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ABSTRACT 

 

Using machine learning (ML), high performance computing, and a large body of geospatial 

information, we develop surrogate models to predict soil liquefaction across regional scales. Two 

sets of models – one global and one specific to New Zealand – are trained by learning to mimic 

geotechnical models at the sites of in-situ tests. Our geospatial approach has conceptual advantages 

in that predictions: (i) are anchored to mechanics, which encourages more sensible response and 

scaling across the domains of soil, site, and loading characteristics; (ii) are driven by ML, which 

allows more predictive information to be used, with greater potential for it to be exploited; (iii) are 

geostatistically updated by subsurface data, which anchors the predictions to known conditions; 

and (iv) are precomputed everywhere on earth for all conceivable earthquakes, which allows the 

models to be executed very easily, thus encouraging user adoption and evaluation. Test 

applications suggest that: (i) the proposed models outperform others to a statistically significant 

degree; (ii) the geostatistical updating further improves performance; and (iii) the anticipated 

advantages of region-specific models may largely be negated by the benefits of learning from 

larger global datasets. These models are best suited for regional-scale liquefaction hazard 

simulation and near-real-time response and are accompanied by variance products that convey 

where, and to what degree, the ML-predicted liquefaction response is influenced by local 

geotechnical data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

 

CONTENTS 

 
 

ABSTRACT ..............................................................................................................................2 

CONTENTS..............................................................................................................................3 

Introduction ..............................................................................................................................4 

Data and Methodology ............................................................................................................6 

Subsurface Data and Geotechnical Predictions as Model Targets .................................. 6 

Geospatial Predictors as Model Features ........................................................................ 9 

Model Training .............................................................................................................. 11 

Results and Discussion ...........................................................................................................12 

Model Performance, Application, and Geostatistical Updating .................................... 12 

Testing performance on “unseen” case histories ....................................................... 19 

Testing distributed global performance before and after updating. ........................... 21 

Testing the efficacy of regional models .................................................................... 21 

Limitations, Uncertainties, and Future Work ................................................................ 22 

Conclusions .............................................................................................................................23 

PROJECT DATA...................................................................................................................29 

SUPPLEMENTAL MATERIALS .......................................................................................30 

BIBLIOGRAPHY OF PUBLICATIONS RESULTING FROM THE WORK ...............68 

 

 

  



4 

 

INTRODUCTION 

Reliable predictions of soil liquefaction are desired both prior to an earthquake for planning and 

mitigation, and immediately after for informing response and recovery. Such predictions could 

ideally be made: (i) quickly, as in near-real-time after an event; (ii) at high resolution, consistent 

with the scale of infrastructure assets or property parcels; and (iii) over the areal extents impacted 

by large earthquakes, such as those of a city or transportation network. However, because state-

of-practice liquefaction models require subsurface geotechnical data such as cone penetration test 

(CPT) measurements, they cannot be implemented continuously across a large area. As a result, 

models that use “geospatial” proxy variables are often used in regional-scale studies. These 

variables include metrics of topography, geology, hydrology, geomorphology, ecology, 

groundwater, and climate that are available from existing maps, models, and remote-sensing 

datasets, and which correlate with traits pertinent to liquefaction (e.g., soil thickness, density, 

saturation, and typology). By way of these variables, geospatial models essentially infer subsurface 

conditions without subsurface measurements and can thus rapidly predict liquefaction at any 

number of locations.  

Models of this type have existed for several decades (“HAZUS” from the National Institute 

of Building Science (1997) was among the first), yet they have gained new attention in recent 

years, driven by advances in liquefaction observation data, geospatial variables, and empirical 

learning techniques (e.g., machine learning, ML). For example, the seminal model of Zhu et al. 

(2017), later updated by Rashidian and Baise (2020), is adopted by the United States Geological 

Survey (USGS) as part of their post-earthquake informational products (e.g., Allstadt et al., 2022). 

It is difficult, of course, to predict liquefaction without site-specific subsurface data, especially 

across the diverse environments and geologic conditions found globally. Recent tests of geospatial 

and CPT-based liquefaction models demonstrate the promising potential of geospatial data, as well 

as clear shortcomings in current models (Geyin et al., 2020). Studies that utilize geospatial models 

for predicting liquefaction have since increased – in local and global contexts – and include efforts 

in Australia (Jena et al., 2023), New Zealand (e.g., Lin et al., 2021; Azul et al., 2024), the United 

States (Geyin et al., 2023; Bullock et al., 2023), Turkey (Asadi et al., 2024), the European Union 

(e.g., Bozzoni et al., 2021; Todorovic and Silva, 2022), and Korea (Kim, 2023), among others.  

While recent literature has grown the science and adoption of geospatial models, we contend 

existing models share one or more significant limitations. First, they tend to directly predict 

outcomes (i.e., liquefaction manifestations, or lack thereof) without explicit consideration of, or 

insights into, the mechanistic causes of those outcomes. Liquefaction is best predicted by 

mechanics and much has been learned of these mechanics over the last 50 years. This knowledge 

is continually embedded in state-of-practice geotechnical models, yet geospatial models tend not 

to learn from, or anchor to, these mechanistic models in any way. The lack of a mechanistic 

backbone could be overcome with enough training data, such that a model “relearns” the governing 

mechanics by way of observed outcomes, but current liquefaction inventories are arguably too 

sparse, with data from perhaps one earthquake annually. As a result, geospatial models can depart 

from mechanistic principles, especially in poorly populated regions of their parameter spaces (e.g., 

a model may predict liquefaction when the shaking intensity or duration is easily judged by an 

expert as insufficient). In some cases, ad-hoc corrections have been used to limit the misgivings 

of data sparsity (e.g., Allstadt et al., 2022). The problem posed by geospatial modeling might thus 

ideally be parsed into the empirical (prediction of subsurface engineering properties, conditioned 
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on geospatial variables) and the mechanistic (prediction of liquefaction effects, conditioned on 

engineering properties).  

Second, geospatial models tend not to be updated by subsurface geotechnical data. Because 

geospatial predictions implicitly infer subsurface traits, they could presumably be improved with 

direct measurements of those traits. Geotechnical data is increasingly accessible in regional and 

national community databases, some of which already contain hundreds of thousands of tests. 

These data are likely to grow indefinitely, through continual testing and increased availability of 

historic data. When input to geotechnical models, geotechnical data can produce predictions of 

liquefaction that differ greatly from those of their geospatial counterparts. The lack of 

communication between geotechnical and geospatial data and models is a significant lost 

opportunity. Geospatial models would undoubtedly benefit from consideration of subsurface data, 

where available.  

Third, existing geospatial models tend to use relatively few of the publicly available geospatial 

variables. Rashidian and Baise (2020), for example, use five. One variable represents demand 

(peak ground velocity, PGV) and four represent capacity (distance to water, mean annual 

precipitation, and the expected groundwater depth and shear-wave velocity over the upper 30 m 

(VS30)). While these inputs seem to model liquefaction hazards with relative sufficiency, at least in 

certain locations and events, more predictive information is needed to further improve model 

performance and portability (i.e., stability across events, regions, and subsurface conditions). As 

an example, Geyin et al. (2020) observed that the inability to infer soil typology (and thus, 

liquefaction susceptibility) was a common cause of geospatial mispredictions.  

Fourth, existing geospatial models tend to be trained by traditional statistical methods (e.g., 

logistic regression). In this regard, the potential of geospatial modeling – using many variables that 

weakly correlate to subsurface traits in nonlinear, interrelated ways – may not be fully realized. 

Logistic regression requires: (i) hypotheses of what variables matter and how; (ii) little-to-no 

correlation between variables; and (iii) linearity between variables and targets, which often 

deviates from reality where behaviors are nonlinear. Better predictions might be realized using 

emergent “artificial intelligence (AI)” techniques (such as ML), which could allow more predictive 

information to be used, with greater potential for that information to be exploited. Todorovic and 

Silva (2022), for example, trained an ML model to directly predict liquefaction observations using 

several geospatial variables, similar to Rashidian and Baise (2020), and showed evidence of 

improvement in unbiased tests. 

Fifth, although AI brings opportunity to geotechnical engineering, existing AI liquefaction 

models are rife with problems (Maurer and Sanger, 2023). Most problematic with respect to the 

scientific process is that AI models are rarely provided. A large majority of publications describe 

the development and performance of an AI model, but do not “define” the model (i.e., do not 

provide code, software, or any means of use), meaning it cannot be applied or tested by anyone. 

Beyond this immediate concern is another specific to geospatial models: are they feasible to 

implement? Consider a hypothetical model that uses many high-resolution variables. Deploying 

such a model globally could require compilation and storage of hundreds, if not thousands, of 

gigabytes of geospatial data. The model itself could also be unwieldy in size. This presents a barrier 

to all but large enterprises if the required data cannot easily be downloaded and stored locally. It 

may be argued that even geospatial models with only a few variables do not lend themselves well 

to adoption and testing, given that those variables must be individually located (often from broken 
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hyperlinks) and may need to be globally computed from other raw data. If a model is not easily 

implemented, it will not be adopted, tested, or improved. It is thus critical to package data for users, 

build software interfaces, and/or develop modeling strategies that circumvent the problem of size 

altogether. AI models will otherwise not be used.  

In this paper, we train geospatial liquefaction models (henceforth GLMs) that directly address 

each of these limitations using an approach that is very different from others, and which builds on 

concepts introduced in Geyin et al. (2022). Rather than predict liquefaction observations directly, 

we train geospatial “surrogate” models to mimic the predictions of geotechnical models at sites of 

in-situ tests. By anchoring to mechanistic models, the geospatial models benefit from the 

knowledge embedded therein. This encourages more sensible model response and scaling across 

the domains of soil, site, and earthquake loading characteristics. The predictions are made using a 

very large library of geospatial information, are trained using ML techniques, and are 

geostatistically updated in the vicinity of subsurface data, such that the geospatial models are 

brought into agreement with geotechnical predictions where available. Furthermore, the models 

are designed for ease of use. This is accomplished by effectively precomputing the expected 

liquefaction response at every location on earth for all potential earthquakes. This response is 

stored as mapped parameters that await ground-motion information from a specific earthquake 

(e.g., one that has just occurred, or a scenario event of interest). When convolved, these inputs 

rapidly produce probabilistic predictions of liquefaction impacts, giving the model near-real-time 

capability without requiring high-performance computing (HPC) resources nor advanced 

modeling capabilities. We develop surrogate ML models for several geotechnical models, such 

that their predictions can be ensembled, and we explore the prospects of region-specific GLMs by 

developing one in New Zealand. The projected benefits of our approach are further developed in 

Data and Methodology. 

DATA AND METHODOLOGY 

Subsurface Data and Geotechnical Predictions as Model Targets 

Subsurface data – and geotechnical model predictions using these data – underpin our approach. 

These are used both to train the GLMs and to subsequently anchor their predictions to reality, such 

that predictions near in-situ tests are updated by (i.e., brought in closer agreement with) 

geotechnical models. By transferring the prediction target from liquefaction observations to 

subsurface data, the potential training set becomes orders-of-magnitude larger and samples Earth’s 

terrain more broadly. This is because the sites of in-situ tests do not need to have experienced an 

earthquake (i.e., be liquefaction “case histories”) but merely require data that can be input to a 

state-of-practice liquefaction model (currently CPT, VS, or standard penetration test (SPT) 

measurements). Given the rise of community data, and research policies and infrastructures that 

reward data sharing (e.g., Baker et al., 2024), the disparity between the number of geotechnical 

tests and the number of liquefaction observations will only increase. This should allow the models 

developed herein to be retrained and improved more frequently, whereas geospatial models that 

train directly on liquefaction observations may advance less rapidly, with new data from at most a 

few earthquakes annually, each subjecting sample sites to just one level of seismic loading.  
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Fig. 1. Spatial distribution of CPT training and test data (a) globally, with a closer look at 

(b) the conterminous United States and (c) New Zealand. 

In this study we focus on CPTs and compile ~37,000 total tests from 48 U.S. states and 19 

countries, as mapped in Fig. 1. Sources include prior international compilations (Geyin and 

Maurer, 2021a) and existing databases in Italy (Regione Emilia-Romagna, 2024), New Zealand 

(New Zealand EQC, 2016), and the United States (USGS, 2019). Considerable data were also 

newly compiled for this project from several thousand analog sources – focusing on North America 

– and are digitally available from Sanger et al. (2024a) and Rasanen et al. (2024). Although this 

collection of data is in many ways unprecedented, some regions of interest are still poorly 

represented and additional data is needed, as always, while other regions are data rich (e.g., Italy, 

New Zealand, United States), evoking questions of model bias. To address these issues, this study 

includes: (i) parameter distributions comparing the training set with global conditions; (ii) several 

types of unbiased model tests; and (iii) maps depicting the degree to which model predictions are 

influenced by geotechnical data. Additionally, the models are constrained to the training domain 

of select, influential parameters, meaning the models generally do not make predictions for 

conditions unencountered in training. These and other limitations and uncertainties are further 

discussed later. 

Each CPT was subjected to a loading array defined by peak ground accelerations (PGAs) of 

0.05 g to 2.0 g and rupture magnitudes of 4.5 to 9.0. For each loading, the factor-of-safety against 
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liquefaction triggering was computed as a function of depth using the Idriss and Boulanger (2008) 

model, which has been shown, to a statistically significant degree, to perform at least as well as all 

other models common in practice (Geyin et al., 2020). Soil fines content was estimated from the 

CPT soil-behavior-type-index, Ic (Robertson, 2009), via the Boulanger and Idriss (2016) model, 

except in New Zealand where the regional model of Maurer et al. (2019) was used. Soils with Ic 

>2.5 were assumed not susceptible to liquefaction per Maurer et al. (2019). Corrections for CPT 

volume-averaging effects (e.g., Boulanger and DeJong, 2018) were not applied based on the 

findings of Geyin and Maurer (2021b) and Yost et al. (2021). To predict manifestations, or 

consequences, of liquefaction at the ground surface, the results from triggering analysis were input 

to three models: the liquefaction potential index (LPI) (Iwasaki et al., 1978); a modified LPI, 

termed LPIISH (Maurer et al., 2015a); and the liquefaction severity number (LSN) (van Ballegooy 

et al., 2014). These models, which each output an index (often called a “vulnerability index”), are 

used in land-use planning, hazard mapping, and engineering site-assessment to predict a soil 

profile’s cumulative liquefaction response, or damage potential, at the ground surface. Fragility 

functions conditioned on LPI, LPIISH, and LSN have been trained using case-history data to predict 

the probabilities of certain outcomes, including ground failure (i.e., deformation and ejecta) (Geyin 

and Maurer, 2020), pipeline rupture (Toprak et al., 2019), and foundation damage (Maurer et al., 

2024). Because LPI, LPIISH, and LSN are well known in the literature and available in engineering 

software (e.g., CLIQ by GeoLogismiki; Design Studio by Infinity Studio), their formulae are 

omitted here but provided in the Supplemental Materials. 

Shown in Fig. 2 are the resulting LPI values at four of the ~37,000 CPT sites, plotted as a 

function of magnitude-scaled PGA (PGAM). The relationship between LPI and PGAM is a unique 

signature of each site, with no two sites having identical responses. If it were possible to obtain 

this signature remotely (i.e., without in-situ data), then the expected liquefaction response across 

all levels of loading would, in effect, be predicted. To that end, we fit a simple but flexible 

functional form to these data: 

𝑀𝐼(𝑃𝐺𝐴𝑀) = {
0, 𝑓𝑜𝑟 𝑃𝐺𝐴𝑀 < 0.1𝑔

𝐴 ∗ (tan−1(𝐵 ∗ (𝑃𝐺𝐴𝑀  −  
𝐴 100⁄

𝐵
)2)), 𝑓𝑜𝑟 𝑃𝐺𝐴𝑀 ≥ 0.1𝑔

   (Eq. 1) 

where MI is the manifestation index (i.e., LPI, LPIISH, or LSN), PGAM is as previously 

defined, and A and B are independent fitting parameters that will subsequently be predicted by 

ML. Eq. (1) is expressly formulated so that A and B may be stored in 16-bit format, which 

substantially compresses the size of eventual model products. Although A and B lack exact 

physical meaning, A generally captures the cumulative thickness of strata susceptible to 

liquefaction (i.e., what MI is attained at relatively high PGAM) and B generally captures the 

cumulative liquefaction potential of those strata (i.e., how fast MI increases at relatively low 

PGAM). The fitting of Eq. (1) to the MI data results in a fitting error, or uncertainty, that is normally 

distributed, unbiased, and very small for most sites. We view this uncertainty as negligible 

compared to others, and when considering what Eq. (1) conceptually permits: a geospatial 

prediction of liquefaction response that is mechanics-informed and updatable using geotechnical 

data, for all seismic loading. And, because A and B are event-independent, they can be globally 

predicted in advance of their use, at which time LPI, LPIISH, and LSN are computable at low 

computational cost. An added advantage of this modularity is that users can pair these predictions 

with fragility functions of their choice, making it feasible to tailor products for different needs and 
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utilize the latest models, since fragility functions are frequently proposed or updated using new 

case-history data. 

 
Fig. 2. Example LPI versus PGAM curves for four sites. 

Geospatial Predictors as Model Features 

Whereas liquefaction is best modeled considering mechanics, the relationship between geospatial 

variables and subsurface traits is empirical, involving many interrelated correlations. Domain 

expertise may guide the selection of variables, but there is no expectation these variables will relate 

to soil traits in a mechanistic way. In the current effort, two sets of models are developed to predict 

LPI, LPIISH, and LSN via parameters A and B: (i) a global model, meaning predictors must be 

globally available; and (ii) a model specific to New Zealand, which will be used to judge the 

potential for region-specific models to perform better. Although global models can train on more 

data, region-specific models have two attractions: (i) conditions are likely to be more consistent 

(e.g., geology, geomorphology, and climate); and (ii) better predictor variables may be available, 

with higher resolution or more regional specificity, as compared to those with global coverage. 

For these reasons, the relationships between variables and targets could have less variance in a 

regional setting. New Zealand was chosen for this pilot because it has a large amount of 

geotechnical data and several region-specific predictors (e.g., national models of groundwater, 

VS30, geology, and soils).  

A total of 37 variables were ultimately chosen for the global models through an iterative 

process that considered correlation structures, measurements of variable importance and model 

performance, overfitting behavior, and the authors’ judgement, both in selecting provisional 

variables and when inspecting final products. The name, spatial resolution, and source of each 

variable is in Table 1. Most variables are available at multiple spatial resolutions, but only one was 

ultimately adopted through the process above. Many other provisional variables were omitted 

entirely (e.g., mean annual precipitation). Table S1 in the Supplemental Materials provides 

additional information for each variable, including definitions, descriptions, and hyperlinked 

sources. However, the end-user is reminded that these variables are not required to execute the 
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models (in contrast to other geospatial models), since model predictions will be stored as mapped 

parameters A and B. 

Table 1. Summary of predictor variable information. 

Variable Units Resolution Source 

Bulk density kg/m3 250 m Hengl (2018a) 

Clay fraction kg/kg 250 m Hengl (2018b) 

Compound topographic index (CTI) -- ~90 m (3 arc-sec) Amatulli et al. (2020) 

Convergence -- ~90 m (3 arc-sec) Amatulli et al. (2020) 

Depth to bedrock cm 250 m Shangguan et al. (2017) 

Depth to groundwater m ~100 m Fan et al. (2013) 

Distance to coast km ~1100 m (0.01 deg) NASA (2020) 

River distances (Flow orders 1-8) m 250 m Lehner and Grill (2013) 

Elevation standard deviation m ~90 m (3 arc-sec) Amatulli et al. (2020) 

Geomorphon -- ~90 m (3 arc-sec) Amatulli et al. (2020) 

Height above nearest drainage (HAND) m 1000 m Nobre et al. (2011) 

Landform entropy -- 1000 m Amatulli et al. (2018) 

Landform Shannon index -- 1000 m Amatulli et al. (2018) 

Landform uniformity -- 1000 m Amatulli et al. (2018) 

Major -- 1000 m Amatulli et al. (2018) 

Maximum multiscale deviation (MMD) -- ~90 m (3 arc-sec) Amatulli et al. (2020) 

Maximum multiscale roughness (MMR) deg ~90 m (3 arc-sec) Amatulli et al. (2020) 

Profile curvature rad/m ~90 m (3 arc-sec) Amatulli et al. (2020) 

Roughness m ~90 m (3 arc-sec) Amatulli et al. (2020) 

Sand fraction g/kg 250 m Hengl (2018c) 

Scale of the MMD -- ~90 m (3 arc-sec) Amatulli et al. (2020) 

Scale of the MMR deg ~90 m (3 arc-sec) Amatulli et al. (2020) 

Silt fraction kg/kg 250 m Hengl (2018d) 

Soil class -- 250 m Hengel and Nauman (2018) 

Tangential curvature rad/m ~90 m (3 arc-sec) Amatulli et al. (2020) 

Terrain ruggedness index (TRI) m ~90 m (3 arc-sec) Amatulli et al. (2020) 

Topographic position index (TPI) m ~90 m (3 arc-sec) Amatulli et al. (2020) 

Topographic slope % ~90 m (3 arc-sec) Amatulli et al. (2020) 

Vector ruggedness measure (VRM) m ~90 m (3 arc-sec) Amatulli et al. (2020) 

Vs30 m/s 100 m  Heath et al. (2020) 

Water content % 250 m Hengel and Gupta (2019) 

The variables in Table 1, which were sampled at ~37,000 CPT sites, include measurements 

derived from elevation models and hydrologic datasets (e.g., height above nearest drainage, 

compound topographic index, distance to rivers of different flow-orders), and predictions made by 

other models (e.g., soil class, water content, and clay fraction). The goal of these variables is to 

correlate to soil thickness, saturation, density, and typology. To evaluate the potential for model 

bias and the need for bias mitigation (e.g., data resampling, variable transformations), the variables 
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in Table 1 were also sampled at all locations on earth and the resulting distributions were compared 

to those from CPT sites, as shown in Figs. S1-S37. It is apparent from these comparisons that deep 

groundwater conditions are underrepresented at CPT locations. Each CPT was therefore duplicated 

and randomly assigned a new groundwater depth of up to 50 m. These synthetic data were included 

in training so that the ML model better understands the expected liquefaction response (as 

predicted by geotechnical models) across a broader spectrum of groundwater conditions. 

Importantly, these cases – which are relatively easy to predict once the significance of deep 

groundwater is learned – are never included in statistics of model performance. In other words, the 

training set includes synthetic data, but the training and test performance metrics will not. For the 

New Zealand model, 43 variables were ultimately adopted and sampled at the locations of 16,475 

CPTs in New Zealand. Of these, unique variables not used in the global model are summarized in 

Table 2 and complete variable information is provided in Table S2. Aside from differing CPT 

datasets and predictor variables, the methodologies applied globally and in New Zealand are 

otherwise the same. 

Table 2. Summary of predictor information for New Zealand that differs from the global model. 

Variable Units Resolution Source 

Depth to groundwater m ~200 m Westerhoff et al. (2018) 

Distance to coast km ~1100 m NASA (2020) 

River distances (Strahler orders 1 to 5) m ~100 m LINZ (2020) 

Geologic unit, Deposit Type, Age -- 100 m  Heron (2018) 

Pfafstetter level basin characterization -- ~100 m Lehner and Grill (2013) 

Profile curvature rad/m 1000 m Amatulli et al. (2018) 

Roughness m 1000 m Amatulli et al. (2018) 

Soil depth -- ~200 m McNeill et al. (2018) 

Soil drainage -- ~200 m McNeill et al. (2018) 

Soil order -- ~200 m McNeill et al. (2018) 

Tangential curvature rad/m 1000 m Amatulli et al. (2018) 

TRI m 1000 m Amatulli et al. (2018) 

TPI m 1000 m Amatulli et al. (2018) 

Topographic slope % 1000 m Amatulli et al. (2018) 

VRM m 1000 m Amatulli et al. (2018) 

Vs30 m/s 100 m  Foster et al. (2019) 

Model Training 

AI/ML techniques allow for more predictive information to be used and increase the potential for 

that information to be exploited. Simultaneously, a large majority of existing AI/ML liquefaction 

models have serious flaws, as documented by Maurer and Sanger (2023) who reviewed 75 such 

models. Among other failings, many publications: (i) did not test against any existing model; (ii) 

departed from best practices in model development (e.g., cross validation, unbiased test sets, tests 

of statistical significance); and (iii) did not provide a usable model to readers. Consequently, it is 

often unclear how well these models perform, why they should be adopted, and how they could 

even be used. We are thus keenly aware of the pitfalls with AI/ML tools and address them in our 

methodology. 
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Having compiled predictor variables at CPT sites where parameters A and B were obtained, 

the data were parsed into training (90%) and test (10%) sets. Several types of ML algorithms were 

used to train provisional models, including different neural networks, and decision tree ensembles 

formed by bagging, boosting, or random forests. Through this iterative process, during which the 

training, cross validation, and test-set performances were judged for performance and overfitting 

behavior, bagged decision-tree ensembles were ultimately chosen, both for the global and New 

Zealand models. Decision trees map a specific combination of inputs to an expected output by way 

of recursive decision forks. Because a single tree is typically not especially accurate and is prone 

to overfitting, trees are usually ensembled. In bagging, which is also known as bootstrap 

aggregating, many variants of the training set are sampled via bootstrapping, and each is used to 

train a model. The outputs from the various trees are then ensembled, or averaged, to form a 

prediction. Owing to this resampling and averaging approach, bagging tends to reduce variance 

and avoid overfitting, compared to other ensembling methods. An additional advantage of 

decision-tree models is that they are relatively interpretable versus more convoluted model 

architectures. 

Many model iterations were created using different loss functions, k-fold cross validation 

partitions, and predictor variables. The model hyperparameters were individually optimized for 

each of the six targets (i.e., A and B for LPI, LPIISH, and LSN) using a parallelized grid search 

algorithm to optimize the ten-fold-cross validation mean-square-error (MSE). The adoption of the 

MSE loss function gives some preference to reducing major mispredictions at the possible expense 

of more minor mispredictions. The final tuned models, which used the predictor variables 

summarized in Tables 1 and 2, again employed ten-fold cross validation to mitigate overfitting. 

Given the clustering of data in some locales (e.g., the Christchurch, New Zealand, metropolitan 

area), a heuristic weighting scheme based on spatial point density was applied. This downweighed 

the influence of data in Christchurch by ~50%. Although such weighting diminishes performance 

on the training and test sets, it was desirable in pursuit of more generalizable models. The 

performance, implementation, and geostatistical updating of these models is next discussed. 

RESULTS AND DISCUSSION 

Model Performance, Application, and Geostatistical Updating 

Using these data and methods, 12 distinct ML models were developed to predict A and B for the 

three geotechnical models and two datasets. A representative example of performance is shown in 

Fig. 3 for the global LPI model’s A and B using its test set. Analogous figures for all models, both 

in training and testing, appear in Figs. S38-S49. Prediction residuals (defined throughout this paper 

as predicted – observed) are generally unbiased and normally distributed, and A is consistently 

predicted better than B. This might mean that the thickness of liquefiable material (which relates 

more to A) is easier to predict than the liquefaction resistance of that material (which relates more 

to B). Another explanation is that A does more to define the overall shape of the MI-PGAM curves 

(Fig. 2) and is thus a stronger site signature than B, which adds nuance to the curves but is less 

important overall. It is worth asking whether the models for B are needed, given their large 

variances, or if it would be acceptable to instead make B constant for all predictions. This may be 

answered using the Nash-Sutcliffe coefficient, E (Nash and Sutcliffe, 1970). E = 1.0 indicates a 

perfect model whereas E < 0 indicates that adopting a mean value for B would be better than using 

a model to predict it. In this case, E values for all global B models are positive and average 0.36. 

Thus, while opting not to use the B models might not diminish predictions of MI substantially, it 
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is still better to predict B. Because A and B lack exact physical meaning, and because they do not 

have equal influence in Eq. (1), it is more informative to assess performance by predicting the final 

targets (e.g., LPI). 

 
Fig. 3. Predicted vs. observed LPI A and LPI B for the global model test set. 

In this regard, Fig. 4 illustrates LPI residuals as a function of PGAM for the global model 

test set. Across the domain 0 < PGAM < 1 g, these residuals have a median absolute error (MAE) 

of 4.5 and a median standard deviation (MSD) of 11, meaning that 68% of LPI prediction errors 

are less than ±11 and 95% are less than ±22. While readers familiar with LPI could initially judge 

these errors as being nontrivial, it is important to note that: (i) large errors are predominantly 

associated with large LPI targets; and (ii) errors in LPI become less consequential as LPI increases. 

According to the fragility functions of Geyin and Maurer (2020), for example, which predict the 

probability of ground failure (PGF) conditioned on LPI, an error of 20 is less consequential at LPI 

= 30 than an error of 2 at LPI = 3. This is because the expected likelihoods and severities of 

liquefaction manifestations become relatively constant at large LPI. The same is true of LPIISH and 

LSN, and for this reason, errors are best interpreted after transformation to consequence predictions 

(i.e., by predicting outcomes conditioned on these indices). In this context, the MAE and MSD of 

4.5 and 11 equate to errors in PGF of 8% and 22%, respectively, per Geyin and Maurer (2020). 

 
Fig. 4. LPI residuals as a function of PGAM for the global model test set. 

This process was repeated for all global and New Zealand models, for which the results on 

the test set are summarized in Table 3 (complete performance statistics are provided in Table S3). 
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The ML methodology’s ability to mimic predicted LPI and LPIISH values is very similar, whereas 

greater MAE and MSD are observed in the LSN predictions. However, because the mapping of MI 

to PGF is least sensitive for variations in LSN (e.g., using the fragility functions of Geyin and 

Maurer (2020)), the larger errors in predicted LSN do not usually translate to larger errors in PGF. 

Overall, the results in Table 3 suggest the ML models are similarly effective at mimicking PGF 

predictions based on any of the three geotechnical models. It must be emphasized, of course, that 

accurately mimicking the predictions of a geotechnical model does not guarantee accurate 

predictions of liquefaction phenomena (the ML models’ abilities to predict liquefaction will be 

tested momentarily). Geotechnical models may also have different efficacies, albeit there is 

generally too little global liquefaction case-history data to establish statistical significance or 

consensus on which models perform best (e.g., Geyin et al., 2020; Rasanen et al., 2023). For this 

reason, users may wish to ensemble the predictions from one or more of the ML models developed 

here. 

Table 3. Summary of test set performance for global and New Zealand models. 

Model 

A B MI PGF 

MAE 
Standard 

Deviation 
MAE 

Standard 

Deviation 
MAE MSD MAE MSD 

Global 

LPI-ML 3.0 7.0 5.0 15.5 4.5 11.3 8% 22% 

LPIISH-ML 3.0 6.8 6.0 17.1 4.6 11.1 6% 25% 

LSN-ML 4.0 10.5 18.0 26.8 4.9 16.7 7% 22% 

New Zealand 

LPI-ML 7.0 9.7 3.0 9.5 9.5 15.9 5% 24% 

LPIISH-ML 7.0 9.9 3.0 10.4 9.8 16.5 4% 25% 

LSN-ML 9.0 14.7 21.0 31.6 12.5 23.4 8% 22% 

Although ML models have justly been criticized as opaque, interrogative techniques are 

continually advancing and the ability to understand ML predictions made from tree-based 

architectures is nearing that of traditional regression. Insights can be gained, for example, from the 

computed predictor importance (e.g., Auret and Aldrich, 2011), which may be interpreted as each 

variable’s relative contribution to model predictions. This method of ML interpretation has been 

used for prior geohazard models (e.g., Durante and Rathje, 2021; Geyin and Maurer, 2023). 

Because variable importances are similar across multiple models, we illustrate average importance 

for the global and New Zealand models (Fig. 5) and provide results for all models as Figs. S50-

S63. Unsurprisingly, the most influential variable in both models is groundwater depth, which on 

average is ~300 times more influential than the least important variables included, one example of 

which is the majority landform class at 1-km resolution. Although the “majority,” which includes 

10 classes (e.g., valley, footslope, ridge), is important for a small number of predictions, most 

global sample sites reside in the flatlands. At 90-m resolution, the majority landform classification 

variable referred to as “geomorphon” (employing the terminology of original datasets used by 

Amatulli et al., 2018 and 2020), becomes more important, and notably one of the most important 

variables in the New Zealand model. The global and New Zealand models share a handful of 

similarly important predictors, but the emergence of regional geology (e.g., the “Simplified 

geology” and “Geology deposit type”), as important in the New Zealand model substantiates the 
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value of such knowledge in predicting liquefaction hazard. Near-surface geologic information, 

which is not consistently available at global scale, was substituted using proxy models like “Sand 

fraction,” but future iterations of the presented global model will look to benefit from improved 

geologic characterization. It should be noted that predictor importance describes a model’s 

behavior, which does not necessarily reflect correlation between predictors and targets, 

independent of a model. As an example, a variable could conceivably correlate to a target, but if it 

also correlates with other variables, it may have diminished influence on that model’s predictions.  

 
Fig. 5. Average normalized predictor importance for the global and New Zealand models. 

The results in Fig. 5 allude to both the utility and insufficiency of variables in prior geospatial 

models. Three of the four capacity variables in Rashidian and Baise (2020), for example, are 

measured distance to water (i.e., coastline or rivers) and predicted groundwater depth and VS30. 

These three variables are consistently important in the ML models. Yet other proxies for soil 

thickness (e.g., predicted depth to rock), saturation (e.g., height above nearest drainage, compound 

topographic index), depositional environment (e.g., maximum multiscale deviation, roughness), 

and typology (e.g., mapped surface geology, predicted sand and silt fractions) are also influential 

within the model architecture and lead to predictions that are spatially more nuanced. Notably, the 

distance to rivers has more gradation here than in other geospatial models in that it includes 

distances to seven different flow volumes (e.g., major rivers, but also seasonal drainages, are 

separately considered). The results in Fig. 5 have implications for forward application, since errors 

in the most influential variables (e.g., a mispredicted groundwater depth or surface geology) are 

more likely to propagate to errors in liquefaction predictions.  

The trained models were implemented to predict A and B values worldwide by sampling 

variables at a resolution of ~90 m (0.000833 degrees). Substantial storage, memory, and processing 

capacity were required to: (i) sample ~40 global variables with total file size exceeding 1 TB; (ii) 

use these variables to make predictions with all ML models; and (iii) repeat for ~200 million 

locations on earth. HPC resources were required to meet computational demands for this work, 

made possible through DesignSafe at the Texas Advanced Computing Center (Rathje et al., 2017) 

and the University of Washington. To minimize computational requirements and file sizes for end-
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users, and to reduce model extrapolations beyond the training data, predictions were made only 

for locations with 90-m topographic slope < 5˚ (Amatulli et al., 2020). This describes ~98% of 

CPT sample locations. Predictions were also not made for lakes (Messager et al., 2016), glaciers 

(RGI Consortium, 2023), the Greenland Ice Sheet (Lewis, 2009), and permafrost, both continuous 

and discontinuous (Brown et al., 2002). A few small and generally uninhabited islands were also 

excluded. With these exceptions, the global and New Zealand models have continuous coverage.  

Predictions of A and B were next geostatistically updated in the vicinities of CPT 

measurements via regression kriging (e.g., Hengl et al., 2007), which merges model predictions 

(i.e., “regression”) with spatial interpolation of model residuals (i.e., “kriging”). With this 

approach, A and B residuals are predicted using nearby CPTs (where residuals are known), and 

these predictions are used to update the A and B models as needed. Central to this approach is a 

semivariogram, which describes the spatial correlation of residuals. Here, a stable semivariogram 

was chosen for its best fit of data across all models: 

𝑆𝑒𝑚𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (ℎ) =  𝑏 +  𝑐0 (1 − 𝑒
−ℎ𝛼

𝑟𝑎⁄ )                     (Eq. 2) 

where b is the nugget, or non-spatial variance;  𝑐0 is the sill which describes the variance 

of residuals at distances beyond the range, where residuals become uncorrelated; h is the separation 

distance between locations; r is the effective range, or length scale of the model, which represents 

the distance over which correlation significantly decreases; and α is the shape parameter, which 

describes the model as more Gaussian or more exponential (Wackernagel, 2003). Semivariograms 

were individually fit to residuals for the 12 A and B models using a major range of 1 km and the 

resulting parameters are summarized in Table S4. All semivariograms are provided in Figs. S64-

S75. Using this information, residuals were spatially predicted for all ML models. Predicted 

residuals approach observed residuals at CPT sites and decay with distance toward zero (the mean 

residual for all models), governed by the semivariogram in Eq. (2). In parallel, the variance of 

residuals approaches zero at CPT sites and increases toward the overall model uncertainty at 

locations distant from CPTs. It should be noted that the nugget in Eq. (2), which governs residuals 

at a separation distance of zero (i.e., at CPT sites), is zero, meaning geotechnical measurement or 

model uncertainties are not considered. These could be the uncertainties of CPT measurements or 

those of LPI, LPIISH, and LSN. The nugget could also reflect sources of spatial variation at distances 

smaller than sampling intervals. In other words, A and B are quite unlikely to be constant over an 

individual 90-m map pixel, contrary to how the maps could be interpreted. However, because the 

nugget is not well constrained by the empirical data and would require judgement or additional 

data to define, it is here resigned to zero, which is a common default in kriging. This could be 

revisited in future model iterations.  

Using kriged residuals, the global and New Zealand models were updated such that 

predictions of A and B (and by corollary, predictions of liquefaction response) are scaled up or 

down in the vicinities of CPTs, thereby anchoring the ML models to known conditions. To convey 

the degree to which ML predictions are updated by local geotechnical data, the variance of 

residuals modeled by regression kriging is given in an accompanying set of maps. We opt to map 

a classification of these variances as follows: 3 = total ML model variance (i.e., no geotechnical 

influence), 2 = majority ML model variance (i.e., minor geotechnical influence); 1 = minority ML 

model variance (i.e., moderate geotechnical influence); and 0 = little to no ML model variance 

(i.e., major geotechnical influence). These maps thus communicate where, and to what degree, the 
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predicted liquefaction response is influenced by geotechnical data and models. To this end, Fig. 6 

demonstrates an example of updating predictions for the LPI model and the associated variance 

classifications in San Bernadino, California. 

The updated global and New Zealand models and the related variance classifications are 

provided as 90-m resolution geotiff files from Sanger et al. (2024b,c) (see Data Availability) with 

separate A and B rasters for each of the three geotechnical models. The global models are further 

parsed into seven geographical regions. One of these (Oceania) includes New Zealand, providing 

one example from which the benefits of region-specific GLMs can be judged. The complete global 

and New Zealand file packages are respectively 33 GB and 85 MB. However, if executing one 

global model (e.g., LPI) for one continent (e.g., North America), the required files diminish to ~1.5 

GB. 

 
Fig. 6. An example in San Bernadino, California to illustrate LPI A a) before geotechnical 

updating, b) in terms of kriged residuals, and c) after geotechnical updating. 

When combined with a “ShakeMap” of PGAM, parameters A and B produce predictions of 

LPI, LPIISH, and LSN via Eq. (1). Because these predictions have, in effect, been made for all 

locations and all possible earthquakes, the expected liquefaction response is queried at very low 

computational expense. A simple script is provided by Sanger et al. (2024d) to implement any of 

the developed models. The script is written to interact with USGS ShakeMaps in .xml format, 

which are called via a user-input web address. ShakeMaps are easily obtained from USGS or 

analogous global organizations, both for countless scenario earthquakes and for those that have 

just occurred. As with other geospatial models, predictions can be made in near-real-time to inform 

response, reconnaissance, and decision-making in the aftermath of an event. For consistency with 

how the models were trained, PGAM should be computed from PGA with the magnitude-scaling 

factor of Idriss and Boulanger (2008): 

𝑃𝐺𝐴𝑀 =  
𝑃𝐺𝐴

𝑀𝑆𝐹
, 𝑤ℎ𝑒𝑟𝑒 𝑀𝑆𝐹 = 6.9 𝑒𝑥𝑝 (

−𝑀

4
) − 0.058 ≤ 1.8         (Eq. 3) 
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where M = moment magnitude and PGA is that at the surface, having been corrected for 

site effects (e.g., the PGA in any USGS ShakeMap). The resulting event-specific mapped 

predictions of LPI, LPIISH, and LSN can be propagated via fragility functions, or “damage” 

functions, that have been conditioned on MI to predict the probabilities of various outcomes (e.g., 

Geyin and Maurer, 2020, Toprak et al., 2019, Maurer et al., 2024). In this paper, results are 

presented as probability of liquefaction-induced ground deformation or ejecta observed at the 

surface (i.e., the probability of observing at least one liquefaction manifestation in the given map 

pixel, “PGF”) using the fragility functions of Geyin and Maurer (2020). These are the fragility 

functions recommended for general use of the presented models. 

To demonstrate model application and the effects of updating, the global model is here 

applied to the 11 February 2012, Mw6.1 Christchurch, New Zealand, earthquake. Results are 

shown in Fig. 7 for a portion of Christchurch, centered on the Burwood neighborhood, which 

experienced widespread liquefaction. CPT sites are also mapped and are symbolized based on 

whether liquefaction manifestations were observed, as compiled by Geyin et al. (2021). Predictions 

by the geospatial model of Rashidian and Baise (2020), henceforth RB20, are shown in Fig. 7A 

and somewhat underpredict manifestations, with sites of positive observation having a modal 

probability of 47%. Predictions by the global ML model, before and after updating, are shown in 

Figs. 7B and 7C, respectively. As compared to RB20, the manifestation probabilities predicted by 

the ML model tend to be higher, especially in the east of the mapped area, and have more spatial 

nuance due to the inclusion of more geospatial information. This nuance is increased by updating, 

which in Fig. 7C can generally be observed to improve predictions. ML predictions tend to be 

scaled up and down, respectively, in areas with and without observed liquefaction. It is emphasized 

that this updating is not driven by liquefaction observations, but rather, by geotechnical data and 

models that more correctly predict these observations. The classified variance of kriged residuals 

is shown in Fig. 7D, from which a user can quickly understand where predictions are predominated 

by geotechnical models, and where they are purely those of ML. 

The ML models developed here will ultimately be judged in the context of predicting 

liquefaction effects in the field. To that end, we conduct tests to answer three research questions 

and compare against predictions by RB20. Because variants of RB20 are in use, we also execute 

that which is adopted in the USGS ground failure product with ad-hoc modifications (Allstadt et 

al., 2022), as well as the Zhu et al. (2017) model upon which RB20 is based. These three versions 

are very similar; thus, we report performance that which performs best in each test. To quantify 

model performance, the Brier Score (BS) is adopted: 

B𝑟𝑖𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 (𝐵𝑆) =  
1

𝑁
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑁
𝑖=1          (Eq. 4) 

where P is the predicted probability, O is the observed probability (0 or 1), N is the total 

number of observations, and i is the observation index. The BS is essentially MSE for probabilistic 

classification models. BS = 0 defines a perfect model, BS = 1 denotes a perfectly useless model, 

BS = 0.5 represents a model which randomly predicts the outcome, and BS = 0.25 represents a 

model which estimates predicted probability of 50% for every event. Therefore, a BS < 0.25 is 

considered a “good” model, increasingly good as BS approaches 0. The BS simultaneously 

measures: (i) the degree to which positive and negative class distributions are segregated by a 

model; and (ii) the degree to which this segregation centers on a probability of 50%. Although the 

first of these could instead be measured by the area under a receiver-operating-characteristic curve 
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(i.e., ROC AUC) (e.g., Fawcett, 2006), AUC does not consider the latter. A model could have a 

perfect AUC but the model output at which two classes are best separated could be very far from 

50% probability. The AUC is thus better suited for models that output an index without statistical 

meaning, such as LPI. To account for finite-sample uncertainty, we compute p-values via bootstrap 

sampling and use these results to test for statistical significance, adopting the common significance 

threshold of 0.05. These values convey the probability that any two BS values came from the same 

population (i.e., that differences in model performance arose by chance and not because one model 

is better than another). Any p-value below 0.05 denotes that one model’s BS differs from another’s 

with at least 95% confidence. 

Testing performance on “unseen” case histories 

The first question is: how does the ML model perform prior to updating with geotechnical data 

and models? In other words, how do the ML and RB20 models compare in regions unknown to 

each model’s training set and devoid of CPT data? We use three liquefaction inventories that 

postdate RB20’s training set and which occurred in regions where no CPTs were compiled in the 

current effort: the 2019 Ridgecrest (Zimmaro et al., 2020), 2019 Puerto Rico (Allstadt and 

Thompson, 2021), and 2023 Turkey earthquakes (Cetin et al., 2023; Taftsoglou et al., 2023). 

Negative observations were randomly sampled from the extents of each event’s ShakeMap, such 

that map cells without positive observations were assumed negative. Although this assignment is 

obviously uncertain, it is a pragmatic and common assumption in the geospatial modeling 

literature, permitting an assessment of performance to be made over a very large area. In addition 

to the three surrogate geotechnical models, we test the performance of these models when 

averaged, or ensembled. The results of this test are in Table 4. The LPIISH model performed best 

of the three ML models, which all outperformed RB20 to a statistically significant degree. 

Table 4. Summary of global model performance in unbiased testing. 

Model BS p-Value against RB20 

RB20 0.27 -- 

LPI-ML 0.13 <0.001 

LPIISH-ML 0.13 <0.001 

LSN-ML 0.16 <0.001 

Ensemble 0.13 <0.001 
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Fig. 7. An example in Christchurch, New Zealand to illustrate the predicted PGF according to a) 

RB20, and according to the presented global model b) before and c) after geotechnical updating, 

as well as the d) classified variance of geotechnical model influence on the predictions. 
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Testing distributed global performance before and after updating. 

The second question is: does updating improve model performance? In other words, how does 

each ML model perform before and after updating at sites with CPTs, and how does this compare 

to RB20? We adopt the inventory of 332 liquefaction case histories compiled from 25 global 

earthquakes by Rateria et al. (2024). This compilation includes both positive and negative 

observations made at the locations of CPTs. This evaluation includes bias that is difficult to 

quantify. RB20 previously trained on liquefaction inventories from 21 of these earthquakes and 

the ML models were similarly trained on CPTs from ~90% of sites tested here (albeit these sites 

represent less than 1% of the total training set). In these tests the three ML models perform very 

similarly and see a similar, modest improvement from updating. This indicates the ML models 

predict response relatively accurately without subsurface measurements, but that knowledge from 

such measurements does improve performance further. The ML models outperform RB20 by a 

statistically significant margin, increasingly so after updating, as summarized in Table 5.  

Table 5. Summary of global model performance in global case histories. 

Model BS p-Value against RB20 

RB20 0.30 -- 

Before Updating 

LPI-ML  0.24 0.01 

LPIISH-ML  0.23 0.02 

LSN-ML  0.25 0.005 

Ensemble 0.23 0.009 

After Updating 

LPI-ML  0.22 <0.001 

LPIISH-ML  0.21 <0.001 

LSN-ML  0.23 <0.001 

Ensemble 0.21 <0.001 

Testing the efficacy of regional models 

The third question is: can model regionalization improve performance? We adopt an inventory of 

16,836 observations compiled by Geyin et al. (2021) after three earthquakes in Canterbury, New 

Zealand: the 4 Sept. 2010 Mw7.1 Darfield, 22 Feb. 2011 Mw6.2 Christchurch, and 14 Feb. 2016 

Mw5.7 Christchurch ruptures. Because these observations were made at CPT sites, the global and 

New Zealand models give nearly identical predictions after geotechnical updating. For this reason, 

we assess ML model performance prior to updating and compare against RB20, as summarized in 

Table 6. In general, the region-specific ML models perform marginally better than their global 

counterparts. Due to the large number of observations, these differences tend to be statistically 

significant. Still, the less than dramatic improvement suggests that region-specific models may not 

be successful elsewhere, given that New Zealand has both considerable geotechnical data and 

high-quality regional variables. These advantages may be outweighed by the benefits of learning 

from substantially more data. All ML models significantly outperform RB20, albeit this test is not 

without bias. RB20 trained on inventories from two of these three events, which all affected the 

same area, and the ML models were trained on CPTs from this affected region, albeit these CPTs 

were down weighted during training due to their high spatial density. Collectively, results from 

the three tests suggest that the ML models developed herein warrant adoption and further testing. 
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Table 6. Summary of global and New Zealand model performance in case histories from 

Canterbury earthquake sequence. 

Model BS p-Value against RB20 

RB20 0.20 -- 

Global 

LPI-ML 0.16 <0.001 

LPIISH-ML 0.14 <0.001 

LSN-ML 0.18 <0.001 

Ensemble 0.15 <0.001 

New Zealand 

LPI-ML 0.16 <0.001 

LPIISH-ML 0.14 <0.001 

LSN-ML 0.17 <0.001 

Ensemble 0.16 <0.001 

Limitations, Uncertainties, and Future Work 

The developed models are subject to limitations and uncertainties not yet discussed. First, using 

triggering models other than Idriss and Boulanger (2008) could have altered predictions of LPI, 

LPIISH, and LSN. However, because the fragility functions used in forward application are specific 

to Idriss and Boulanger (2008), any systematic shifts in triggering predictions by another model 

would be mitigated using a fragility function specific to that model (e.g., Geyin and Maurer, 2020). 

More broadly, the adopted geotechnical models will inevitably be supplanted. Our methodology 

should improve as these underpinning models improve, and as additional geotechnical data 

become available, both for training and updating. An important caveat pertains to lateral spreading. 

Although cases of lateral spreading were included in the preceding tests, they depend on factors 

not considered by LPI, LPIISH, nor LSN, which can thus predict it poorly (e.g., Maurer et al. 2015b). 

This might be improved by merging the predicted LPI with topographic data, as formulated by 

Rashidian and Gillins (2018), but this possibility was not tested. 

Second, CPTs may be preferentially performed in ground where liquefaction hazards are 

expected and/or where premature refusal is less likely. If so, the proposed models might 

overpredict liquefaction, particularly in regions unrepresented in training, albeit the limited tests 

performed here do not indicate any such tendency. Nonetheless, SPTs could help evaluate this 

possibility and improve the model in geologies and regions where CPTs are uncommon. Moreover, 

it should be recognized that model uncertainties could exceed those indicated by the test statistics 

in data-poor areas. As more geotechnical data become available, the presented models can be 

updated in two ways: (i) model retraining; and (ii) model re-kriging. The first is computationally 

expensive and unlikely to result in major changes unless the new data are large in quantity or 

otherwise expand parameter space of the current training set. The second could feasibly be done 

frequently, including by those who wish to geostatistically update the ML models with emergent 

or proprietary data for a specific municipality, large project site, or network of distributed 

infrastructure.  

Third, the ML models are inherently limited by the accuracies and spatial resolutions of 

geospatial predictors, some of which are themselves prediction models. Mispredictions of 

liquefaction are therefore more likely where influential variables such as the predicted 
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groundwater depth are inaccurate, where subsurface conditions change at a finer scale than the 

geospatial variables, or where subsurface conditions are otherwise uncaptured by those variables. 

Terrain abutting flat land could erroneously be predicted to liquefy, for example, or deposits highly 

susceptible to liquefaction, such as artificial fill, could go unnoticed unless sampled by CPTs. It is 

also conceivable that variables could be judged as unimportant in the current models, or may have 

been omitted entirely, because the training data are insufficient to elucidate their predictive value. 

Conversely, variables could mistakenly be judged as important if correlations in the data falsely 

suggest causality. This is true of any empirical model. Although domain knowledge was used to 

omit variables and several overfitting techniques were employed, additional data are inevitably 

desired for further development.  

Lastly, geostatistical updating could be performed using other methods that could alter 

expectations of liquefaction in the vicinity of CPTs. Our updating was not bound by predictor 

variables but possibly could be. As an example, an overprediction of A or B in a sandy deposit may 

not necessarily indicate that A or B is also overpredicted in a gravelly deposit several hundred 

meters away, in contrast to what a univariate semivariogram conveys. Although improvements are 

inevitably warranted, this study proposed and demonstrated a new approach to developing GLMs 

that arguably has many merits. Ultimately, additional data and analyses will verify or refine the 

results shared here and succinctly summarized below. 

CONCLUSIONS 

Using mechanics-informed machine learning, this study trained and tested surrogate models to 

predict soil liquefaction using geospatial information. Two models were developed to mimic three 

different geotechnical models: one globally applicable, and one specific to New Zealand. These 

models have several conceptual advantages over prior geospatial approaches, as detailed in the 

introduction, and were shown to provide improved predictions in test applications. These tests 

suggested that the geospatial ML models themselves (i.e., prior to geotechnical updating via 

kriging) outperform other geospatial methods, and that updating further improves their 

performance. Tests of the New Zealand model suggested that while region-specific models may 

perform best, their benefits could be largely negated by the advantages of learning from 

substantially larger global datasets. Although developed using a large body of geospatial 

information, machine learning, and high-performance computing, the models are packaged in an 

easy-to-use format that requires only simple arithmetic to execute, and which encourages adoption 

and further testing.  
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PROJECT DATA 

 

The geotechnical and geospatial data used in model development are all publicly available, as 

described and referenced in the text. The model products are available from the DesignSafe Data 

Depot, including:  

(i) global GLM geotiffs for LPI, LPIISH, and LSN: Sanger et al. (2024b); 

(ii) New Zealand GLM geotiffs for LPI, LPIISH, and LSN: Sanger et al. (2024c); and  

(iii) an example model-use script for Python (Jupyter Notebook): Sanger et al. (2024d). 
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SUPPLEMENTAL MATERIALS 

Part 1: Manifestation Indices (MIs) 

To predict manifestations, or consequences, of liquefaction at the ground surface the results from 

triggering analysis were input to three models: the liquefaction potential index (LPI) (Iwasaki et 

al., 1978); a modified LPI, termed LPIISH (Maurer et al., 2015); and the liquefaction severity 

number (LSN) (van Ballegooy et al., 2014). These models, which each output an index (often called 

a “vulnerability index”), are widely used in land-use planning, hazard mapping, and engineering 

site-assessment to predict a soil profile’s cumulative liquefaction response, or damage potential, 

at the ground surface. In the following, these three indies are defined and differences between them 

are discussed. 

The Liquefaction Potential Index (LPI) is defined as (Iwasaki et al. 1978): 

𝐿𝑃𝐼 =  ∫ 𝑓(𝐹𝑆𝑙𝑖𝑞) ∙ 𝑓(𝑧)𝑑𝑧
𝑧 = 20 𝑚

0
                                                    (S1) 

where 𝐹𝑆𝑙𝑖𝑞 is factor-of-safety against liquefaction and 𝑧 is depth in meters, such that: 

𝑓(𝐹𝑆𝑙𝑖𝑞) = {
1 − 𝐹𝑆𝑙𝑖𝑞 , 𝐹𝑆𝑙𝑖𝑞 < 1

0, 𝐹𝑆𝑙𝑖𝑞 ≥ 1
 

𝑓(𝑧) = {
10 − 0.5𝑧, 𝑧 ≤ 20 𝑚

0, 𝑧 > 20 𝑚
 

Here, F(FSliq) and w(z) are functions that weigh the respective influences of FSliq and z on 

surface manifestation. LPI thus assumes that surface manifestation depends on the thickness of all 

liquefied strata in a profile’s upper 20 m, their proximity to the ground surface, and the amount by 

which FSliq in each stratum is less than 1.0. LPI can range from zero to 100.  

A modified LPI was proposed by Maurer et al. (2015) and inspired by Ishihara (1985), who 

proposed limit-state curves for predicting manifestations as a function of the “crust” thickness 

(H1), among other factors. Using these curves, Maurer et al. (2015) modified LPI to include the 

observed influence of H1. Given its provenance, the result was termed LPIISH and is defined by: 

𝐿𝑃𝐼𝐼𝑆𝐻 =  ∫ 𝐹(𝐹𝑆𝑙𝑖𝑞) ∙ 𝑤(𝑧) d𝑧
20 𝑚

𝐻1
                                                (S2) 

where 𝐹𝑆𝑙𝑖𝑞 is factor-of-safety against liquefaction and 𝑧 is depth in meters, such that: 

𝑓(𝐹𝑆𝑙𝑖𝑞) = {
1 − 𝐹𝑆𝑙𝑖𝑞, 𝑖𝑓 𝐹𝑆𝑙𝑖𝑞 ≤ 1 ∩ 𝐻1 ∙ 𝑚(𝐹𝑆𝑙𝑖𝑞) ≤ 3

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑚(𝐹𝑆𝑙𝑖𝑞) = exp (
5

25.56(1 − FSliq)
) − 1 

In Eq. (S2), F(FSliq) and w(z) have the same objective as in LPI, but are functionally 

different, such that F(FSliq) accounts for the crust thickness through parameter H1 and w(z) is 

defined by w(z) = 25.56 ∙ z-1. Maurer et al. (2015) recommended a minimum H1 of 0.4 m, even if 

liquefiable soils are present at shallower depths. Provided this constraint, LPIISH can range from 

zero to 100. 
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The Liquefaction Severity Number (LSN) is adapted from methods for estimating post-

liquefaction volumetric strain (e.g., to predict ground settlement), modified to include a power-

law depth weighting function (van Ballegooy et al. 2014): 

𝐿𝑆𝑁 = ∫ 𝜀𝑣  ∙ 𝑤(𝑧) d𝑧
20 𝑚

0
                                                              (S3) 

where 𝜀𝑣 is volumetric strain (%) and w(z) = 10 ∙ z-1. While there are many methods to 

estimate 𝜀𝑣, van Ballegooy et al. (2014) used that of Zhang et al. (2002), which we also adopt. LSN 

values can surpass 100 if liquefiable soils are near the surface, but typically are between zero and 

100. These values are not quantities of predicted settlement, but rather, are index values á la LPI 

and LPIISH that correlate to the probability of surface manifestation.  

Distinctions between LPI, LPIISH, and LSN are noted as follows. First, the depth weighting 

functions, which account for the influence of depth of liquefied strata on surface manifestation, all 

differ. LPI employs a function that decays linearly with depth, whereas LPIISH and LSN use 

nonlinear functions that weigh near-surface soils exponentially more than soils at greater depth. 

These models also account for the influence of liquefaction triggering differently. LPI and LPIISH 

use FSliq and apply a linear weighting, such that soils with FSliq closer to zero are weighted more, 

and soils with FSliq above one are weighted none. Conversely LSN transforms the FSliq into 𝜀𝑣, 

which may have conceptual advantages. Namely, 𝜀𝑣 accounts for the fact that soils with FSliq > 1 

could possibly contribute to surface manifestation, given that excess pore pressure could be 

generated, and caps the contribution for soils with very low FSliq, given that the consequences may 

not differ for soils with FSliq = 0 versus, say, FSliq = 0.4. A possible detraction to this cap is that a 

soil with computed FSliq = 0 is more likely to liquefy than one with computed FSliq = 0.4, but the 

treatment of these two predictions as identical removes consideration of this likelihood. Finally, 

LPIISH has a unique feature in that it explicitly accounts for the crust thickness through parameter 

H1, such that there is a crust thickness beyond which surface manifestation is next expected, 

regardless of the FSliq at depth. In contrast, LPI and LSN account for the crust thickness more 

implicitly and loosely via their depth weighting factors.  
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Part 2: Additional Figures 

 
Fig. S1. Training data predictor parameter distribution: Bulk density. 

 

 
Fig. S2. Training data predictor parameter distribution: Clay fraction. 
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Fig. S3. Training data predictor parameter distribution: Compound topographic index. 

 

 
Fig. S4. Global model training data predictor parameter distribution: Convergence. 
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Fig. S5. Global model training data predictor parameter distribution: Depth to bedrock. 

 

 
Fig. S6. Global model training data predictor parameter distribution: Depth to groundwater. 
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Fig. S7. Global model training data predictor parameter distribution: Distance to coast. 

 

 
Fig. S8. Global model training data predictor parameter distribution: Distance to river orders 1-2. 
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Fig. S9. Global model training data predictor parameter distribution: Distance to river orders 1-3. 

 

 
Fig. S10. Global model training data predictor parameter distribution: Distance to river orders 1-

4. 
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Fig. S11. Global model training data predictor parameter distribution: Distance to river orders 1-

5. 

 

 
Fig. S12. Global model training data predictor parameter distribution: Distance to river orders 1-

6. 
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Fig. S13. Global model training data predictor parameter distribution: Distance to river orders 1-

7. 

 

 
Fig. S14. Global model training data predictor parameter distribution: Distance to river orders 1-

8. 
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Fig. S15. Global model training data predictor parameter distribution: Elevation standard 

deviation. 

 

 
Fig. S16. Global model training data predictor parameter distribution: Geomorphon. 
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Fig. S17. Global model training data predictor parameter distribution: Height above nearest 

drainage. 

 

 
Fig. S18. Global model training data predictor parameter distribution: Landform entropy. 
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Fig. S19. Global model training data predictor parameter distribution: Landform Shannon index. 

 

 
Fig. S20. Global model training data predictor parameter distribution: Landform uniformity. 
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Fig. S21. Global model training data predictor parameter distribution: Major classification. 

 

 
Fig. S22. Global model training data predictor parameter distribution: Maximum multiscale 

deviation. 
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Fig. S23. Global model training data predictor parameter distribution: Maximum multiscale 

roughness. 

 

 
Fig. S24. Global model training data predictor parameter distribution: Profile curvature. 
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Fig. S25. Global model training data predictor parameter distribution: Roughness. 

 

 
Fig. S26. Global model training data predictor parameter distribution: Sand fraction. 
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Fig. S27. Global model training data predictor parameter distribution: Scale of maximum 

multiscale deviation. 

 

 
Fig. S28. Global model training data predictor parameter distribution: Scale of maximum 

multiscale roughness. 
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Fig. S29. Global model training data predictor parameter distribution: Silt fraction. 

 

 
Fig. S30. Global model training data predictor parameter distribution: Soil classification. 
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Fig. S31. Global model training data predictor parameter distribution: Tangential curvature. 

 

 
Fig. S32. Global model training data predictor parameter distribution: Terrain ruggedness index. 
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Fig. S33. Global model training data predictor parameter distribution: Topographic position 

index. 

 

 
Fig. S34. Global model training data predictor parameter distribution: Topographic slope. 
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Fig. S35. Global model training data predictor parameter distribution: Vector ruggedness 

measure. 

 

 
Fig. S36. Global model training data predictor parameter distribution: Vs30. 
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Fig. S37. Global model training data predictor parameter distribution: Water content. 

 

 
Fig. S38. Histograms of predicted error in LPI A and B for the global model training set. 

 

 
Fig. S39. Histograms of predicted error in LPI A and B for the global model testing set (Fig. 3). 
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Fig. S40. Histograms of predicted error in LPIish A and B for the global model training set. 

 

 
Fig. S41. Histograms of predicted error in LPIish A and B for the global model testing set. 

 

 
Fig. S42. Histograms of predicted error in LSN A and B for the global model training set. 
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Fig. S43. Histograms of predicted error in LSN A and B for the global model testing set. 

 

 
Fig. S44. Histograms of predicted error in LPI A and B for the New Zealand model training set. 

 

 
Fig. S45. Histograms of predicted error in LPI A and B for the New Zealand model testing set. 
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Fig. S46. Histograms of predicted error in LPIish A and B for the New Zealand model training 

set. 

 

 
Fig. S47. Histograms of predicted error in LPIish A and B for the New Zealand model testing set. 

 
Fig. S48. Histograms of predicted error in LSN A and B for the New Zealand model training set. 
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Fig. S49. Histograms of predicted error in LSN A and B for the New Zealand model testing set. 

 

 
Fig. S50. Average normalized predictor importance for the most important variables in the 

global model (Fig. 5a). 
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Fig. S51. Normalized predictor importance for the most important variables in the global LPI A 

model. 

 

 
Fig. S52. Normalized predictor importance for the most important variables in the global LPI B 

model. 
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Fig. S53. Normalized predictor importance for the most important variables in the global LPIish 

A model. 

 

 
Fig. S54. Normalized predictor importance for the most important variables in the global LPIish 

B model. 
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Fig. S55. Normalized predictor importance for the most important variables in the global LSN A 

model. 

 

 
Fig. S56. Normalized predictor importance for the most important variables in the global LSN B 

model. 
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Fig. S57. Average normalized predictor importance for the most important variables in the New 

Zealand model (Fig. 5b). 

 

 
Fig. S58. Normalized predictor importance for the most important variables in the New Zealand 

LPI A model. 
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Fig. S59. Normalized predictor importance for the most important variables in the New Zealand 

LPI B model. 

 

 
Fig. S60. Normalized predictor importance for the most important variables in the New Zealand 

LPIish A model. 
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Fig. S61. Normalized predictor importance for the most important variables in the New Zealand 

LPIish B model. 

 

 
Fig. S62. Normalized predictor importance for the most important variables in the New Zealand 

LSN A model. 
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Fig. S63. Normalized predictor importance for the most important variables in the New Zealand 

LSN B model. 

 

 
Fig. S64. Semivariogram used in regression kriging: LPI A in New Zealand. 
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Fig. S65. Semivariogram used in regression kriging: LPI B in New Zealand. 

 

 
Fig. S66. Semivariogram used in regression kriging: LPIish A in New Zealand. 
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Fig. S67. Semivariogram used in regression kriging: LPIish B in New Zealand. 

 

 
Fig. S68. Semivariogram used in regression kriging: LSN A in New Zealand. 
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Fig. S69. Semivariogram used in regression kriging: LSN B in New Zealand. 

 

 
Fig. S70. Semivariogram used in global regression kriging: LPI A. 
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Fig. S71. Semivariogram used in global regression kriging: LPI B. 

 

 
Fig. S72. Semivariogram used in global regression kriging: LPIish A. 
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Fig. S73. Semivariogram used in global regression kriging: LPIish B. 

 

 
Fig. S74. Semivariogram used in global regression kriging: LSN A. 
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Fig. S75. Semivariogram used in global regression kriging: LSN B. 
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Part 3: Additional Tables 

Table S1. Global model predictor variable information. 

Variable Description Units Spatial Resolution Source Access link 

Bulk density 
Soil bulk density (fine earth) at 100 cm depth. Based on machine learning 

predictions from global compilation of soil profiles and samples. 
kg/m3 250 m Hengl (2018a) 

https://stac.openlandmap.org/bulkdens.fineearth_usda.4a1h/bulkd
ens.fineearth_usda.4a1h_19500101_20171231/bulkdens.fineearth

_usda.4a1h_19500101_20171231.json?.asset=asset-
bulkdens.fineearth_usda.4a1h_m_250m_b100cm  

Clay fraction 
Clay content in % at 100 cm depth. Based on machine learning 

predictions from global compilation of soil profiles and samples. 
kg/kg 250 m Hengl (2018b) https://zenodo.org/records/2525663  

Compound topographic 

index 

Compound topographic index, or topographic wetness index, is the 
logarithm of the cumulative upstream catchment area divided by the 

tangent of the local slope angle. It is a proxy of the long-term soil 

moisture availability. 

-- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6 

Convergence 

Convergence is a terrain index that highlights the convergent areas as 

channels and divergent areas as ridges. It ranges from −100 for ridges to 

+100 for sink areas and 0 for planar or flat areas. 

-- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6 

Depth to bedrock Depth to bedrock. cm 250 m Shangguan et al. (2017) 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS

000686 

Depth to groundwater Depth to groundwater. m ~100 m Fan et al. (2013) https://www.science.org/doi/10.1126/science.1229881 

Distance to coast 
Distance to coast as an interpolated geottiff to the 0.01-degrees from a 

0.04-degree data set. 
km 

~1100 m (0.01 

degrees) 
NASA (2020) 

https://oceancolor.gsfc.nasa.gov/images/resources/distfromcoast/

GMT_intermediate_coast_distance_01d.zip 

Distance 
to river 

1-2 

Distance to river computed for different flow orders (order 1-2, 1-3, 1-4, 
1-5, 1-6, 1-7, 1-8). 

m 250 m Lehner and Grill (2013) https://www.hydrosheds.org/products/hydrorivers  

1-3 

1-4 

1-5 

1-6 

1-7 

1-8 

Elevation standard 

deviation 

Elevation standard deviation is a measure of the amount of elevation 
variation within a dataset computed using a 3 × 3 moving window, such 

that values near 0 indicate no variation, (i.e. flat areas), and areas with 
large values indicate high variation (i.e., very steep terrain). 

m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Geomorphon 

Geomorphon, or geomorphological phonotypes, consists of 10 classes of 

geomorphological forms extracted from DEMs. The features include: flat, 

peak or summit, ridge, shoulder, spur, slope, hollow, footslope, valley, 

and pit or depression. 

-- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Height above nearest 

drainage 

Height above nearest drainage (HAND) normalizes topography according 

to the relative height along the drainage network. 
m 1000 m Nobre et al. (2011) https://gee-community-catalog.org/projects/hand/  

Landform entropy 

Entropy is a gray-level co-occurrence matrix (GLCM)-based second-

order image texture metric. It quantifies the disorderliness of pixel values 
(i.e., landform types), where a higher value indicates a more random 

distribution of landform types within an aggregated window. 

-- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

https://stac.openlandmap.org/bulkdens.fineearth_usda.4a1h/bulkdens.fineearth_usda.4a1h_19500101_20171231/bulkdens.fineearth_usda.4a1h_19500101_20171231.json?.asset=asset-bulkdens.fineearth_usda.4a1h_m_250m_b100cm
https://stac.openlandmap.org/bulkdens.fineearth_usda.4a1h/bulkdens.fineearth_usda.4a1h_19500101_20171231/bulkdens.fineearth_usda.4a1h_19500101_20171231.json?.asset=asset-bulkdens.fineearth_usda.4a1h_m_250m_b100cm
https://stac.openlandmap.org/bulkdens.fineearth_usda.4a1h/bulkdens.fineearth_usda.4a1h_19500101_20171231/bulkdens.fineearth_usda.4a1h_19500101_20171231.json?.asset=asset-bulkdens.fineearth_usda.4a1h_m_250m_b100cm
https://stac.openlandmap.org/bulkdens.fineearth_usda.4a1h/bulkdens.fineearth_usda.4a1h_19500101_20171231/bulkdens.fineearth_usda.4a1h_19500101_20171231.json?.asset=asset-bulkdens.fineearth_usda.4a1h_m_250m_b100cm
https://zenodo.org/records/2525663
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000686
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000686
https://www.hydrosheds.org/products/hydrorivers
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://gee-community-catalog.org/projects/hand/
https://www.nature.com/articles/sdata201840


69 

 

Landform Shannon 

index 

Shannon Index is another landform diversity index based on the 
proportion of grid cells covered by the landform types, where a higher 

value indicate more landform types and/or types having more similar 
proportions within an aggregation window. 

-- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Landform uniformity 

Uniformity, also called the angular second moment, is another GLCM-

based second-order image texture metric. It quantifies the uniformity of 

pixel values (i.e., landform types) within an aggregation window, for 

which a higher value indicates a more regular distribution of landform 

types within an aggregation window. 

-- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Majority 

Majority is the landform class that covers most grid cells of the 

aggregation window. In case where more than one class is predominant, a 

random selection was permitted to choose only one class. 

-- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Maximum multiscale 

deviation 

Maximum multiscale deviation is a dimensionless measure of 

topographic position, computed as the difference between focal cell 
elevation and mean elevation divided by the standard deviation of the 

surrounding cells. As such, a positive value indicates the focal cell is 
above the surrounding mean elevation, and a negative value indicates the 

focal cell is below the surrounding mean elevation. The magnitude value 

indicates the relative spread of the elevation distribution in its 
surrounding area, and the deviation consists of the estimation of spatial 

patterns using a range of window sizes. 

-- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Maximum multiscale 
roughness 

Maximum multiscale roughness is computed as the maximum spherical 

standard deviation (σs) of the sum of 3-dimensional vector components 
derived to calculate the vector ruggedness measure, identifying both the 

magnitude and scale. 

degrees ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Profile curvature 
Profile curvature describes the rate of change of a slope along a flow line, 

related to the acceleration of water flow across a surface. 
radians/m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6 

Roughness 

Roughness is computed as the largest absolute difference between a focal 

cell and its 8 surrounding cells. It ranges from values at or near 0 in flat 

areas to larger values in mountain areas. 

m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6 

Sand fraction 
Sand content in % at 100 cm depth. Based on machine learning 

predictions from global compilation of soil profiles and samples. 
g/kg 250 m Hengl (2018c) https://zenodo.org/records/2525662  

Scale of the maximum 
multiscale deviation 

See Maximum multiscale deviation. -- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Scale of the maximum 

multiscale roughness 
See Maximum multiscale roughness. degrees ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Silt fraction 
Silt content in % at 100 cm depth. Based on machine learning predictions 

from global compilation of soil profiles and samples. 
kg/kg 250 m Hengl (2018d) https://zenodo.org/records/2525676  

Soil class 
Distribution of the USDA soil great groups based on machine learning 

predictions from global compilation of soil profiles. 
-- 250 m Hengel and Nauman (2018) https://zenodo.org/records/3528062  

Tangential curvature 
Tangential curvature quantifies the rate of change perpendicular to the 

slope gradient. 
radians/m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Terrain ruggedness 

index 

Terrain ruggedness index is computed as the mean of the absolute 

differences in elevation between a focal cell and its 8 surrounding cells. 

As such, flat areas have a value close to zero, while mountainous areas 
have large values (e.g., greater than 500 m). 

m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://zenodo.org/records/2525662
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://zenodo.org/records/2525676
https://zenodo.org/records/3528062
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
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Topographic position 

index 

Topographic position index is computed the difference between the 
elevation of a focal cell and the mean of its 8 surrounding cells. Zero 

values correspond to flat areas, and ridges and valleys are described by 
positive and negative values, respectively. 

m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Topographic slope 
Topographic slope is the rate of change of elevation in the direction of the 

water flow line. 
% ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Vector ruggedness 
measure 

Vector ruggedness measure quantifies terrain ruggedness by means of 
sine and cosine of the slope within a moving aggregation window. 

m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Vs30 Average shear wave velocity of uppermost 30m. m/s 100 m Heath et al. (2020) https://apps.usgs.gov/shakemap_geodata/vs30/global_vs30.grd  

Water content 
Soil water content (volumetric) in percent predicted at 100 cm depth. 

Based on machine learning predictions from global compilation of soil 

profiles and samples. 

% 250 m Hengel and Gupta (2019) https://zenodo.org/records/2784001  

 

  

https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://apps.usgs.gov/shakemap_geodata/vs30/global_vs30.grd
https://zenodo.org/records/2784001
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Table S2. New Zealand model predictor variable information. 

Variable Description Units 
Spatial 

Resolution 
Source Access link 

Compound topographic 

index 

Compound topographic index, or topographic wetness index, is the logarithm of the 

cumulative upstream catchment area divided by the tangent of the local slope angle. It 
is a proxy of the long-term soil moisture availability. 

-- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6 

Convergence 

Convergence is a terrain index that highlights the convergent areas as channels and 

divergent areas as ridges. It ranges from −100 for ridges to +100 for sink areas and 0 

for planar or flat areas. 

-- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6 

Depth to bedrock Depth to bedrock. cm 250 m Shangguan et al. (2017) 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/201

6MS000686 

Depth to groundwater Depth to groundwater. m 200 m Westerhoff et al. (2018) https://hess.copernicus.org/articles/22/6449/2018/  

Distance to coast 
Distance to coast as an interpolated geottiff to the 0.01-degrees from a 0.04-degree data 

set. 
km 

~1100 m (0.01 
degrees) 

NASA (2020) 
https://oceancolor.gsfc.nasa.gov/images/resources/distfromc

oast/GMT_intermediate_coast_distance_01d.zip 

Distance 
to river 

Strahler or 1 

Distance to river computed for different Strahler orders (1, 2, 3, 4, 5) using the New 
Zealand river lines. 

m ~100 m LINZ (2020) 
https://data.linz.govt.nz/layer/50327-nz-river-centrelines-

topo-150k/history/ 

Strahler or 2 

Strahler or 3 

Strahler or 4 

Strahler or 5 

Elevation standard 
deviation 

Elevation standard deviation is a measure of the amount of elevation variation within a 

dataset computed using a 3 × 3 moving window, such that values near 0 indicate no 
variation, (i.e. flat areas), and areas with large values indicate high variation (i.e., very 

steep terrain). 

m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Geologic 

unit 

Simplified 

Names Geologic units classified into simplified units (Simplified Names) by the authors, and 

further simplified into deposit type (Type 1) and Age (Type 2). 
-- 100 m Heron (2018) 

https://data.gns.cri.nz/gis/rest/services/NZL_GNS_250K_Ge

ology_2018/NZL_GNS_250K_geology_FeatureService_All

Data/FeatureServer  

Type 1 

Type 2 

Geomorphon 

Geomorphon, or geomorphological phonotypes, consists of 10 classes of 

geomorphological forms extracted from DEMs. The features include: flat, peak or 

summit, ridge, shoulder, spur, slope, hollow, footslope, valley, and pit or depression. 

-- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Height above nearest 
drainage 

Height above nearest drainage (HAND) normalizes topography according to the 
relative height along the drainage network. 

m 1000 m Nobre et al. (2011) https://gee-community-catalog.org/projects/hand/  

Landform entropy 

Entropy is a gray-level co-occurrence matrix (GLCM)-based second-order image 

texture metric. It quantifies the disorderliness of pixel values (i.e., landform types), 
where a higher value indicates a more random distribution of landform types within an 

aggregated window. 

-- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Landform Shannon 

index 

Shannon Index is another landform diversity index based on the proportion of grid 
cells covered by the landform types, where a higher value indicates more landform 

types and/or types having more similar proportions within an aggregation window. 

-- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Landform uniformity 

Uniformity, also called the angular second moment, is another GLCM-based second-
order image texture metric. It quantifies the uniformity of pixel values (i.e., landform 

types) within an aggregation window, for which a higher value indicates a more regular 
distribution of landform types within an aggregation window. 

-- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Major 

Majority is a landform class that covers most grid cells of the aggregation window. In 

case where more than one class is predominant (same number of pixels), a random 
selection was permitted to choose only one class. 

-- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000686
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000686
https://hess.copernicus.org/articles/22/6449/2018/
https://data.linz.govt.nz/layer/50327-nz-river-centrelines-topo-150k/history/
https://data.linz.govt.nz/layer/50327-nz-river-centrelines-topo-150k/history/
https://www.nature.com/articles/s41597-020-0479-6
https://data.gns.cri.nz/gis/rest/services/NZL_GNS_250K_Geology_2018/NZL_GNS_250K_geology_FeatureService_AllData/FeatureServer
https://data.gns.cri.nz/gis/rest/services/NZL_GNS_250K_Geology_2018/NZL_GNS_250K_geology_FeatureService_AllData/FeatureServer
https://data.gns.cri.nz/gis/rest/services/NZL_GNS_250K_Geology_2018/NZL_GNS_250K_geology_FeatureService_AllData/FeatureServer
https://www.nature.com/articles/s41597-020-0479-6
https://gee-community-catalog.org/projects/hand/
https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/sdata201840
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Maximum multiscale 

deviation 

Maximum multiscale deviation is a dimensionless measure of topographic position, 
computed as the difference between focal cell elevation and mean elevation divided by 

the standard deviation of the surrounding cells. As such, a positive value indicates the 
focal cell is above the surrounding mean elevation, and a negative value indicates the 

focal cell is below the surrounding mean elevation. The magnitude value indicates the 

relative spread of the elevation distribution in its surrounding area, and the deviation 

consists of the estimation of spatial patterns using a range of window sizes. 

-- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Maximum multiscale 

roughness 

Maximum multiscale roughness is computed as the maximum spherical standard 

deviation (σs) of the sum of 3-dimensional vector components derived to calculate the 
vector ruggedness measure, identifying both the magnitude and scale. 

degrees ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Pfafstetter level (basin 

characterization) 

The ‘Pfafstetter’ coding system has been implemented in the HydroBASINS product 
offering 12 hierarchically nested sub-basin breakdowns globally, of which the last eight 

(Level 5 through Level 12) are used as a predictor variable in this model. 

-- ~100 m Lehner and Grill (2013) https://www.hydrosheds.org/products/hydrobasins  

Profile curvature 
Profile curvature describes the rate of change of a slope along a flow line, related to the 

acceleration of water flow across a surface. 
radians/m 

~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6 

1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Roughness 

Roughness is computed as the largest absolute difference between a focal cell and its 8 

surrounding cells. It ranges from values at or near 0 in flat areas to larger values in 

mountain areas. 

m 

~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6 

1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Scale of the maximum 
multiscale deviation 

See Maximum multiscale deviation. -- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Scale of the maximum 
multiscale roughness 

See Maximum multiscale roughness. degrees ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

Soil depth 
Soil depth classification, where classifications include deep, moderately deep, shallow, 

and very shallow. 
-- ~200 m McNeill et al. (2018) https://smap.landcareresearch.co.nz/maps-and-tools/app/ 

Soil drainage 
Soil drainage classification, where classifications include very poorly drained, poorly 

drained, imperfectly drained, moderately well drained, and well drained. 
-- ~200 m McNeill et al. (2018) https://smap.landcareresearch.co.nz/maps-and-tools/app/ 

Soil order 

A soil order classification system consistent with the New Zealand Soil Classification 

(NZSC), including Immature Gleys (Recent Gley NZSC Group) and Mature Gleys 
(other Gley NZSC Groups); Immature Pallics (Immature Pallic NZSC Group) and 

Mature Pallics (other Pallic NZSC Groups); Allophanic Browns (Allophanic NZSC 

Group) and Non-allophanic Browns (other Brown NZSC Groups). Organic soils 

(peats) were excluded. 

-- ~200 m McNeill et al. (2018) https://smap.landcareresearch.co.nz/maps-and-tools/app/ 

Tangential curvature Tangential curvature quantifies the rate of change perpendicular to the slope gradient. radians/m 
~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Terrain ruggedness 

index 

Terrain ruggedness index is computed as the mean of the absolute differences in 
elevation between a focal cell and its 8 surrounding cells. As such, flat areas have a 

value close to zero, while mountainous areas have large values (e.g., greater than 

500 m). 

m 

~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Topographic position 

index 

Topographic position index is computed the difference between the elevation of a focal 

cell and the mean of its 8 surrounding cells. Zero values correspond to flat areas, and 
ridges and valleys are described by positive and negative values, respectively. 

m 

~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Topographic slope 
Topographic slope is the rate of change of elevation in the direction of the water flow 

line. 
% 

~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Vector ruggedness 

measure 

Vector ruggedness measure quantifies terrain ruggedness by means of sine and cosine 

of the slope within a moving aggregation window. 
m 

~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6  

1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840  

Vs30 Average shear wave velocity of uppermost 30m. m/s 100 m Foster et al. (2019) 
https://journals.sagepub.com/doi/full/10.1193/121118EQS28

1M 
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Table S3. Performance statistics for the global and New Zealand models in testing and training. 

Model 

Performance in A Performance in B Performance in MI Performance in PGF 

MAE AAE SD MSE MAE AAE SD MSE MAE MSD AAE ASD MAE MSD AAE ASD 

Geyin and Maurer (2020) PGF Model 

Triggering model Dataset 
Manifestation 

severity 
βm θm 

Training 

Global 

models 

LPI-ML 2.0 2.4 3.7 14 4.0 7.7 13.2 173.0 2.2 6.6 4.1 6.2 3% 15% 10% 14% Idriss and Boulanger (2008) Global All 1.436 6.993 

LPIISH-ML 2.0 2.6 3.9 15 5.0 9.1 14.8 17.1 2.9 7.1 4.5 6.6 3% 21% 13% 19% Idriss and Boulanger (2008) Global All 2.264 3.116 

LSN-ML 2.0 3.8 6.0 36 13.0 16.2 20.3 413.8 3.1 9.5 5.5 8.7 3% 13% 8% 12% Idriss and Boulanger (2008) Global All 1.147 13.148 

New 

Zealand 
models 

LPI-ML 7.0 8.1 10.0 101 3.0 4.5 8.3 70.0 9.5 16.3 11.4 14.2 5% 24% 15% 23% Idriss and Boulanger (2008) New Zealand Minor/All 1.774 4.095 

LPIISH-ML 7.0 8.0 9.8 100 3.0 5.0 9.1 83.6 9.3 16.3 11.5 14.5 4% 25% 14% 23% Idriss and Boulanger (2008) New Zealand Minor/All 2.16 2.394 

LSN-ML 9.0 11.2 14.8 224 21.0 25.9 31.8 1037.8 12.5 23.5 16.3 21.4 8% 22% 14% 20% Idriss and Boulanger (2008) New Zealand Minor/All 1.477 14.536 

Testing 

Global 
models 

LPI-ML 3.0 4.8 7.0 50 5.0 9.2 15.5 239 4.5 11.3 6.9 10.0 8% 22% 15% 20% Idriss and Boulanger (2008) Global All 1.436 6.993 

LPIISH-ML 3.0 4.7 6.8 46 6.0 10.6 17.1 292 4.6 11.1 7.0 10.0 6% 25% 17% 23% Idriss and Boulanger (2008) Global All 2.264 3.116 

LSN-ML 4.0 6.8 10.5 111 18.0 21.6 26.8 718 4.9 16.7 9.8 15.1 7% 22% 14% 20% Idriss and Boulanger (2008) Global All 1.147 13.148 

New 
Zealand 

models 

LPI-ML 7.0 7.9 9.7 95 3.0 4.7 9.5 91.7 9.5 15.9 11.3 13.9 5% 24% 14% 22% Idriss and Boulanger (2008) New Zealand Minor/All 1.774 4.095 

LPIISH-ML 7.0 8.1 9.9 100 3.0 5.2 10.4 107.4 9.8 16.5 11.7 14.6 4% 25% 14% 25% Idriss and Boulanger (2008) New Zealand Minor/All 2.16 2.394 

LSN-ML 9.0 11.1 14.7 219 21.0 25.4 31.6 1012 12.5 23.4 16.1 21.2 8% 22% 14% 20% Idriss and Boulanger (2008) New Zealand Minor/All 1.477 14.536 
*Acronyms: AAE = average (mean) absolute error; ASD = average (mean) standard deviation; LPI = liquefaction potential index; LPIISH = modified LPI; LSN = liquefaction severity number; MAE = median absolute error; MI = manifestation 

index; MSD = median standard deviation; MSE = mean squared error; PGF = probability of ground failure; SD = standard deviation. 
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Table S4. Summary of semivariogram parameters. 

Model Nugget Sill Length Scale (km) Alpha Number of lags Major Range (km) 

Global 

models 

LPI A 0.0 84.3 0.223 0.300 10 1.0 

LPI B 0.0 140.0 0.300 0.300 10 1.0 

LPIish A 0.0 83.6 0.215 0.300 10 1.0 

LPIish B 0.0 174.0 0.300 0.300 10 1.0 

LSN A 0.0 238.0 0.230 0.407 10 1.0 

LSN B 0.0 665.0 0.050 1.000 10 1.0 

New 

Zealand 

models 

LPI A 0.0 97.4 0.118 0.403 10 1.0 

LPI B 0.0 43.6 0.200 0.300 10 1.0 

LPIish A 0.0 95.2 0.112 0.394 10 1.0 

LPIish B 0.0 66.9 0.200 0.300 10 1.0 

LSN A 0.0 212.0 0.110 0.301 10 1.0 

LSN B 0.0 998.0 0.080 0.205 10 1.0 
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