final HVSR Correction Term  

Given the results of the validation process, we propose an HVSR-based correction factor for site terms 
that uses an eHVSR and mHVSR fitted WLS linear term for fundamental resonance frequency for 
passing stations and an mHVSR fitted correction factor for flat recordings. The inclusion of fundamental 
resonance frequency as a predictor approximates the site fundamental frequency to improve the site term 
of the GMM. Using both eHVSR and mHVSR data to fit the term provides a larger dataset that also 
covers a larger geographic area to fit a more generalizable model. The addition of the flat term allows for 
sites without a fundamental frequency to be corrected for this lack of impedance contrast at the site, 
improving site term calculation for these sites. The linear correction factor for passing sites and the 
constant correction factor for flat sites is expressed as 

Yj = 9
𝑐7  + 𝑐'𝑋:!," ,			𝐻𝑉𝑆𝑅	𝑠𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑙𝑎𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 	𝑝𝑎𝑠𝑠
𝑐;	,														𝐻𝑉𝑆𝑅	𝑠𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑓𝑙𝑎𝑡   ,                                                               (6) 

where Yj is the HVSR correction factor for the site, 𝑋:!," is the fundamental resonance frequency of the 
site, 𝑐7 is the period-dependent intercept for the passing stations, 𝑐'is the period-dependent slope for the 
passing stations, and 𝑐;	is the period-dependent constant term for flat stations. The coefficients by period 
can be found in the Appendix to this report. The coefficients provided were refit to the entire dataset, 
including the testing mHVSR dataset, to produce more representative coefficients. 

The standard deviations of S2S for PGA, PGV, and PSAs across 21 periods from 0.01 to 10 seconds were 
calculated for all of the stations with passing or flat mHVSR curves, after applying the correction factor in 
Equation 6. In Figure 16, we compare the standard deviation of S2S at these stations both with and 
without the HVSR-based correction term. The average reduction in standard deviation of S2S with the 
correction factor is 5.2%. The RMSE was also calculated and has an average reduction of 6.8%, as shown 
in Figure 17. 

 
Figure 16. Comparison of between site variability (standard deviation of S2S) for the set of stations with 
mHVSR data (211 passing stations and 76 flat stations). The black line represents no HVSR correction, 
and the blue line represents the data with the correction applied to passing and flat stations. 
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Figure 17. Comparison of RMSE for the set of stations with mHVSR data (211 passing stations and 76 
flat stations). The black line represents no HVSR correction, and the blue line represents the data with the 
correction applied to passing and flat stations. 
 

4. Discussion  
The developed HVSR-based correction term allows for updating to non-ergodic geospatial-based models 
by informing them with local geotechnical information when it is available. Our novel approach of using 
a strict criterion for classification of flat HVSR recordings and including a correction factor for flat HVSR 
stations improves the site term calculation for stations without a fundamental resonance peak. Including 
both eHVSR and mHVSR data also improves the correction factor performance on mHVSR data by 
fitting the model with a larger dataset that covers a greater geographic region.  

This model is designed for use as a site term correction factor in California and provides improvements to 
geospatial-based site terms through local geotechnically-informed corrections. The methodology used to 
develop the model could also be applied in other regions. An HVSR correction factor would be beneficial 
in areas with a strong impedance contrast that may not be fully captured in the model. The development 
of a comparable model in other regions is constrained by the availability of HVSR data. Modifying 
methods to account for uncertainty between eHVSR and mHVSR that may vary by region will be an 
important step for model development in other areas. 
 

5. Conclusions 

We developed a site term correction factor from HVSR data for California. The model is developed for 
PGA, PGV, and 5%-damped PSA from 0.01 to 10 s, using mHVSR data from the Wang et al. (2022) 
Horizontal-to-Vertical Spectral Ratio Database and eHVSR data from the Ji et al. (2022) DesignSafe 
Ground Motion Database.  

The optimal HVSR-based site term is developed using a combination of mHVSR and eHVSR data. The 
HVSR data was processed and classified as either passing the SESAME criteria and having a clear peak 
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identified, flat (failing SESAME criteria 1 and 2, and having a peak HVSR amplitude below 1.5), or 
failing to be identified as either passing with a clear peak or flat. The flat designation applied here is a 
new categorization for HVSR data that separates (a) flat stations with no resonance from (b) stations that 
fail to have a peak identified because of too much noise in the data. Correction factors are developed for 
use with GMM site terms for sites with a passing HVSR and sites with a flat HVSR. 

Two sets of models were assessed, one fit using only mHVSR data, and one fit using mHVSR and 
eHVSR data, across three HVSR parameters (fundamental resonance frequency, amplitude, and half-
power bandwidth) for their ability to reduce site-to-site variability (S2S). Weighted Least Squares 
regression is used to fit the models that use both eHVSR and mHVSR data to account for variability 
between eHVSR and mHVSR data. The fundamental resonance frequency from the passing mHVSR and 
eHVSR stations performed the best, in terms of the lowest RMSE across a test set of mHVSR data. This 
term is used as the linear portion of the HVSR correction factor applicable to sites with a passing peak 
from HVSR. The flat stations from the mHVSR dataset are used to fit a constant correction factor for flat 
stations. 

The HVSR correction factor for passing and flat sites results in reduction in site-to-site variability (S2S) 
compared to a geospatial non-ergodic model for California that uses continuous geospatial variables. The 
proposed correction term provides local geotechnical information to enhance the accuracy of the GMM 
site term. HVSR is a simple and low-cost method for analyzing site fundamental frequency, making it an 
accessible addition to enhance GMMs when it can be measured at a site or is already available. 
Additionally, this model includes a correction for sites designated as having flat HVSRs, instead of 
considering these sites to be failed. The inclusion of sites with flat HVSRs allows for more information to 
be drawn from HVSRs to further reduce GMM residuals.  

The HVSR-based correction factor is intended to capture the effects of the fundamental frequency on the 
site term and improve ground motion estimates across California. The approach of using passing and flat 
HVSRs and combining mHVSR and eHVSR data could be applied in other regions outside of California, 
and would be particularly beneficial in regions with strong impedance contrast and available mHVSR 
data. We propose a correction factor for GMM site terms derived from both mHVSR and eHVSR data to 
be used when HVSR data can be collected or is available to improve site term calculation. 

 

6. Data and Resources 
The earthquake ground-motions were obtained from the Ji et al. (2022) DesignSafe Ground Motion 
Database (https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-
3031v2?doi=10.17603%2Fds2-syc5-nk92&version=2). The ground-motion data were processed to obtain 
HVSR curves using hvsrpy (Vantassel, 2020). Hvsrpy is an open-source python package for processing 
eHVSR and mHVSR and is available at https://github.com/jpvantassel/hvsrpy. The data were processed 
to obtain ground motion predictions using the BSSA14 GMM (Boore et al., 2014) coded and available at 
https://github.com/bakerjw/GMMs/blob/master/gmms/bssa_2014_active.m modified with the site term 
reported in Roberts et al. (2024). 
 
The mHVSR curves were obtained from the Wang et al. (2022) Horizontal-to-Vertical Spectral Ratio 
Database, available via DesignSafe at https://www.designsafe-

https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-3031v2?doi=10.17603%2Fds2-syc5-nk92&version=2
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-3031v2?doi=10.17603%2Fds2-syc5-nk92&version=2
https://github.com/jpvantassel/hvsrpy
https://github.com/bakerjw/GMMs/blob/master/gmms/bssa_2014_active.m
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-3085
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ci.org/data/browser/public/designsafe.storage.published/PRJ-3085. The mHVSR parameters were 
determined using using hvsrpy (Vantassel, 2020), available at https://github.com/jpvantassel/hvsrpy. 
 
The analysis of the results from the processed HVSR data was performed using the open-source 
environment Python (Python Software Foundation, 2023), available at https://www.python.org. 
 
This project involves processing of electronic data (sources described above) and modeling results. No 
new geotechnical or seismic data was collected as a part of this project. This project will be published in 
at least one journal article, and the data generated will appear as an electronic supplement to the published 
journal article(s).  
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Appendix 
Table A.1 Coefficients by period for the HVSR-based correction term from Equation 6. 

Period co c1 c2 

PGA 0.0891 0.0029 -0.3383 
PGV 0.0549 -0.0262 -0.4659 
PSA 0.01 s 0.0846 0.0090 -0.2513 
PSA 0.02 s 0.0894 0.0056 -0.2920 
PSA 0.03 s 0.0921 0.0039 -0.3132 
PSA 0.05 s 0.0812 0.0097 -0.2706 
PSA 0.075 s 0.0579 0.0246 -0.1552 
PSA 0.1 s 0.0841 0.0190 -0.1759 
PSA 0.15 s 0.1463 0.0108 -0.2985 
PSA 0.2 s 0.1745 -0.0057 -0.3934 
PSA 0.25 s 0.1583 -0.0222 -0.4701 
PSA 0.3 s 0.1689 -0.0343 -0.4800 
PSA 0.4 s 0.1655 -0.0493 -0.4808 
PSA 0.5 s 0.1768 -0.0582 -0.4700 
PSA 0.75 s 0.1200 -0.0600 -0.4540 
PSA 1 s 0.1012 -0.0597 -0.4380 
PSA 1.5 s 0.1090 -0.0609 -0.4103 
PSA 2 s 0.1208 -0.0600 -0.3927 
PSA 3 s 0.1323 -0.0572 -0.3995 
PSA 4 s 0.1427 -0.0588 -0.4607 
PSA 5 s 0.1448 -0.0606 -0.5137 
PSA 7.5 s 0.1709 -0.0672 -0.6057 
PSA 10 s 0.2026 -0.0715 -0.6409 

 

 
 
 
 
 


