

Informing Predictions from Above with Data from Below: A Next-Generation Geospatial Liquefaction Model for Rapid Response and Scenario Planning

Morgan D. Sanger¹ and Brett W. Maurer²

U.S. Geological Survey Final Technical Report

Award No. G23AP00017

Award Term: January 2023 – August 2024

Principal Investigator:

Brett W. Maurer, Ph.D.

University of Washington

Department of Civil and Environmental Engineering

Seattle, WA 98195

P: 1-206-616-6201 F: 1-206-543-1543 E: bwmaurer@uw.edu

November 30, 2024

Acknowledgement of Support and Disclaimer: This material is based upon work supported by the U.S. Geological Survey under Grant No. G23AP00017. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey.

¹University of Washington, Department of Civil and Environmental Engineering, 132 More Hall, Seattle, WA 98195. Phone: 1-206-616-6201. Fax: 1-206-543-1543. Email: sangermd@uw.edu

²University of Washington, Department of Civil and Environmental Engineering, 132 More Hall, Seattle, WA 98195. Phone: 1-206-616-6201. Fax: 1-206-543-1543. Email: bwmaurer@uw.edu

ABSTRACT

Using machine learning (ML), high performance computing, and a large body of geospatial information, we develop surrogate models to predict soil liquefaction across regional scales. Two sets of models – one global and one specific to New Zealand – are trained by learning to mimic geotechnical models at the sites of in-situ tests. Our geospatial approach has conceptual advantages in that predictions: (i) are anchored to mechanics, which encourages more sensible response and scaling across the domains of soil, site, and loading characteristics; (ii) are driven by ML, which allows more predictive information to be used, with greater potential for it to be exploited; (iii) are geostatistically updated by subsurface data, which anchors the predictions to known conditions; and (iv) are precomputed everywhere on earth for all conceivable earthquakes, which allows the models to be executed very easily, thus encouraging user adoption and evaluation. Test applications suggest that: (i) the proposed models outperform others to a statistically significant degree; (ii) the geostatistical updating further improves performance; and (iii) the anticipated advantages of region-specific models may largely be negated by the benefits of learning from larger global datasets. These models are best suited for regional-scale liquefaction hazard simulation and near-real-time response and are accompanied by variance products that convey where, and to what degree, the ML-predicted liquefaction response is influenced by local geotechnical data.

CONTENTS

ABSTRACT.....	2
CONTENTS.....	3
Introduction.....	4
Data and Methodology	6
Subsurface Data and Geotechnical Predictions as Model Targets	6
Geospatial Predictors as Model Features	9
Model Training.....	11
Results and Discussion.....	12
Model Performance, Application, and Geostatistical Updating.....	12
Testing performance on “unseen” case histories	19
Testing distributed global performance before and after updating.....	21
Testing the efficacy of regional models	21
Limitations, Uncertainties, and Future Work.....	22
Conclusions.....	23
PROJECT DATA.....	29
SUPPLEMENTAL MATERIALS	30
BIBLIOGRAPHY OF PUBLICATIONS RESULTING FROM THE WORK.....	68

INTRODUCTION

Reliable predictions of soil liquefaction are desired both prior to an earthquake for planning and mitigation, and immediately after for informing response and recovery. Such predictions could ideally be made: (i) quickly, as in near-real-time after an event; (ii) at high resolution, consistent with the scale of infrastructure assets or property parcels; and (iii) over the areal extents impacted by large earthquakes, such as those of a city or transportation network. However, because state-of-practice liquefaction models require subsurface geotechnical data such as cone penetration test (CPT) measurements, they cannot be implemented continuously across a large area. As a result, models that use “geospatial” proxy variables are often used in regional-scale studies. These variables include metrics of topography, geology, hydrology, geomorphology, ecology, groundwater, and climate that are available from existing maps, models, and remote-sensing datasets, and which correlate with traits pertinent to liquefaction (e.g., soil thickness, density, saturation, and typology). By way of these variables, geospatial models essentially infer subsurface conditions without subsurface measurements and can thus rapidly predict liquefaction at any number of locations.

Models of this type have existed for several decades (“HAZUS” from the National Institute of Building Science (1997) was among the first), yet they have gained new attention in recent years, driven by advances in liquefaction observation data, geospatial variables, and empirical learning techniques (e.g., machine learning, ML). For example, the seminal model of Zhu et al. (2017), later updated by Rashidian and Baise (2020), is adopted by the United States Geological Survey (USGS) as part of their post-earthquake informational products (e.g., Allstadt et al., 2022). It is difficult, of course, to predict liquefaction without site-specific subsurface data, especially across the diverse environments and geologic conditions found globally. Recent tests of geospatial and CPT-based liquefaction models demonstrate the promising potential of geospatial data, as well as clear shortcomings in current models (Geyin et al., 2020). Studies that utilize geospatial models for predicting liquefaction have since increased – in local and global contexts – and include efforts in Australia (Jena et al., 2023), New Zealand (e.g., Lin et al., 2021; Azul et al., 2024), the United States (Geyin et al., 2023; Bullock et al., 2023), Turkey (Asadi et al., 2024), the European Union (e.g., Bozzoni et al., 2021; Todorovic and Silva, 2022), and Korea (Kim, 2023), among others.

While recent literature has grown the science and adoption of geospatial models, we contend existing models share one or more significant limitations. *First*, they tend to directly predict outcomes (i.e., liquefaction manifestations, or lack thereof) without explicit consideration of, or insights into, the mechanistic causes of those outcomes. Liquefaction is best predicted by mechanics and much has been learned of these mechanics over the last 50 years. This knowledge is continually embedded in state-of-practice geotechnical models, yet geospatial models tend not to learn from, or anchor to, these mechanistic models in any way. The lack of a mechanistic backbone could be overcome with enough training data, such that a model “relearns” the governing mechanics by way of observed outcomes, but current liquefaction inventories are arguably too sparse, with data from perhaps one earthquake annually. As a result, geospatial models can depart from mechanistic principles, especially in poorly populated regions of their parameter spaces (e.g., a model may predict liquefaction when the shaking intensity or duration is easily judged by an expert as insufficient). In some cases, ad-hoc corrections have been used to limit the misgivings of data sparsity (e.g., Allstadt et al., 2022). The problem posed by geospatial modeling might thus ideally be parsed into the empirical (prediction of subsurface engineering properties, conditioned

on geospatial variables) and the mechanistic (prediction of liquefaction effects, conditioned on engineering properties).

Second, geospatial models tend not to be updated by subsurface geotechnical data. Because geospatial predictions implicitly infer subsurface traits, they could presumably be improved with direct measurements of those traits. Geotechnical data is increasingly accessible in regional and national community databases, some of which already contain hundreds of thousands of tests. These data are likely to grow indefinitely, through continual testing and increased availability of historic data. When input to geotechnical models, geotechnical data can produce predictions of liquefaction that differ greatly from those of their geospatial counterparts. The lack of communication between geotechnical and geospatial data and models is a significant lost opportunity. Geospatial models would undoubtedly benefit from consideration of subsurface data, where available.

Third, existing geospatial models tend to use relatively few of the publicly available geospatial variables. Rashidian and Baise (2020), for example, use five. One variable represents demand (peak ground velocity, PGV) and four represent capacity (distance to water, mean annual precipitation, and the expected groundwater depth and shear-wave velocity over the upper 30 m (V_{S30})). While these inputs seem to model liquefaction hazards with relative sufficiency, at least in certain locations and events, more predictive information is needed to further improve model performance and portability (i.e., stability across events, regions, and subsurface conditions). As an example, Geyin et al. (2020) observed that the inability to infer soil typology (and thus, liquefaction susceptibility) was a common cause of geospatial mispredictions.

Fourth, existing geospatial models tend to be trained by traditional statistical methods (e.g., logistic regression). In this regard, the potential of geospatial modeling – using many variables that weakly correlate to subsurface traits in nonlinear, interrelated ways – may not be fully realized. Logistic regression requires: (i) hypotheses of what variables matter and how; (ii) little-to-no correlation between variables; and (iii) linearity between variables and targets, which often deviates from reality where behaviors are nonlinear. Better predictions might be realized using emergent “artificial intelligence (AI)” techniques (such as ML), which could allow more predictive information to be used, with greater potential for that information to be exploited. Todorovic and Silva (2022), for example, trained an ML model to directly predict liquefaction observations using several geospatial variables, similar to Rashidian and Baise (2020), and showed evidence of improvement in unbiased tests.

Fifth, although AI brings opportunity to geotechnical engineering, existing AI liquefaction models are rife with problems (Maurer and Sanger, 2023). Most problematic with respect to the scientific process is that AI models are rarely provided. A large majority of publications describe the development and performance of an AI model, but do not “define” the model (i.e., do not provide code, software, or any means of use), meaning it cannot be applied or tested by anyone. Beyond this immediate concern is another specific to geospatial models: are they feasible to implement? Consider a hypothetical model that uses many high-resolution variables. Deploying such a model globally could require compilation and storage of hundreds, if not thousands, of gigabytes of geospatial data. The model itself could also be unwieldy in size. This presents a barrier to all but large enterprises if the required data cannot easily be downloaded and stored locally. It may be argued that even geospatial models with only a few variables do not lend themselves well to adoption and testing, given that those variables must be individually located (often from broken

hyperlinks) and may need to be globally computed from other raw data. If a model is not easily implemented, it will not be adopted, tested, or improved. It is thus critical to package data for users, build software interfaces, and/or develop modeling strategies that circumvent the problem of size altogether. AI models will otherwise not be used.

In this paper, we train geospatial liquefaction models (henceforth GLMs) that directly address each of these limitations using an approach that is very different from others, and which builds on concepts introduced in Geyin et al. (2022). Rather than predict liquefaction observations directly, we train geospatial “surrogate” models to mimic the predictions of geotechnical models at sites of in-situ tests. By anchoring to mechanistic models, the geospatial models benefit from the knowledge embedded therein. This encourages more sensible model response and scaling across the domains of soil, site, and earthquake loading characteristics. The predictions are made using a very large library of geospatial information, are trained using ML techniques, and are geostatistically updated in the vicinity of subsurface data, such that the geospatial models are brought into agreement with geotechnical predictions where available. Furthermore, the models are designed for ease of use. This is accomplished by effectively precomputing the expected liquefaction response at every location on earth for all potential earthquakes. This response is stored as mapped parameters that await ground-motion information from a specific earthquake (e.g., one that has just occurred, or a scenario event of interest). When convolved, these inputs rapidly produce probabilistic predictions of liquefaction impacts, giving the model near-real-time capability without requiring high-performance computing (HPC) resources nor advanced modeling capabilities. We develop surrogate ML models for several geotechnical models, such that their predictions can be ensembled, and we explore the prospects of region-specific GLMs by developing one in New Zealand. The projected benefits of our approach are further developed in *Data and Methodology*.

DATA AND METHODOLOGY

Subsurface Data and Geotechnical Predictions as Model Targets

Subsurface data – and geotechnical model predictions using these data – underpin our approach. These are used both to train the GLMs and to subsequently anchor their predictions to reality, such that predictions near in-situ tests are updated by (i.e., brought in closer agreement with) geotechnical models. By transferring the prediction target from liquefaction observations to subsurface data, the potential training set becomes orders-of-magnitude larger and samples Earth’s terrain more broadly. This is because the sites of in-situ tests do not need to have experienced an earthquake (i.e., be liquefaction “case histories”) but merely require data that can be input to a state-of-practice liquefaction model (currently CPT, V_S , or standard penetration test (SPT) measurements). Given the rise of community data, and research policies and infrastructures that reward data sharing (e.g., Baker et al., 2024), the disparity between the number of geotechnical tests and the number of liquefaction observations will only increase. This should allow the models developed herein to be retrained and improved more frequently, whereas geospatial models that train directly on liquefaction observations may advance less rapidly, with new data from at most a few earthquakes annually, each subjecting sample sites to just one level of seismic loading.

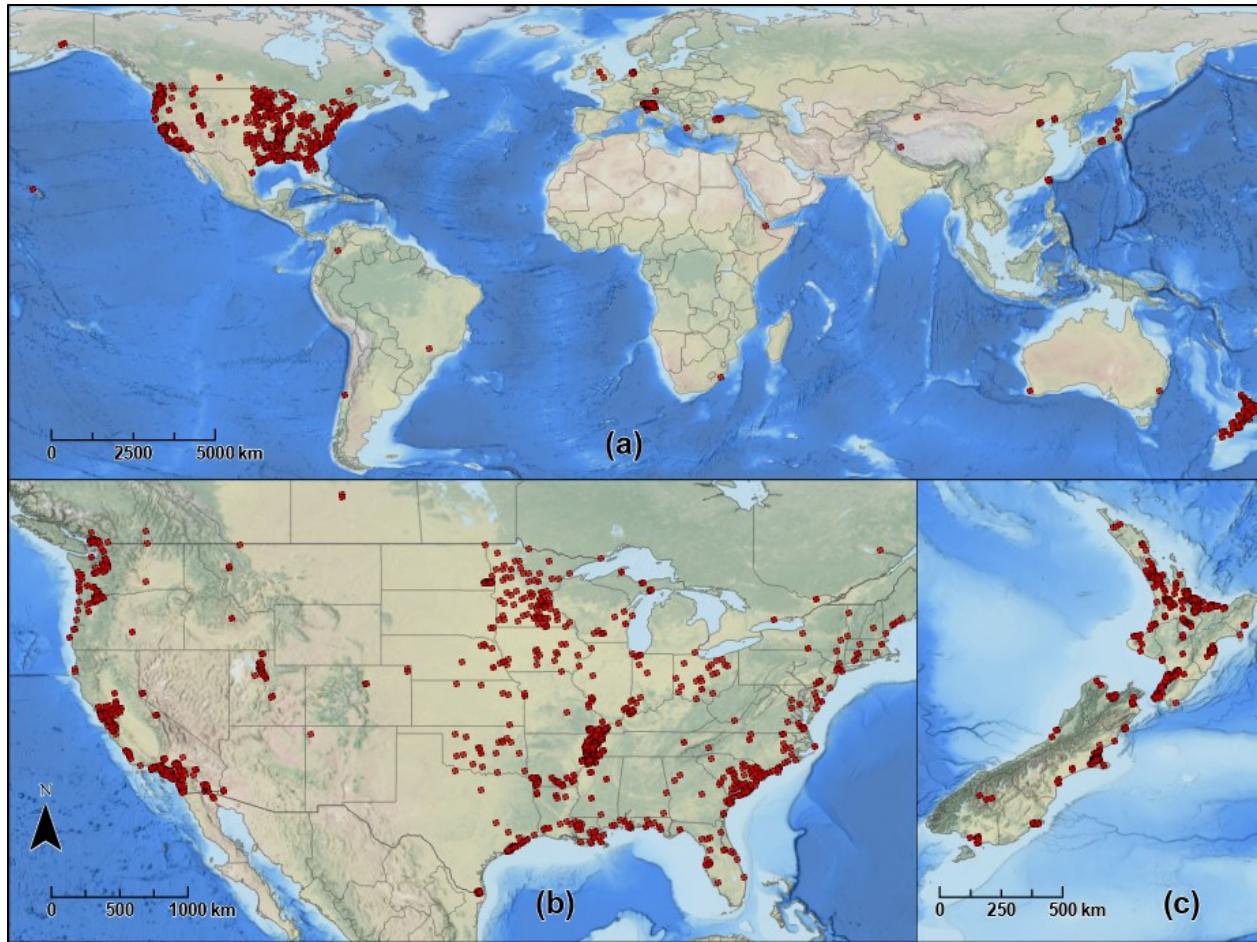


Fig. 1. Spatial distribution of CPT training and test data (a) globally, with a closer look at (b) the conterminous United States and (c) New Zealand.

In this study we focus on CPTs and compile ~37,000 total tests from 48 U.S. states and 19 countries, as mapped in Fig. 1. Sources include prior international compilations (Geyin and Maurer, 2021a) and existing databases in Italy (Regione Emilia-Romagna, 2024), New Zealand (New Zealand EQC, 2016), and the United States (USGS, 2019). Considerable data were also newly compiled for this project from several thousand analog sources – focusing on North America – and are digitally available from Sanger et al. (2024a) and Rasanen et al. (2024). Although this collection of data is in many ways unprecedented, some regions of interest are still poorly represented and additional data is needed, as always, while other regions are data rich (e.g., Italy, New Zealand, United States), evoking questions of model bias. To address these issues, this study includes: (i) parameter distributions comparing the training set with global conditions; (ii) several types of unbiased model tests; and (iii) maps depicting the degree to which model predictions are influenced by geotechnical data. Additionally, the models are constrained to the training domain of select, influential parameters, meaning the models generally do not make predictions for conditions unencountered in training. These and other limitations and uncertainties are further discussed later.

Each CPT was subjected to a loading array defined by peak ground accelerations (*PGAs*) of 0.05 g to 2.0 g and rupture magnitudes of 4.5 to 9.0. For each loading, the factor-of-safety against

liquefaction triggering was computed as a function of depth using the Idriss and Boulanger (2008) model, which has been shown, to a statistically significant degree, to perform at least as well as all other models common in practice (Geyin et al., 2020). Soil fines content was estimated from the CPT soil-behavior-type-index, I_c (Robertson, 2009), via the Boulanger and Idriss (2016) model, except in New Zealand where the regional model of Maurer et al. (2019) was used. Soils with $I_c > 2.5$ were assumed not susceptible to liquefaction per Maurer et al. (2019). Corrections for CPT volume-averaging effects (e.g., Boulanger and DeJong, 2018) were not applied based on the findings of Geyin and Maurer (2021b) and Yost et al. (2021). To predict manifestations, or consequences, of liquefaction at the ground surface, the results from triggering analysis were input to three models: the liquefaction potential index (LPI) (Iwasaki et al., 1978); a modified LPI , termed LPI_{ISH} (Maurer et al., 2015a); and the liquefaction severity number (LSN) (van Ballegooij et al., 2014). These models, which each output an index (often called a “vulnerability index”), are used in land-use planning, hazard mapping, and engineering site-assessment to predict a soil profile’s cumulative liquefaction response, or damage potential, at the ground surface. Fragility functions conditioned on LPI , LPI_{ISH} , and LSN have been trained using case-history data to predict the probabilities of certain outcomes, including ground failure (i.e., deformation and ejecta) (Geyin and Maurer, 2020), pipeline rupture (Toprak et al., 2019), and foundation damage (Maurer et al., 2024). Because LPI , LPI_{ISH} , and LSN are well known in the literature and available in engineering software (e.g., *CLIQ* by GeoLogismiki; *Design Studio* by Infinity Studio), their formulae are omitted here but provided in the *Supplemental Materials*.

Shown in Fig. 2 are the resulting LPI values at four of the ~37,000 CPT sites, plotted as a function of magnitude-scaled PGA (PGA_M). The relationship between LPI and PGA_M is a unique signature of each site, with no two sites having identical responses. If it were possible to obtain this signature remotely (i.e., without in-situ data), then the expected liquefaction response across all levels of loading would, in effect, be predicted. To that end, we fit a simple but flexible functional form to these data:

$$MI(PGA_M) = \begin{cases} 0, & \text{for } PGA_M < 0.1g \\ A * (\tan^{-1}(B * (PGA_M - \frac{A/100}{B})^2)), & \text{for } PGA_M \geq 0.1g \end{cases} \quad (\text{Eq. 1})$$

where MI is the manifestation index (i.e., LPI , LPI_{ISH} , or LSN), PGA_M is as previously defined, and A and B are independent fitting parameters that will subsequently be predicted by ML. Eq. (1) is expressly formulated so that A and B may be stored in 16-bit format, which substantially compresses the size of eventual model products. Although A and B lack exact physical meaning, A generally captures the cumulative thickness of strata susceptible to liquefaction (i.e., what MI is attained at relatively high PGA_M) and B generally captures the cumulative liquefaction potential of those strata (i.e., how fast MI increases at relatively low PGA_M). The fitting of Eq. (1) to the MI data results in a fitting error, or uncertainty, that is normally distributed, unbiased, and very small for most sites. We view this uncertainty as negligible compared to others, and when considering what Eq. (1) conceptually permits: a geospatial prediction of liquefaction response that is mechanics-informed and updatable using geotechnical data, for all seismic loading. And, because A and B are event-independent, they can be globally predicted in advance of their use, at which time LPI , LPI_{ISH} , and LSN are computable at low computational cost. An added advantage of this modularity is that users can pair these predictions with fragility functions of their choice, making it feasible to tailor products for different needs and

utilize the latest models, since fragility functions are frequently proposed or updated using new case-history data.

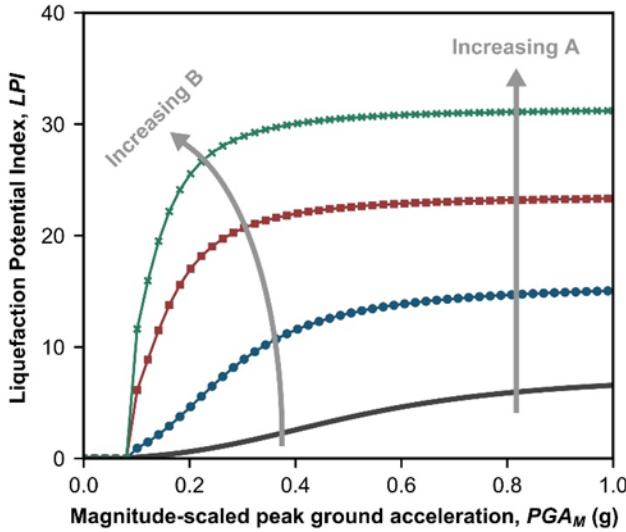


Fig. 2. Example LPI versus PGA_M curves for four sites.

Geospatial Predictors as Model Features

Whereas liquefaction is best modeled considering mechanics, the relationship between geospatial variables and subsurface traits is empirical, involving many interrelated correlations. Domain expertise may guide the selection of variables, but there is no expectation these variables will relate to soil traits in a mechanistic way. In the current effort, two sets of models are developed to predict LPI , LPI_{ISH} , and LSN via parameters A and B : (i) a global model, meaning predictors must be globally available; and (ii) a model specific to New Zealand, which will be used to judge the potential for region-specific models to perform better. Although global models can train on more data, region-specific models have two attractions: (i) conditions are likely to be more consistent (e.g., geology, geomorphology, and climate); and (ii) better predictor variables may be available, with higher resolution or more regional specificity, as compared to those with global coverage. For these reasons, the relationships between variables and targets could have less variance in a regional setting. New Zealand was chosen for this pilot because it has a large amount of geotechnical data and several region-specific predictors (e.g., national models of groundwater, V_{S30} , geology, and soils).

A total of 37 variables were ultimately chosen for the global models through an iterative process that considered correlation structures, measurements of variable importance and model performance, overfitting behavior, and the authors' judgement, both in selecting provisional variables and when inspecting final products. The name, spatial resolution, and source of each variable is in Table 1. Most variables are available at multiple spatial resolutions, but only one was ultimately adopted through the process above. Many other provisional variables were omitted entirely (e.g., mean annual precipitation). Table S1 in the *Supplemental Materials* provides additional information for each variable, including definitions, descriptions, and hyperlinked sources. However, the end-user is reminded that these variables are not required to execute the

models (in contrast to other geospatial models), since model predictions will be stored as mapped parameters A and B .

Table 1. Summary of predictor variable information.

Variable	Units	Resolution	Source
Bulk density	kg/m3	250 m	Hengl (2018a)
Clay fraction	kg/kg	250 m	Hengl (2018b)
Compound topographic index (CTI)	--	~90 m (3 arc-sec)	Amatulli et al. (2020)
Convergence	--	~90 m (3 arc-sec)	Amatulli et al. (2020)
Depth to bedrock	cm	250 m	Shangguan et al. (2017)
Depth to groundwater	m	~100 m	Fan et al. (2013)
Distance to coast	km	~1100 m (0.01 deg)	NASA (2020)
River distances (Flow orders 1-8)	m	250 m	Lehner and Grill (2013)
Elevation standard deviation	m	~90 m (3 arc-sec)	Amatulli et al. (2020)
Geomorphon	--	~90 m (3 arc-sec)	Amatulli et al. (2020)
Height above nearest drainage (HAND)	m	1000 m	Nobre et al. (2011)
Landform entropy	--	1000 m	Amatulli et al. (2018)
Landform Shannon index	--	1000 m	Amatulli et al. (2018)
Landform uniformity	--	1000 m	Amatulli et al. (2018)
Major	--	1000 m	Amatulli et al. (2018)
Maximum multiscale deviation (MMD)	--	~90 m (3 arc-sec)	Amatulli et al. (2020)
Maximum multiscale roughness (MMR)	deg	~90 m (3 arc-sec)	Amatulli et al. (2020)
Profile curvature	rad/m	~90 m (3 arc-sec)	Amatulli et al. (2020)
Roughness	m	~90 m (3 arc-sec)	Amatulli et al. (2020)
Sand fraction	g/kg	250 m	Hengl (2018c)
Scale of the MMD	--	~90 m (3 arc-sec)	Amatulli et al. (2020)
Scale of the MMR	deg	~90 m (3 arc-sec)	Amatulli et al. (2020)
Silt fraction	kg/kg	250 m	Hengl (2018d)
Soil class	--	250 m	Hengl and Nauman (2018)
Tangential curvature	rad/m	~90 m (3 arc-sec)	Amatulli et al. (2020)
Terrain ruggedness index (TRI)	m	~90 m (3 arc-sec)	Amatulli et al. (2020)
Topographic position index (TPI)	m	~90 m (3 arc-sec)	Amatulli et al. (2020)
Topographic slope	%	~90 m (3 arc-sec)	Amatulli et al. (2020)
Vector ruggedness measure (VRM)	m	~90 m (3 arc-sec)	Amatulli et al. (2020)
Vs30	m/s	100 m	Heath et al. (2020)
Water content	%	250 m	Hengl and Gupta (2019)

The variables in Table 1, which were sampled at ~37,000 CPT sites, include measurements derived from elevation models and hydrologic datasets (e.g., height above nearest drainage, compound topographic index, distance to rivers of different flow-orders), and predictions made by other models (e.g., soil class, water content, and clay fraction). The goal of these variables is to correlate to soil thickness, saturation, density, and typology. To evaluate the potential for model bias and the need for bias mitigation (e.g., data resampling, variable transformations), the variables

in Table 1 were also sampled at all locations on earth and the resulting distributions were compared to those from CPT sites, as shown in Figs. S1-S37. It is apparent from these comparisons that deep groundwater conditions are underrepresented at CPT locations. Each CPT was therefore duplicated and randomly assigned a new groundwater depth of up to 50 m. These synthetic data were included in training so that the ML model better understands the expected liquefaction response (as predicted by geotechnical models) across a broader spectrum of groundwater conditions. Importantly, these cases – which are relatively easy to predict once the significance of deep groundwater is learned – are never included in statistics of model performance. In other words, the training set includes synthetic data, but the training and test performance metrics will not. For the New Zealand model, 43 variables were ultimately adopted and sampled at the locations of 16,475 CPTs in New Zealand. Of these, unique variables not used in the global model are summarized in Table 2 and complete variable information is provided in Table S2. Aside from differing CPT datasets and predictor variables, the methodologies applied globally and in New Zealand are otherwise the same.

Table 2. Summary of predictor information for New Zealand that differs from the global model.

Variable	Units	Resolution	Source
Depth to groundwater	m	~200 m	Westerhoff et al. (2018)
Distance to coast	km	~1100 m	NASA (2020)
River distances (Strahler orders 1 to 5)	m	~100 m	LINZ (2020)
Geologic unit, Deposit Type, Age	--	100 m	Heron (2018)
Pfafstetter level basin characterization	--	~100 m	Lehner and Grill (2013)
Profile curvature	rad/m	1000 m	Amatulli et al. (2018)
Roughness	m	1000 m	Amatulli et al. (2018)
Soil depth	--	~200 m	McNeill et al. (2018)
Soil drainage	--	~200 m	McNeill et al. (2018)
Soil order	--	~200 m	McNeill et al. (2018)
Tangential curvature	rad/m	1000 m	Amatulli et al. (2018)
TRI	m	1000 m	Amatulli et al. (2018)
TPI	m	1000 m	Amatulli et al. (2018)
Topographic slope	%	1000 m	Amatulli et al. (2018)
VRM	m	1000 m	Amatulli et al. (2018)
Vs30	m/s	100 m	Foster et al. (2019)

Model Training

AI/ML techniques allow for more predictive information to be used and increase the potential for that information to be exploited. Simultaneously, a large majority of existing AI/ML liquefaction models have serious flaws, as documented by Maurer and Sanger (2023) who reviewed 75 such models. Among other failings, many publications: (i) did not test against any existing model; (ii) departed from best practices in model development (e.g., cross validation, unbiased test sets, tests of statistical significance); and (iii) did not provide a usable model to readers. Consequently, it is often unclear how well these models perform, why they should be adopted, and how they could even be used. We are thus keenly aware of the pitfalls with AI/ML tools and address them in our methodology.

Having compiled predictor variables at CPT sites where parameters A and B were obtained, the data were parsed into training (90%) and test (10%) sets. Several types of ML algorithms were used to train provisional models, including different neural networks, and decision tree ensembles formed by bagging, boosting, or random forests. Through this iterative process, during which the training, cross validation, and test-set performances were judged for performance and overfitting behavior, bagged decision-tree ensembles were ultimately chosen, both for the global and New Zealand models. Decision trees map a specific combination of inputs to an expected output by way of recursive decision forks. Because a single tree is typically not especially accurate and is prone to overfitting, trees are usually ensembled. In bagging, which is also known as bootstrap aggregating, many variants of the training set are sampled via bootstrapping, and each is used to train a model. The outputs from the various trees are then ensembled, or averaged, to form a prediction. Owing to this resampling and averaging approach, bagging tends to reduce variance and avoid overfitting, compared to other ensembling methods. An additional advantage of decision-tree models is that they are relatively interpretable versus more convoluted model architectures.

Many model iterations were created using different loss functions, k-fold cross validation partitions, and predictor variables. The model hyperparameters were individually optimized for each of the six targets (i.e., A and B for LPI , LPI_{ISH} , and LSN) using a parallelized grid search algorithm to optimize the ten-fold-cross validation mean-square-error (MSE). The adoption of the MSE loss function gives some preference to reducing major mispredictions at the possible expense of more minor mispredictions. The final tuned models, which used the predictor variables summarized in Tables 1 and 2, again employed ten-fold cross validation to mitigate overfitting. Given the clustering of data in some locales (e.g., the Christchurch, New Zealand, metropolitan area), a heuristic weighting scheme based on spatial point density was applied. This downweighted the influence of data in Christchurch by ~50%. Although such weighting diminishes performance on the training and test sets, it was desirable in pursuit of more generalizable models. The performance, implementation, and geostatistical updating of these models is next discussed.

RESULTS AND DISCUSSION

Model Performance, Application, and Geostatistical Updating

Using these data and methods, 12 distinct ML models were developed to predict A and B for the three geotechnical models and two datasets. A representative example of performance is shown in Fig. 3 for the global LPI model's A and B using its test set. Analogous figures for all models, both in training and testing, appear in Figs. S38-S49. Prediction residuals (defined throughout this paper as predicted – observed) are generally unbiased and normally distributed, and A is consistently predicted better than B . This might mean that the thickness of liquefiable material (which relates more to A) is easier to predict than the liquefaction resistance of that material (which relates more to B). Another explanation is that A does more to define the overall shape of the $MI-PGA_M$ curves (Fig. 2) and is thus a stronger site signature than B , which adds nuance to the curves but is less important overall. It is worth asking whether the models for B are needed, given their large variances, or if it would be acceptable to instead make B constant for all predictions. This may be answered using the Nash-Sutcliffe coefficient, E (Nash and Sutcliffe, 1970). $E = 1.0$ indicates a perfect model whereas $E < 0$ indicates that adopting a mean value for B would be better than using a model to predict it. In this case, E values for all global B models are positive and average 0.36. Thus, while opting not to use the B models might not diminish predictions of MI substantially, it

is still better to predict B . Because A and B lack exact physical meaning, and because they do not have equal influence in Eq. (1), it is more informative to assess performance by predicting the final targets (e.g., LPI).

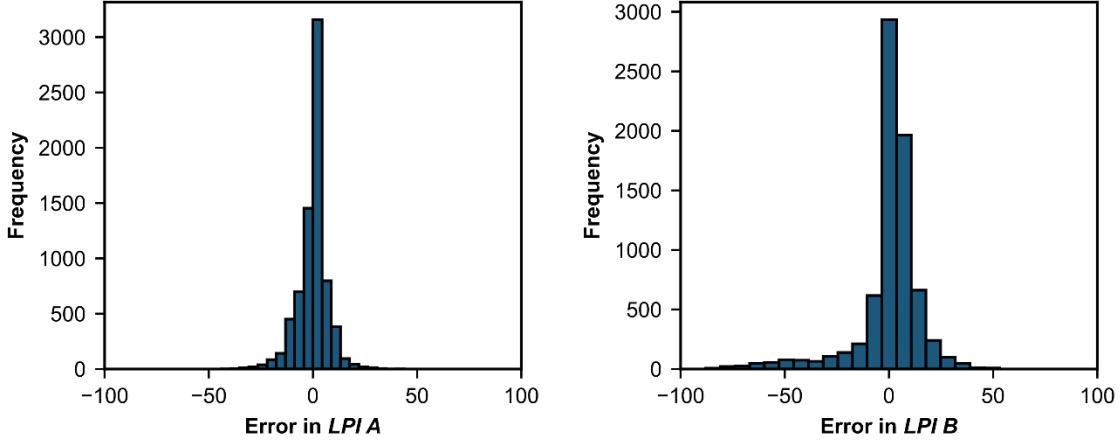


Fig. 3. Predicted vs. observed $LPI A$ and $LPI B$ for the global model test set.

In this regard, Fig. 4 illustrates LPI residuals as a function of PGA_M for the global model test set. Across the domain $0 < PGA_M < 1$ g, these residuals have a median absolute error (MAE) of 4.5 and a median standard deviation (MSD) of 11, meaning that 68% of LPI prediction errors are less than ± 11 and 95% are less than ± 22 . While readers familiar with LPI could initially judge these errors as being nontrivial, it is important to note that: (i) large errors are predominantly associated with large LPI targets; and (ii) errors in LPI become less consequential as LPI increases. According to the fragility functions of Geyin and Maurer (2020), for example, which predict the probability of ground failure (PGF) conditioned on LPI , an error of 20 is less consequential at $LPI = 30$ than an error of 2 at $LPI = 3$. This is because the expected likelihoods and severities of liquefaction manifestations become relatively constant at large LPI . The same is true of LPI_{ISH} and LSN , and for this reason, errors are best interpreted after transformation to consequence predictions (i.e., by predicting outcomes conditioned on these indices). In this context, the MAE and MSD of 4.5 and 11 equate to errors in PGF of 8% and 22%, respectively, per Geyin and Maurer (2020).

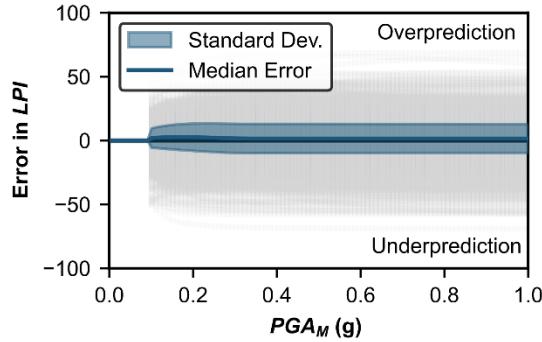


Fig. 4. LPI residuals as a function of PGA_M for the global model test set.

This process was repeated for all global and New Zealand models, for which the results on the test set are summarized in Table 3 (complete performance statistics are provided in Table S3).

The ML methodology's ability to mimic predicted LPI and LPI_{ISH} values is very similar, whereas greater MAE and MSD are observed in the LSN predictions. However, because the mapping of MI to PGF is least sensitive for variations in LSN (e.g., using the fragility functions of Geyin and Maurer (2020)), the larger errors in predicted LSN do not usually translate to larger errors in PGF . Overall, the results in Table 3 suggest the ML models are similarly effective at mimicking PGF predictions based on any of the three geotechnical models. It must be emphasized, of course, that accurately mimicking the predictions of a geotechnical model does not guarantee accurate predictions of liquefaction phenomena (the ML models' abilities to predict liquefaction will be tested momentarily). Geotechnical models may also have different efficacies, albeit there is generally too little global liquefaction case-history data to establish statistical significance or consensus on which models perform best (e.g., Geyin et al., 2020; Rasanen et al., 2023). For this reason, users may wish to ensemble the predictions from one or more of the ML models developed here.

Table 3. Summary of test set performance for global and New Zealand models.

Model	A		B		MI		PGF	
	MAE	Standard Deviation	MAE	Standard Deviation	MAE	MSD	MAE	MSD
Global								
LPI -ML	3.0	7.0	5.0	15.5	4.5	11.3	8%	22%
LPI_{ISH} -ML	3.0	6.8	6.0	17.1	4.6	11.1	6%	25%
LSN -ML	4.0	10.5	18.0	26.8	4.9	16.7	7%	22%
New Zealand								
LPI -ML	7.0	9.7	3.0	9.5	9.5	15.9	5%	24%
LPI_{ISH} -ML	7.0	9.9	3.0	10.4	9.8	16.5	4%	25%
LSN -ML	9.0	14.7	21.0	31.6	12.5	23.4	8%	22%

Although ML models have justly been criticized as opaque, interrogative techniques are continually advancing and the ability to understand ML predictions made from tree-based architectures is nearing that of traditional regression. Insights can be gained, for example, from the computed predictor importance (e.g., Auret and Aldrich, 2011), which may be interpreted as each variable's relative contribution to model predictions. This method of ML interpretation has been used for prior geohazard models (e.g., Durante and Rathje, 2021; Geyin and Maurer, 2023). Because variable importances are similar across multiple models, we illustrate average importance for the global and New Zealand models (Fig. 5) and provide results for all models as Figs. S50–S63. Unsurprisingly, the most influential variable in both models is groundwater depth, which on average is ~300 times more influential than the least important variables included, one example of which is the majority landform class at 1-km resolution. Although the “majority,” which includes 10 classes (e.g., valley, footslope, ridge), is important for a small number of predictions, most global sample sites reside in the flatlands. At 90-m resolution, the majority landform classification variable referred to as “geomorphon” (employing the terminology of original datasets used by Amatulli et al., 2018 and 2020), becomes more important, and notably one of the most important variables in the New Zealand model. The global and New Zealand models share a handful of similarly important predictors, but the emergence of regional geology (e.g., the “Simplified geology” and “Geology deposit type”), as important in the New Zealand model substantiates the

value of such knowledge in predicting liquefaction hazard. Near-surface geologic information, which is not consistently available at global scale, was substituted using proxy models like “Sand fraction,” but future iterations of the presented global model will look to benefit from improved geologic characterization. It should be noted that predictor importance describes a model’s behavior, which does not necessarily reflect correlation between predictors and targets, independent of a model. As an example, a variable could conceivably correlate to a target, but if it also correlates with other variables, it may have diminished influence on that model’s predictions.

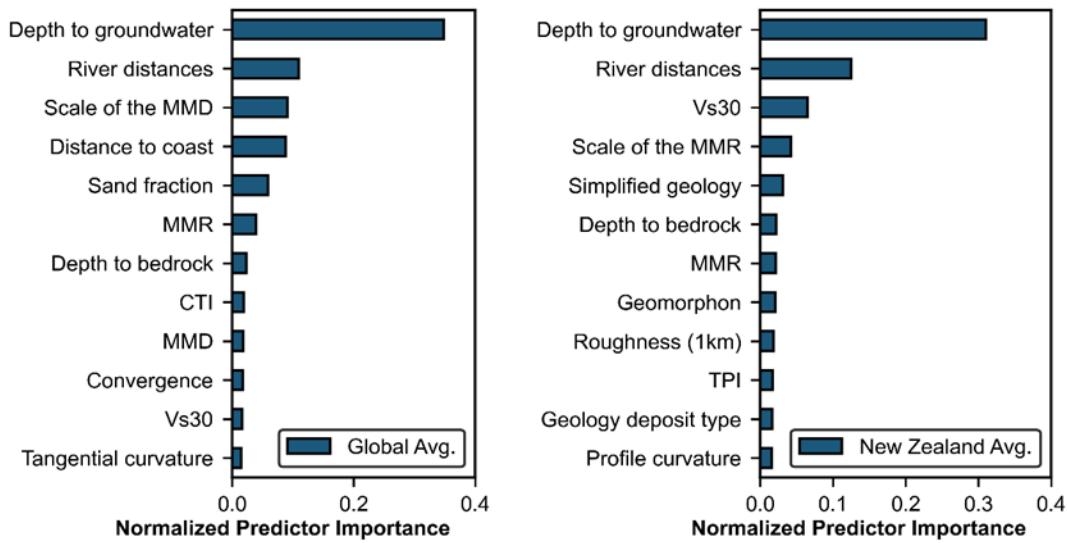


Fig. 5. Average normalized predictor importance for the global and New Zealand models.

The results in Fig. 5 allude to both the utility and insufficiency of variables in prior geospatial models. Three of the four capacity variables in Rashidian and Baise (2020), for example, are measured distance to water (i.e., coastline or rivers) and predicted groundwater depth and V_{S30} . These three variables are consistently important in the ML models. Yet other proxies for soil thickness (e.g., predicted depth to rock), saturation (e.g., height above nearest drainage, compound topographic index), depositional environment (e.g., maximum multiscale deviation, roughness), and typology (e.g., mapped surface geology, predicted sand and silt fractions) are also influential within the model architecture and lead to predictions that are spatially more nuanced. Notably, the distance to rivers has more gradation here than in other geospatial models in that it includes distances to seven different flow volumes (e.g., major rivers, but also seasonal drainages, are separately considered). The results in Fig. 5 have implications for forward application, since errors in the most influential variables (e.g., a mispredicted groundwater depth or surface geology) are more likely to propagate to errors in liquefaction predictions.

The trained models were implemented to predict A and B values worldwide by sampling variables at a resolution of ~ 90 m (0.000833 degrees). Substantial storage, memory, and processing capacity were required to: (i) sample ~ 40 global variables with total file size exceeding 1 TB; (ii) use these variables to make predictions with all ML models; and (iii) repeat for ~ 200 million locations on earth. HPC resources were required to meet computational demands for this work, made possible through DesignSafe at the Texas Advanced Computing Center (Rathje et al., 2017) and the University of Washington. To minimize computational requirements and file sizes for end-

users, and to reduce model extrapolations beyond the training data, predictions were made only for locations with 90-m topographic slope $< 5^\circ$ (Amatulli et al., 2020). This describes ~98% of CPT sample locations. Predictions were also not made for lakes (Messager et al., 2016), glaciers (RGI Consortium, 2023), the Greenland Ice Sheet (Lewis, 2009), and permafrost, both continuous and discontinuous (Brown et al., 2002). A few small and generally uninhabited islands were also excluded. With these exceptions, the global and New Zealand models have continuous coverage.

Predictions of A and B were next geostatistically updated in the vicinities of CPT measurements via regression kriging (e.g., Hengl et al., 2007), which merges model predictions (i.e., “regression”) with spatial interpolation of model residuals (i.e., “kriging”). With this approach, A and B residuals are predicted using nearby CPTs (where residuals are known), and these predictions are used to update the A and B models as needed. Central to this approach is a semivariogram, which describes the spatial correlation of residuals. Here, a stable semivariogram was chosen for its best fit of data across all models:

$$\text{Semivariance } (h) = b + c_0 \left(1 - e^{-h^\alpha/r^\alpha}\right) \quad (\text{Eq. 2})$$

where b is the nugget, or non-spatial variance; c_0 is the sill which describes the variance of residuals at distances beyond the range, where residuals become uncorrelated; h is the separation distance between locations; r is the effective range, or length scale of the model, which represents the distance over which correlation significantly decreases; and α is the shape parameter, which describes the model as more Gaussian or more exponential (Wackernagel, 2003). Semivariograms were individually fit to residuals for the 12 A and B models using a major range of 1 km and the resulting parameters are summarized in Table S4. All semivariograms are provided in Figs. S64–S75. Using this information, residuals were spatially predicted for all ML models. Predicted residuals approach observed residuals at CPT sites and decay with distance toward zero (the mean residual for all models), governed by the semivariogram in Eq. (2). In parallel, the variance of residuals approaches zero at CPT sites and increases toward the overall model uncertainty at locations distant from CPTs. It should be noted that the nugget in Eq. (2), which governs residuals at a separation distance of zero (i.e., at CPT sites), is zero, meaning geotechnical measurement or model uncertainties are not considered. These could be the uncertainties of CPT measurements or those of LPI , LPI_{ISH} , and LSN . The nugget could also reflect sources of spatial variation at distances smaller than sampling intervals. In other words, A and B are quite unlikely to be constant over an individual 90-m map pixel, contrary to how the maps could be interpreted. However, because the nugget is not well constrained by the empirical data and would require judgement or additional data to define, it is here resigned to zero, which is a common default in kriging. This could be revisited in future model iterations.

Using kriged residuals, the global and New Zealand models were updated such that predictions of A and B (and by corollary, predictions of liquefaction response) are scaled up or down in the vicinities of CPTs, thereby anchoring the ML models to known conditions. To convey the degree to which ML predictions are updated by local geotechnical data, the variance of residuals modeled by regression kriging is given in an accompanying set of maps. We opt to map a classification of these variances as follows: 3 = total ML model variance (i.e., no geotechnical influence), 2 = majority ML model variance (i.e., minor geotechnical influence); 1 = minority ML model variance (i.e., moderate geotechnical influence); and 0 = little to no ML model variance (i.e., major geotechnical influence). These maps thus communicate where, and to what degree, the

predicted liquefaction response is influenced by geotechnical data and models. To this end, Fig. 6 demonstrates an example of updating predictions for the *LPI* model and the associated variance classifications in San Bernadino, California.

The updated global and New Zealand models and the related variance classifications are provided as 90-m resolution geotiff files from Sanger et al. (2024b,c) (see *Data Availability*) with separate *A* and *B* rasters for each of the three geotechnical models. The global models are further parsed into seven geographical regions. One of these (Oceania) includes New Zealand, providing one example from which the benefits of region-specific GLMs can be judged. The complete global and New Zealand file packages are respectively 33 GB and 85 MB. However, if executing one global model (e.g., *LPI*) for one continent (e.g., North America), the required files diminish to ~ 1.5 GB.

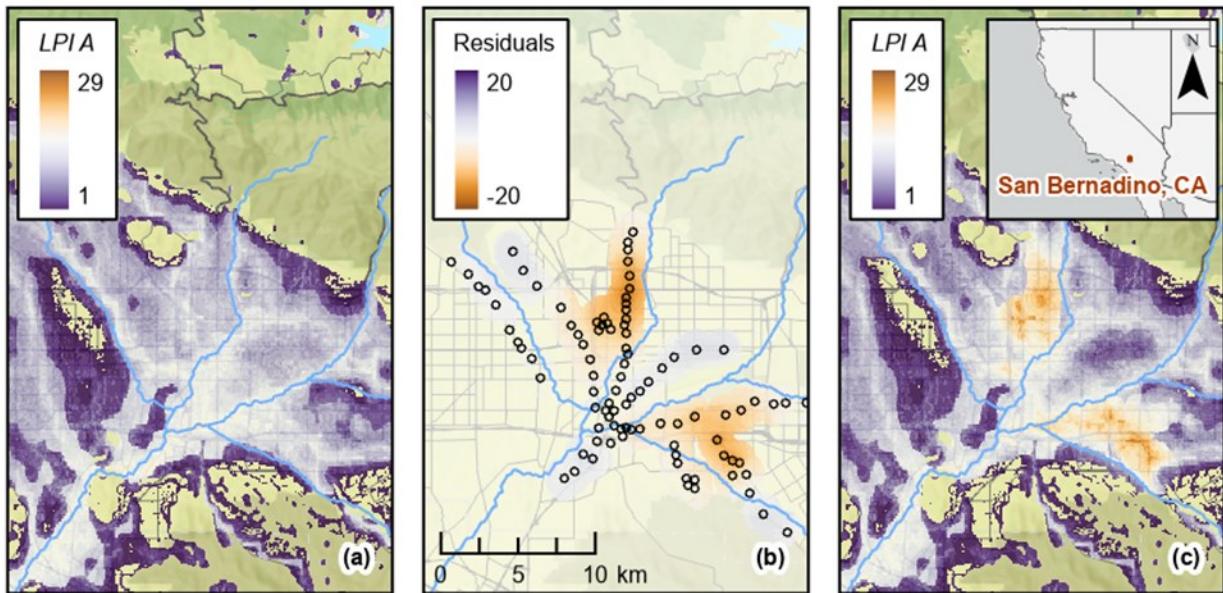


Fig. 6. An example in San Bernadino, California to illustrate *LPI A* a) before geotechnical updating, b) in terms of kriged residuals, and c) after geotechnical updating.

When combined with a “ShakeMap” of PGA_M , parameters *A* and *B* produce predictions of *LPI*, *LPI_{ISH}*, and *LSN* via Eq. (1). Because these predictions have, in effect, been made for all locations and all possible earthquakes, the expected liquefaction response is queried at very low computational expense. A simple script is provided by Sanger et al. (2024d) to implement any of the developed models. The script is written to interact with USGS ShakeMaps in .xml format, which are called via a user-input web address. ShakeMaps are easily obtained from USGS or analogous global organizations, both for countless scenario earthquakes and for those that have just occurred. As with other geospatial models, predictions can be made in near-real-time to inform response, reconnaissance, and decision-making in the aftermath of an event. For consistency with how the models were trained, PGA_M should be computed from PGA with the magnitude-scaling factor of Idriss and Boulanger (2008):

$$PGA_M = \frac{PGA}{MSF}, \text{ where } MSF = 6.9 \exp\left(\frac{-M}{4}\right) - 0.058 \leq 1.8 \quad (\text{Eq. 3})$$

where M = moment magnitude and PGA is that at the surface, having been corrected for site effects (e.g., the PGA in any USGS ShakeMap). The resulting event-specific mapped predictions of LPI , LPI_{ISH} , and LSN can be propagated via fragility functions, or “damage” functions, that have been conditioned on MI to predict the probabilities of various outcomes (e.g., Geyin and Maurer, 2020, Toprak et al., 2019, Maurer et al., 2024). In this paper, results are presented as probability of liquefaction-induced ground deformation or ejecta observed at the surface (i.e., the probability of observing at least one liquefaction manifestation in the given map pixel, “ PGF ”) using the fragility functions of Geyin and Maurer (2020). These are the fragility functions recommended for general use of the presented models.

To demonstrate model application and the effects of updating, the global model is here applied to the 11 February 2012, Mw6.1 Christchurch, New Zealand, earthquake. Results are shown in Fig. 7 for a portion of Christchurch, centered on the Burwood neighborhood, which experienced widespread liquefaction. CPT sites are also mapped and are symbolized based on whether liquefaction manifestations were observed, as compiled by Geyin et al. (2021). Predictions by the geospatial model of Rashidian and Baise (2020), henceforth RB20, are shown in Fig. 7A and somewhat underpredict manifestations, with sites of positive observation having a modal probability of 47%. Predictions by the global ML model, before and after updating, are shown in Figs. 7B and 7C, respectively. As compared to RB20, the manifestation probabilities predicted by the ML model tend to be higher, especially in the east of the mapped area, and have more spatial nuance due to the inclusion of more geospatial information. This nuance is increased by updating, which in Fig. 7C can generally be observed to improve predictions. ML predictions tend to be scaled up and down, respectively, in areas with and without observed liquefaction. It is emphasized that this updating is not driven by liquefaction observations, but rather, by geotechnical data and models that more correctly predict these observations. The classified variance of kriged residuals is shown in Fig. 7D, from which a user can quickly understand where predictions are predominated by geotechnical models, and where they are purely those of ML.

The ML models developed here will ultimately be judged in the context of predicting liquefaction effects in the field. To that end, we conduct tests to answer three research questions and compare against predictions by RB20. Because variants of RB20 are in use, we also execute that which is adopted in the USGS ground failure product with ad-hoc modifications (Allstadt et al., 2022), as well as the Zhu et al. (2017) model upon which RB20 is based. These three versions are very similar; thus, we report performance that which performs best in each test. To quantify model performance, the Brier Score (BS) is adopted:

$$\text{Brier Score } (BS) = \frac{1}{N} \sum_{i=1}^N (P_i - O_i)^2 \quad (\text{Eq. 4})$$

where P is the predicted probability, O is the observed probability (0 or 1), N is the total number of observations, and i is the observation index. The BS is essentially MSE for probabilistic classification models. $BS = 0$ defines a perfect model, $BS = 1$ denotes a perfectly useless model, $BS = 0.5$ represents a model which randomly predicts the outcome, and $BS = 0.25$ represents a model which estimates predicted probability of 50% for every event. Therefore, a $BS < 0.25$ is considered a “good” model, increasingly good as BS approaches 0. The BS simultaneously measures: (i) the degree to which positive and negative class distributions are segregated by a model; and (ii) the degree to which this segregation centers on a probability of 50%. Although the first of these could instead be measured by the area under a receiver-operating-characteristic curve

(i.e., ROC *AUC*) (e.g., Fawcett, 2006), *AUC* does not consider the latter. A model could have a perfect *AUC* but the model output at which two classes are best separated could be very far from 50% probability. The *AUC* is thus better suited for models that output an index without statistical meaning, such as *LPI*. To account for finite-sample uncertainty, we compute p-values via bootstrap sampling and use these results to test for statistical significance, *adopting* the common significance threshold of 0.05. These values convey the probability that any two *BS* values came from the same population (i.e., that differences in model performance arose by chance and not because one model is better than another). Any p-value below 0.05 denotes that one model's *BS* differs from another's with at least 95% confidence.

Testing performance on “unseen” case histories

The first question is: how does the ML model perform prior to updating with geotechnical data and models? In other words, how do the ML and RB20 models compare in regions unknown to each model's training set and devoid of CPT data? We use three liquefaction inventories that postdate RB20's training set and which occurred in regions where no CPTs were compiled in the current effort: the 2019 Ridgecrest (Zimmaro et al., 2020), 2019 Puerto Rico (Allstadt and Thompson, 2021), and 2023 Turkey earthquakes (Cetin et al., 2023; Taftosoglou et al., 2023). Negative observations were randomly sampled from the extents of each event's ShakeMap, such that map cells without positive observations were assumed negative. Although this assignment is obviously uncertain, it is a pragmatic and common assumption in the geospatial modeling literature, permitting an assessment of performance to be made over a very large area. In addition to the three surrogate geotechnical models, we test the performance of these models when averaged, or ensembled. The results of this test are in Table 4. The *LPI_{ISH}* model performed best of the three ML models, which all outperformed RB20 to a statistically significant degree.

Table 4. Summary of global model performance in unbiased testing.

Model	BS	p-Value against RB20
RB20	0.27	--
<i>LPI</i> -ML	0.13	<0.001
<i>LPI_{ISH}</i> -ML	0.13	<0.001
<i>LSN</i> -ML	0.16	<0.001
Ensemble	0.13	<0.001

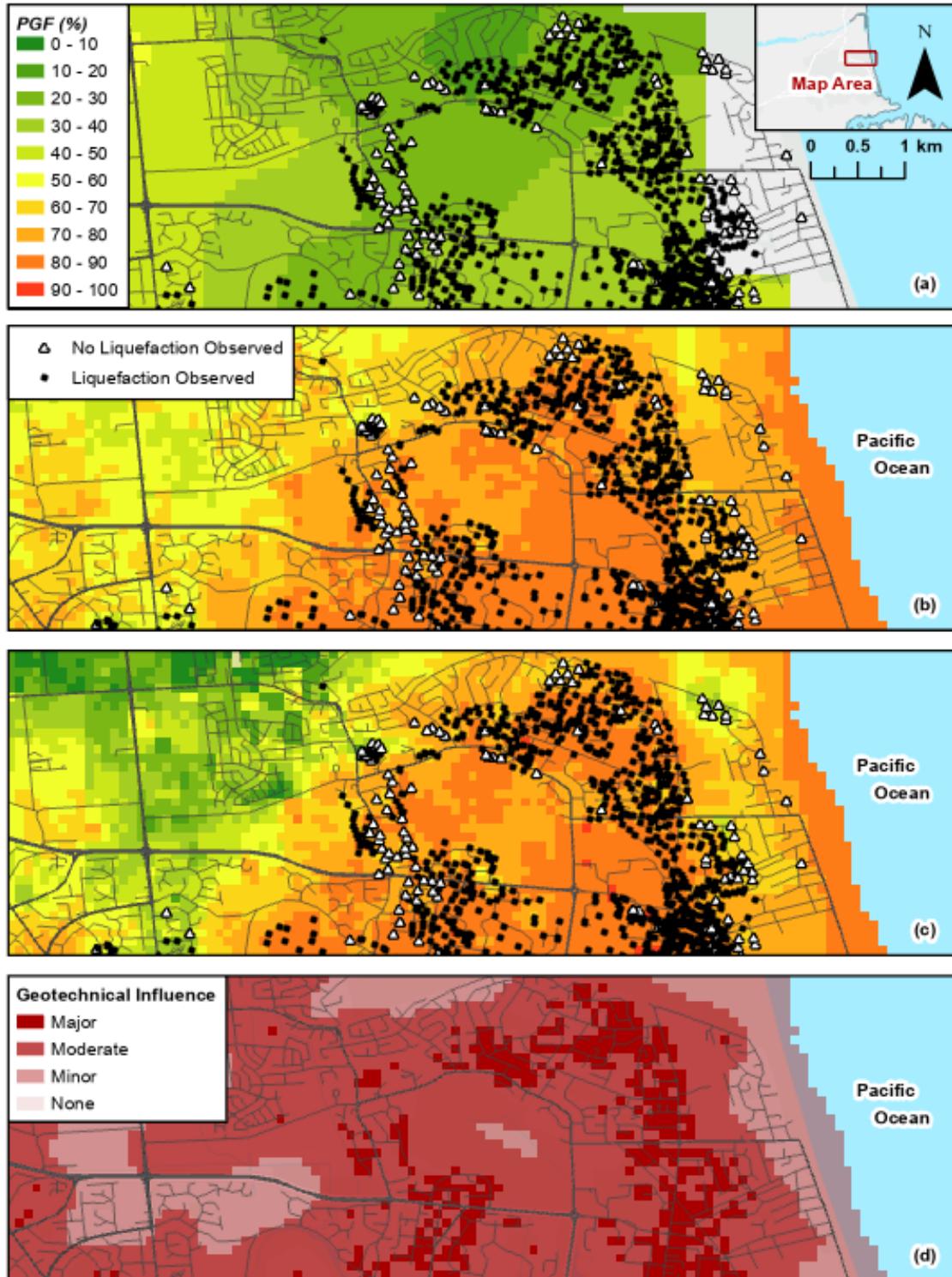


Fig. 7. An example in Christchurch, New Zealand to illustrate the predicted PGF according to a) RB20, and according to the presented global model b) before and c) after geotechnical updating, as well as the d) classified variance of geotechnical model influence on the predictions.

Testing distributed global performance before and after updating.

The second question is: does updating improve model performance? In other words, how does each ML model perform before and after updating at sites with CPTs, and how does this compare to RB20? We adopt the inventory of 332 liquefaction case histories compiled from 25 global earthquakes by Rateria et al. (2024). This compilation includes both positive and negative observations made at the locations of CPTs. This evaluation includes bias that is difficult to quantify. RB20 previously trained on liquefaction inventories from 21 of these earthquakes and the ML models were similarly trained on CPTs from ~90% of sites tested here (albeit these sites represent less than 1% of the total training set). In these tests the three ML models perform very similarly and see a similar, modest improvement from updating. This indicates the ML models predict response relatively accurately without subsurface measurements, but that knowledge from such measurements does improve performance further. The ML models outperform RB20 by a statistically significant margin, increasingly so after updating, as summarized in Table 5.

Table 5. Summary of global model performance in global case histories.

Model	BS	p-Value against RB20
RB20	0.30	--
Before Updating		
<i>LPI</i> -ML	0.24	0.01
<i>LPI_{ISH}</i> -ML	0.23	0.02
<i>LSN</i> -ML	0.25	0.005
Ensemble	0.23	0.009
After Updating		
<i>LPI</i> -ML	0.22	<0.001
<i>LPI_{ISH}</i> -ML	0.21	<0.001
<i>LSN</i> -ML	0.23	<0.001
Ensemble	0.21	<0.001

Testing the efficacy of regional models

The third question is: can model regionalization improve performance? We adopt an inventory of 16,836 observations compiled by Geyin et al. (2021) after three earthquakes in Canterbury, New Zealand: the 4 Sept. 2010 M_w 7.1 Darfield, 22 Feb. 2011 M_w 6.2 Christchurch, and 14 Feb. 2016 M_w 5.7 Christchurch ruptures. Because these observations were made at CPT sites, the global and New Zealand models give nearly identical predictions after geotechnical updating. For this reason, we assess ML model performance prior to updating and compare against RB20, as summarized in Table 6. In general, the region-specific ML models perform marginally better than their global counterparts. Due to the large number of observations, these differences tend to be statistically significant. Still, the less than dramatic improvement suggests that region-specific models may not be successful elsewhere, given that New Zealand has both considerable geotechnical data and high-quality regional variables. These advantages may be outweighed by the benefits of learning from substantially more data. All ML models significantly outperform RB20, albeit this test is not without bias. RB20 trained on inventories from two of these three events, which all affected the same area, and the ML models were trained on CPTs from this affected region, albeit these CPTs were down weighted during training due to their high spatial density. Collectively, results from the three tests suggest that the ML models developed herein warrant adoption and further testing.

Table 6. Summary of global and New Zealand model performance in case histories from Canterbury earthquake sequence.

Model	BS	p-Value against RB20
RB20	0.20	--
Global		
<i>LPI</i> -ML	0.16	<0.001
<i>LPI_{ISH}</i> -ML	0.14	<0.001
<i>LSN</i> -ML	0.18	<0.001
Ensemble	0.15	<0.001
New Zealand		
<i>LPI</i> -ML	0.16	<0.001
<i>LPI_{ISH}</i> -ML	0.14	<0.001
<i>LSN</i> -ML	0.17	<0.001
Ensemble	0.16	<0.001

Limitations, Uncertainties, and Future Work

The developed models are subject to limitations and uncertainties not yet discussed. *First*, using triggering models other than Idriss and Boulanger (2008) could have altered predictions of *LPI*, *LPI_{ISH}*, and *LSN*. However, because the fragility functions used in forward application are specific to Idriss and Boulanger (2008), any systematic shifts in triggering predictions by another model would be mitigated using a fragility function specific to that model (e.g., Geyin and Maurer, 2020). More broadly, the adopted geotechnical models will inevitably be supplanted. Our methodology should improve as these underpinning models improve, and as additional geotechnical data become available, both for training and updating. An important caveat pertains to lateral spreading. Although cases of lateral spreading were included in the preceding tests, they depend on factors not considered by *LPI*, *LPI_{ISH}*, nor *LSN*, which can thus predict it poorly (e.g., Maurer et al. 2015b). This might be improved by merging the predicted *LPI* with topographic data, as formulated by Rashidian and Gillins (2018), but this possibility was not tested.

Second, CPTs may be preferentially performed in ground where liquefaction hazards are expected and/or where premature refusal is less likely. If so, the proposed models might overpredict liquefaction, particularly in regions unrepresented in training, albeit the limited tests performed here do not indicate any such tendency. Nonetheless, SPTs could help evaluate this possibility and improve the model in geologies and regions where CPTs are uncommon. Moreover, it should be recognized that model uncertainties could exceed those indicated by the test statistics in data-poor areas. As more geotechnical data become available, the presented models can be updated in two ways: (i) model retraining; and (ii) model re-kriging. The first is computationally expensive and unlikely to result in major changes unless the new data are large in quantity or otherwise expand parameter space of the current training set. The second could feasibly be done frequently, including by those who wish to geostatistically update the ML models with emergent or proprietary data for a specific municipality, large project site, or network of distributed infrastructure.

Third, the ML models are inherently limited by the accuracies and spatial resolutions of geospatial predictors, some of which are themselves prediction models. Mispredictions of liquefaction are therefore more likely where influential variables such as the predicted

groundwater depth are inaccurate, where subsurface conditions change at a finer scale than the geospatial variables, or where subsurface conditions are otherwise uncaptured by those variables. Terrain abutting flat land could erroneously be predicted to liquefy, for example, or deposits highly susceptible to liquefaction, such as artificial fill, could go unnoticed unless sampled by CPTs. It is also conceivable that variables could be judged as unimportant in the current models, or may have been omitted entirely, because the training data are insufficient to elucidate their predictive value. Conversely, variables could mistakenly be judged as important if correlations in the data falsely suggest causality. This is true of any empirical model. Although domain knowledge was used to omit variables and several overfitting techniques were employed, additional data are inevitably desired for further development.

Lastly, geostatistical updating could be performed using other methods that could alter expectations of liquefaction in the vicinity of CPTs. Our updating was not bound by predictor variables but possibly could be. As an example, an overprediction of A or B in a sandy deposit may not necessarily indicate that A or B is also overpredicted in a gravelly deposit several hundred meters away, in contrast to what a univariate semivariogram conveys. Although improvements are inevitably warranted, this study proposed and demonstrated a new approach to developing GLMs that arguably has many merits. Ultimately, additional data and analyses will verify or refine the results shared here and succinctly summarized below.

CONCLUSIONS

Using mechanics-informed machine learning, this study trained and tested surrogate models to predict soil liquefaction using geospatial information. Two models were developed to mimic three different geotechnical models: one globally applicable, and one specific to New Zealand. These models have several conceptual advantages over prior geospatial approaches, as detailed in the introduction, and were shown to provide improved predictions in test applications. These tests suggested that the geospatial ML models themselves (i.e., prior to geotechnical updating via kriging) outperform other geospatial methods, and that updating further improves their performance. Tests of the New Zealand model suggested that while region-specific models may perform best, their benefits could be largely negated by the advantages of learning from substantially larger global datasets. Although developed using a large body of geospatial information, machine learning, and high-performance computing, the models are packaged in an easy-to-use format that requires only simple arithmetic to execute, and which encourages adoption and further testing.

REFERENCES

Allstadt, K.E., & Thompson, E.M. (2021). *Inventory of liquefaction features triggered by the 7 January 2020 M6.4 Puerto Rico earthquake* [Dataset]. USGS. <https://doi.org/10.5066/P9HZRXI9>

Allstadt, K. E., Thompson, E. M., Jibson, R. W., Wald, D. J., Hearne, M., Hunter, E. J., Fee, J., Schovanec, H., Slosky, D., & Haynie, K. L. (2022). The US Geological Survey ground failure product: Near-real-time estimates of earthquake-triggered landslides and liquefaction. *Earthquake Spectra*, 38(1), 5-36. <https://doi.org/10.1177/87552930211032685>

Amatulli, G., Domisch, S., Tuanmu, M. N., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. (2018). A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. *Scientific data*, 5(1), 1-15. <https://doi.org/10.1038/sdata.2018.40>

Amatulli, G., McInerney, D., Sethi, T., Strobl, P., & Domisch, S. (2020). Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. *Scientific Data*, 7(162). <https://doi.org/10.1038/s41597-020-0479-6>

Asadi, A., Sanon, C., Cakir, E., Zhan, W., Shirzadi, H., Baise, L. G., Cetin, K. O., & Moaveni, B. (2024). Geospatial liquefaction modeling of the 2023 Türkiye earthquake sequence by an ensemble of global, continental, regional, and event-specific models. *Seismological Research Letters*, 95(2A), 697-719. <https://doi.org/10.1785/0220230287>

Auret, L., & Aldrich, C. (2011). Empirical comparison of tree ensemble variable importance measures. *Chemometrics and Intelligent Laboratory Systems*, 105(2), 157-170. <https://doi.org/10.1016/j.chemolab.2010.12.004>

Azul, K. M., Orense, R., & Wotherspoon, L. (2024). Investigation of representative geotechnical data for the development of a hybrid geotechnical-geospatial liquefaction assessment model. *Japanese Geotechnical Society Special Publication*, 10(17), 585-590. <https://doi.org/10.3208/jgssp.v10.OS-6-07>

Baker, J. W., Crowley, H., Wald, D., Rathje, E., Au, S. K., Bradley, B. A., Burton, H., Cabas, A., Cattari, S., Cauzzi, C., Cavalieri, F., Contereras, S., Costa, R., Eguchi, R. T., Lallemand, D., Lignos, D. G., Maurer, B. W., Hutt, C. M., Sextos, A., ... & Thompson, E. M. (2024). Sharing data and code facilitates reproducible and impactful research. *Earthquake Spectra*, 40(3), 2210-2218. <https://doi.org/10.1177/87552930241259397>

Boulanger, R. W., & DeJong, J. T. (2018). Inverse filtering procedure to correct cone penetration data for thin-layer and transition effects. In *Cone Penetration Testing 2018* (pp. 25-44). <https://doi.org/10.1201/9780429505980>

Boulanger, R. W., & Idriss, I. M. (2016). CPT-based liquefaction triggering procedure. *Journal of Geotechnical and Geoenvironmental Engineering*, 142(2), 04015065. [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0001388](https://doi.org/10.1061/(ASCE)GT.1943-5606.0001388)

Bozzoni, F., Bonì, R., Conca, D., Meisina, C., Lai, C. G., & Zuccolo, E. (2021). A geospatial approach for mapping the earthquake-induced liquefaction risk at the European scale. *Geosciences*, 11(1), 32. <https://doi.org/10.3390/geosciences11010032>

Brown, J., Ferrians, O., Heginbottom, J. A., & Melnikov, E. (2002). *Circum-Arctic map of permafrost and ground-ice conditions, Version 2* [Dataset]. NASA National Snow and Ice Data Center Distributed Active Archive Center. <https://doi.org/10.7265/skbk16>

Bullock, Z., Zimmaro, P., Lavrentiadis, G., Wang, P., Ojomo, O., Asimaki, D., Rathje, E. M., & Stewart, J. P. (2023). A latent Gaussian process model for the spatial distribution of liquefaction manifestation. *Earthquake Spectra*, 39(2), 1189-1213. <https://doi.org/10.1177/87552930231163894>

Cetin, K. O., Soylemez, B., Guzel, H., & Cakir, E. (2024). Soil liquefaction sites following the February 6, 2023, Kahramanmaraş-Türkiye earthquake sequence. *Bulletin of Earthquake Engineering*, 1-24. <https://doi.org/10.1007/s10518-024-01875-3>

Durante, M. G., & Rathje, E. M. (2021). An exploration of the use of machine learning to predict lateral spreading. *Earthquake Spectra*, 37(4), 2288-2314. <https://doi.org/10.1177/87552930211004613>

Fan, Y., Li, H., & Miguez-Macho, G. (2013, updated 2019). Global patterns of groundwater table depth. *Science*, 339, 940-943. <https://www.science.org/doi/10.1126/science.1229881>

Fawcett, T. (2006). An introduction to ROC analysis. *Pattern recognition letters*, 27(8), 861-874. <https://doi.org/10.1016/j.patrec.2005.10.010>

Foster, K. M., Bradley, B. A., McGann, C. R., & Wotherspoon, L. M. (2019). A Vs30 map for New Zealand based on geologic and terrain proxy variables and field measurements. *Earthquake Spectra*, 35(4), 1865-1897. <https://doi.org/10.1193/121118EQS281M>

Geyin, M., & Maurer, B. W. (2020). Fragility functions for liquefaction-induced ground failure. *Journal of Geotechnical and Geoenvironmental Engineering*, 146(12), 04020142. [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0002416](https://doi.org/10.1061/(ASCE)GT.1943-5606.0002416)

Geyin, M., & Maurer, B. W. (2021a). *CPT-Based Liquefaction Case Histories from Global Earthquakes: A Digital Dataset (Version 1)* [Dataset]. DesignSafe-CI. <https://doi.org/10.17603/ds2-wftt-mv37>

Geyin, M., & Maurer, B. W. (2021b). Evaluation of a cone penetration test thin-layer correction procedure in the context of global liquefaction model performance. *Engineering Geology*, 291, 106221. <https://doi.org/10.1016/j.enggeo.2021.106221>

Geyin, M., & Maurer, B. W. (2023). US national Vs₃₀ models and maps informed by remote sensing and machine learning. *Seismological Society of America*, 94(3), 1467-1477. <https://doi.org/10.31224/2466>

Geyin, M., Baird, A.J. & Maurer, B.W. (2020). Field assessment of liquefaction prediction models based on geotechnical vs. geospatial data, with lessons for each. *Earthquake Spectra*, 36(3), 1386–1411. <https://doi.org/10.1177/875529301989995>

Geyin, M., Maurer, B. W., Bradley, B. A., Green, R. A., & van Ballegooy, S. (2021). CPT-based liquefaction case histories compiled from three earthquakes in Canterbury, New Zealand. *Earthquake Spectra*, 37(4), 2920-2945. <https://doi.org/10.1177/8755293021996367>

Geyin, M., Maurer, B. W., & Christofferson, K. (2022). An AI driven, mechanistically grounded geospatial liquefaction model for rapid response and scenario planning. *Soil Dynamics and Earthquake Engineering*, 159, 107348. <https://doi.org/10.1016/j.soildyn.2022.107348>

Heath, D., Wald, D. J., Worden, C. B., Thompson, E. M., & Scmocyk, G. (2020). A global hybrid Vs30 map with a topographic-slope-based default and regional map insets. *Earthquake Spectra*, 36(3), 1570-1584.

Hengl, T. (2018a). *Soil bulk density (fine earth) 10 x kg / m-cubic at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (v0.2)* [Dataset]. Zenodo. <https://doi.org/10.5281/zenodo.2525665>

Hengl, T. (2018b). *Clay content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (v0.2)* [Dataset]. Zenodo. <https://doi.org/10.5281/zenodo.2525663>

Hengl, T. (2018c). *Sand content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (v0.2)* [Dataset]. Zenodo. <https://doi.org/10.5281/zenodo.2525662>

Hengl, T. (2018d). *Silt content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (v0.2)* [Dataset]. Zenodo. <https://doi.org/10.5281/zenodo.2525676>

Hengl, T., & Gupta, S. (2019). *Soil water content (volumetric %) for 33kPa and 1500kPa suctions predicted at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (v0.1)* [Dataset]. Zenodo. <https://doi.org/10.5281/zenodo.2784001>

Hengl, T., & Nauman, T. (2018). Predicted USDA soil great groups at 250 m (probabilities) (v0.2) [Data set]. Zenodo. <https://doi.org/10.5281/zenodo.352806>

Hengl, T., Heuvelink, G. B., & Rossiter, D. G. (2007). About regression-kriging: From equations to case studies. *Computers & geosciences*, 33(10), 1301-1315. <https://doi.org/10.1016/j.cageo.2007.05.001>

Ishihara, K. (1985). "Stability of natural deposits during earthquakes." Proc., 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, CA, USA, 1, 321-376.

Iwasaki, T. (1978). A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. In *Proc. of 2nd Int. National Conf. on Microzonation, 1978* (Vol. 2, pp. 885-896).

Jena, R., Pradhan, B., Almazroui, M., Assiri, M., & Park, H. J. (2023). Earthquake-induced liquefaction hazard mapping at national-scale in Australia using deep learning techniques. *Geoscience Frontiers*, 14(1), 101460. <https://doi.org/10.1016/j.gsf.2022.101460>

Kim, H. S. (2023). Geospatial data-driven assessment of earthquake-induced liquefaction impact mapping using classifier and cluster ensembles. *Applied Soft Computing*, 140, 110266. <https://doi.org/10.1016/j.asoc.2023.110266>

Lehner, B., & Grill G. (2013). Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems. *Hydrological Processes*, 27(15): 2171–2186. <https://doi.org/10.1002/hyp.9740>

Lewis, S. (2009). *Hydrologic Sub-basins of Greenland (NSIDC-0371, Version 1)* [Dataset]. NASA National Snow and Ice Data Center Distributed Active Archive Center. <https://doi.org/10.5067/DT9T7DPD7HBI>

Lin, A., Wotherspoon, L., Bradley, B., & Motha, J. (2021). Evaluation and modification of geospatial liquefaction models using land damage observational data from the 2010–2011 Canterbury Earthquake Sequence. *Engineering Geology*, 287, 106099. <https://doi.org/10.1016/j.enggeo.2021.106099>

Land Information New Zealand (LINZ). (2020). *NZ River Centrelines (Topo, 1:50k)* [Dataset]. LINZ. <https://data.linz.govt.nz/layer/50327-nz-river-centrelines-topo-150k/>

Maurer, B. W., & Sanger, M. D. (2023). Why "AI" models for predicting soil liquefaction have been ignored, plus some that shouldn't be. *Earthquake Spectra*, 39(3), 1883-1910. <https://doi.org/10.1177/87552930231173711>

Maurer, B. W., Green, R. A., & Taylor, O. D. S. (2015a). Moving towards an improved index for assessing liquefaction hazard: Lessons from historical data. *Soils and foundations*, 55(4), 778-787. <https://doi.org/10.1016/j.sandf.2015.06.010>

Maurer, B. W., Green, R. A., Cubrinovski, M., & Bradley, B. A. (2015b). Assessment of CPT-based methods for liquefaction evaluation in a liquefaction potential index framework. *Géotechnique*, 65(5), 328-336. <https://doi.org/10.1680/geot.SIP.15.P.007>

Maurer, B. W., Green, R. A., van Ballegooy, S., & Wotherspoon, L. (2019). Development of region-specific soil behavior type index correlations for evaluating liquefaction hazard in Christchurch, New Zealand. *Soil Dynamics and Earthquake Engineering*, 117, 96-105. <https://doi.org/10.1016/j.soildyn.2018.04.059>

Maurer, B. W., Geyin, M., & van Ballegooy, S. (2024). Cost-benefit analysis of liquefaction mitigation for lightweight residential structures on shallow foundations. In Review. *Journal of Geotechnical and Geoenvironmental Engineering*.

McNeill S.J., Lilburne L.R., Carrick S., Webb T.H., & Cuthill T. (2018). Pedotransfer functions for the soil water characteristics of New Zealand soils using S-map information. *Geoderma*, 326(15), 96-110. <https://doi.org/10.1016/j.geoderma.2018.04.011>

Messager, M. L., Lehner, B., Grill, G., Nedeva, I., Schmitt, O. (2016). Estimating the volume and age of water stored in global lakes using a geo-statistical approach. *Nature Communications*, 7, 13603. <https://doi.org/10.1038/ncomms13603>

NASA. (2020) *Distance to nearest coastline*. [Dataset] NASA Ocean Biol Process Group (OBPG) 2. <https://oceancolor.gsfc.nasa.gov/resources/docs/distfromcoast/>

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. *Journal of Hydrology*, 10(3), 282-290. [https://doi.org/10.1016/0022-1694\(70\)90255-6](https://doi.org/10.1016/0022-1694(70)90255-6)

National Institute of Building Sciences. (1997). *Earthquake Loss Estimation Methodology: HAZUS Technical Manual* (Vol. 1). Federal Emergency Management Agency.

New Zealand Earthquake Commission (EQC). (2016). *New Zealand Geotechnical Database (NZGD)* [Dataset]. <https://www.nzgd.org.nz/>

Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G., Silveira, A., & Saleska, S. (2011). Height Above the Nearest Drainage—a hydrologically relevant new terrain model. *Journal of Hydrology*, 404(1-2), 13-29. <https://doi.org/10.1016/j.jhydrol.2011.03.051>

Rasanen, R.A., Geyin, M., & Maurer, B.W. (2023). Select liquefaction case histories from the 2001 Nisqually, Washington earthquake: A digital dataset and assessment of model performance. *Earthquake Spectra*, 39(3): 1534-1557. <https://doi.org/10.1177/87552930231174244>

Rasanen, R., Geyin, M., Sanger, M. D., & Maurer, B. W. (2024). *A database of cone penetration tests from the Cascadia Subduction Zone* [Dataset]. DesignSafe-CI. <https://doi.org/10.17603/ds2-snvw-jv27>

Rateria, G., Geyin, M., & Maurer, B. W. (2024). *CPT-Based Liquefaction Case Histories from Global Earthquakes: A Digital Dataset* [Dataset]. DesignSafe-CI. *In Review*.

Rashidian, V., & Baise, L. G. (2020). Regional efficacy of a global geospatial liquefaction model. *Engineering Geology*, 272, 105644. <https://doi.org/10.1016/j.enggeo.2020.105644>

Rashidian, V., & Gillins, D. T. (2018). Modification of the liquefaction potential index to consider the topography in Christchurch, New Zealand. *Engineering Geology*, 232, 68-81. <https://doi.org/10.1016/j.enggeo.2017.11.010>

Rathje, E., Dawson, C. Padgett, J.E., Pinelli, J.-P., Stanzione, D., Adair, A., Arduino, P., Brandenberg, S.J., Cockerill, T., Dey, C., Esteva, M., Haan, Jr., F.L., Hanlon, M., Kareem, A., Lowes, L., Mock, S., & Mosqueda, G. (2017). DesignSafe: A new cyberinfrastructure for natural hazards engineering. *Natural Hazards Review*, 18(3). [https://doi.org/10.1061/\(ASCE\)NH.1527-6996.0000246](https://doi.org/10.1061/(ASCE)NH.1527-6996.0000246)

Regione Emilia-Romagna. (2024). *Banca dati prove geognostiche - Prove penetrometriche numeriche (punti)* [Dataset]. Geoportale. <https://geoportale.regione.emilia-romagna.it/catalogo/dati-cartografici/informazioni-geoscientifiche/geologia/banca-dati-geognostica/layer-3>

RGI Consortium. (2023). *Randolph Glacier Inventory - A Dataset of Global Glacier Outlines (NSIDC-0770, Version 7)*. [Dataset]. National Snow and Ice Data Center. <https://doi.org/10.5067/F6JMOVY5NAVZ>

Robertson, P. K. (2009). Interpretation of cone penetration tests—a unified approach. *Canadian geotechnical journal*, 46(11), 1337-1355. <https://doi.org/10.1139/T09-065>

Sanger, M. D., Geyin, M., Shin, A., & Maurer, B. W. (2024a). *A database of cone penetration tests from North America* [Dataset]. DesignSafe-CI. <https://doi.org/10.17603/ds2-gqjm-t836>

Sanger, M. D., Geyin, M., Maurer, B. W. (2024b). *Mechanics-informed machine learning for geospatial modeling of soil liquefaction: Global model map products for LPI, LPIish, and LSN* [Dataset]. DesignSafe-CI. <https://doi.org/10.17603/ds2-c0z7-hc12>

Sanger, M. D., Geyin, M., Maurer, B. W. (2024c). *Mechanics-informed machine learning for geospatial modeling of soil liquefaction: New Zealand model map products for LPI, LPIish, and LSN* [Dataset]. DesignSafe-CI. <https://doi.org/10.17603/ds2-hx54-sn38>

Sanger, M. D., Geyin, M., Maurer, B. W. (2024d). *Mechanics-informed machine learning for geospatial modeling of soil liquefaction: Example model implementation in a Jupyter Notebook* [Dataset]. DesignSafe-CI. <https://doi.org/10.17603/ds2-sp3e-dp21>

Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., & Dai, Y. (2017). Mapping the global depth to bedrock for land surface modeling. *Journal of Advances in Modeling Earth Systems*, 9(1), 65-88. <https://doi.org/10.1002/2016MS000686>

Taftsgolou, M., Valkaniotis, S., Papathanassiou, G., & Karantanellis, E. (2023). Satellite imagery for rapid detection of liquefaction surface manifestations: The case study of Türkiye–Syria 2023 earthquakes. *Remote Sensing*, 15, 4190. <https://doi.org/10.3390/rs15174190>

Todorovic, L., & Silva V. (2022). A liquefaction occurrence model for regional analysis. *Soil Dynamics and Earthquake Engineering*, 161(1), 107430. <https://doi.org/10.1016/j.soildyn.2022.107430>

Toprak, S., Nacaroglu, E., van Ballegooij, S., Koc, A. C., Jacka, M., Manav, Y., Torvelainen, E., & O'Rourke, T. D. (2019). Segmented pipeline damage predictions using liquefaction vulnerability parameters. *Soil Dynamics and Earthquake Engineering*, 125, 105758. <https://doi.org/10.1016/j.soildyn.2019.105758>

USGS. (2019). *Cone Penetration Testing (CPT)* [Dataset]. Earthquake Hazards Program. <https://www.usgs.gov/programs/earthquake-hazards/science/cone-penetration-testing-cpt#overview>

Van Ballegooij, S., Malan, P., Lacrosse, V., Jacka, M. E., Cubrinovski, M., Bray, J. D., O'Rourke, T. D., Crawford, S.A., & Cowan, H. (2014). Assessment of liquefaction-induced land damage for residential Christchurch. *Earthquake Spectra*, 30(1), 31-55. <https://doi.org/10.1193/031813EQS070M>

Wackernagel, H. (2003). *Multivariate geostatistics: an introduction with applications*. Springer Science & Business Media.

Westerhoff, R., White, P., & Miguez-Macho, G. (2018). Application of an improved global-scale groundwater model for water table estimation across New Zealand. *Hydrology and Earth System Sciences*, 22(12), 6449-6472. <https://doi.org/10.5194/hess-22-6449-2018>

Yost, K. M., Green, R. A., Upadhyaya, S., Maurer, B. W., Yerro-Colom, A., Martin, E. R., & Cooper, J. (2021). Assessment of the efficacies of correction procedures for multiple thin layer effects on cone penetration tests. *Soil Dynamics and Earthquake Engineering*, 144, 106677. <https://doi.org/10.1016/j.soildyn.2021.106677>

Zhang, G., Robertson, P. K., & Brachman, R. W. (2002). “Estimating liquefaction-induced ground settlements from CPT for level ground.” *Canadian Geotechnical Journal*, 39(5), 1168-1180. <https://doi.org/10.1139/t02-047>

Zhu, J., Baise, L. G., & Thompson, E. M. (2017). An updated geospatial liquefaction model for global application. *Bulletin of the Seismological Society of America*, 107(3): 1365-1385. <https://doi.org/10.1785/0120160198>

Zimmaro, P., Nweke, C. C., Hernandez, J. L., Hudson, K. S., Hudson, M. B., Ahdi, S. K., Boggs, M. L., Davis, C. A., Goulet, C. A., Brandenburg, S. J., Hudnut., K. W., & Stewart, J. P. (2020). Liquefaction and related ground failure from July 2019 Ridgecrest earthquake sequence. *Bulletin of the Seismological Society of America*, 110(4), 1549-1566. <https://doi.org/10.1785/0120200025>

PROJECT DATA

The geotechnical and geospatial data used in model development are all publicly available, as described and referenced in the text. The model products are available from the DesignSafe Data Depot, including:

- (i) global GLM geotiffs for LPI , LPI_{ISH} , and LSN : Sanger et al. (2024b);
- (ii) New Zealand GLM geotiffs for LPI , LPI_{ISH} , and LSN : Sanger et al. (2024c); and
- (iii) an example model-use script for Python (Jupyter Notebook): Sanger et al. (2024d).

SUPPLEMENTAL MATERIALS

Part 1: Manifestation Indices (MIs)

To predict manifestations, or consequences, of liquefaction at the ground surface the results from triggering analysis were input to three models: the liquefaction potential index (*LPI*) (Iwasaki et al., 1978); a modified *LPI*, termed *LPI_{ISH}* (Maurer et al., 2015); and the liquefaction severity number (*LSN*) (van Ballegooij et al., 2014). These models, which each output an index (often called a “vulnerability index”), are widely used in land-use planning, hazard mapping, and engineering site-assessment to predict a soil profile’s cumulative liquefaction response, or damage potential, at the ground surface. In the following, these three indices are defined and differences between them are discussed.

The Liquefaction Potential Index (*LPI*) is defined as (Iwasaki et al. 1978):

$$LPI = \int_0^{z=20m} f(FS_{liq}) \cdot f(z) dz \quad (S1)$$

where FS_{liq} is factor-of-safety against liquefaction and z is depth in meters, such that:

$$f(FS_{liq}) = \begin{cases} 1 - FS_{liq}, & FS_{liq} < 1 \\ 0, & FS_{liq} \geq 1 \end{cases}$$

$$f(z) = \begin{cases} 10 - 0.5z, & z \leq 20m \\ 0, & z > 20m \end{cases}$$

Here, $F(FS_{liq})$ and $w(z)$ are functions that weigh the respective influences of FS_{liq} and z on surface manifestation. *LPI* thus assumes that surface manifestation depends on the thickness of all liquefied strata in a profile’s upper 20 m, their proximity to the ground surface, and the amount by which FS_{liq} in each stratum is less than 1.0. *LPI* can range from zero to 100.

A modified *LPI* was proposed by Maurer et al. (2015) and inspired by Ishihara (1985), who proposed limit-state curves for predicting manifestations as a function of the “crust” thickness (H_1), among other factors. Using these curves, Maurer et al. (2015) modified *LPI* to include the observed influence of H_1 . Given its provenance, the result was termed *LPI_{ISH}* and is defined by:

$$LPI_{ISH} = \int_{H_1}^{20m} F(FS_{liq}) \cdot w(z) dz \quad (S2)$$

where FS_{liq} is factor-of-safety against liquefaction and z is depth in meters, such that:

$$f(FS_{liq}) = \begin{cases} 1 - FS_{liq}, & \text{if } FS_{liq} \leq 1 \cap H_1 \cdot m(FS_{liq}) \leq 3 \\ 0, & \text{otherwise} \end{cases}$$

$$m(FS_{liq}) = \exp\left(\frac{5}{25.56(1 - FS_{liq})}\right) - 1$$

In Eq. (S2), $F(FS_{liq})$ and $w(z)$ have the same objective as in *LPI*, but are functionally different, such that $F(FS_{liq})$ accounts for the crust thickness through parameter H_1 and $w(z)$ is defined by $w(z) = 25.56 \cdot z^{-1}$. Maurer et al. (2015) recommended a minimum H_1 of 0.4 m, even if liquefiable soils are present at shallower depths. Provided this constraint, *LPI_{ISH}* can range from zero to 100.

The Liquefaction Severity Number (*LSN*) is adapted from methods for estimating post-liquefaction volumetric strain (e.g., to predict ground settlement), modified to include a power-law depth weighting function (van Ballegooij et al. 2014):

$$LSN = \int_0^{20\text{ m}} \varepsilon_v \cdot w(z) \, dz \quad (\text{S3})$$

where ε_v is volumetric strain (%) and $w(z) = 10 \cdot z^{-1}$. While there are many methods to estimate ε_v , van Ballegooij et al. (2014) used that of Zhang et al. (2002), which we also adopt. *LSN* values can surpass 100 if liquefiable soils are near the surface, but typically are between zero and 100. These values are not quantities of predicted settlement, but rather, are index values à la *LPI* and *LPI_{ISH}* that correlate to the probability of surface manifestation.

Distinctions between *LPI*, *LPI_{ISH}*, and *LSN* are noted as follows. First, the depth weighting functions, which account for the influence of depth of liquefied strata on surface manifestation, all differ. *LPI* employs a function that decays linearly with depth, whereas *LPI_{ISH}* and *LSN* use nonlinear functions that weigh near-surface soils exponentially more than soils at greater depth. These models also account for the influence of liquefaction triggering differently. *LPI* and *LPI_{ISH}* use FS_{liq} and apply a linear weighting, such that soils with FS_{liq} closer to zero are weighted more, and soils with FS_{liq} above one are weighted none. Conversely *LSN* transforms the FS_{liq} into ε_v , which may have conceptual advantages. Namely, ε_v accounts for the fact that soils with $FS_{liq} > 1$ could possibly contribute to surface manifestation, given that excess pore pressure could be generated, and caps the contribution for soils with very low FS_{liq} , given that the consequences may not differ for soils with $FS_{liq} = 0$ versus, say, $FS_{liq} = 0.4$. A possible detraction to this cap is that a soil with computed $FS_{liq} = 0$ is more likely to liquefy than one with computed $FS_{liq} = 0.4$, but the treatment of these two predictions as identical removes consideration of this likelihood. Finally, *LPI_{ISH}* has a unique feature in that it explicitly accounts for the crust thickness through parameter H_I , such that there is a crust thickness beyond which surface manifestation is next expected, regardless of the FS_{liq} at depth. In contrast, *LPI* and *LSN* account for the crust thickness more implicitly and loosely via their depth weighting factors.

Part 2: Additional Figures

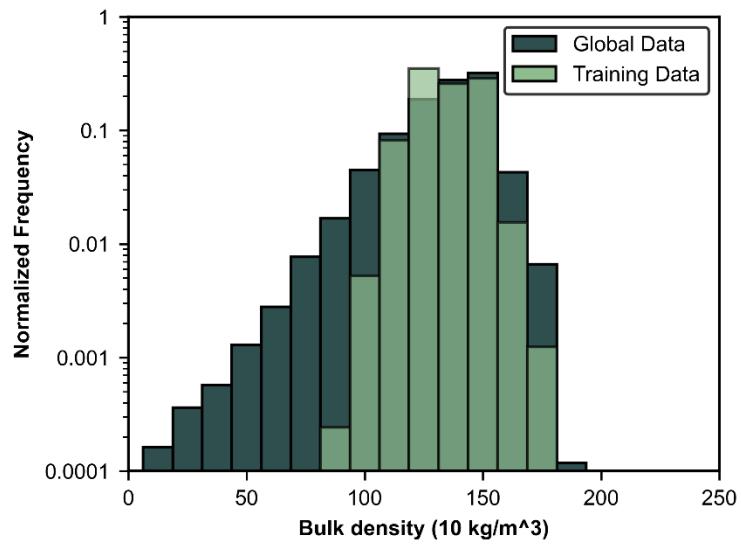


Fig. S1. Training data predictor parameter distribution: Bulk density.

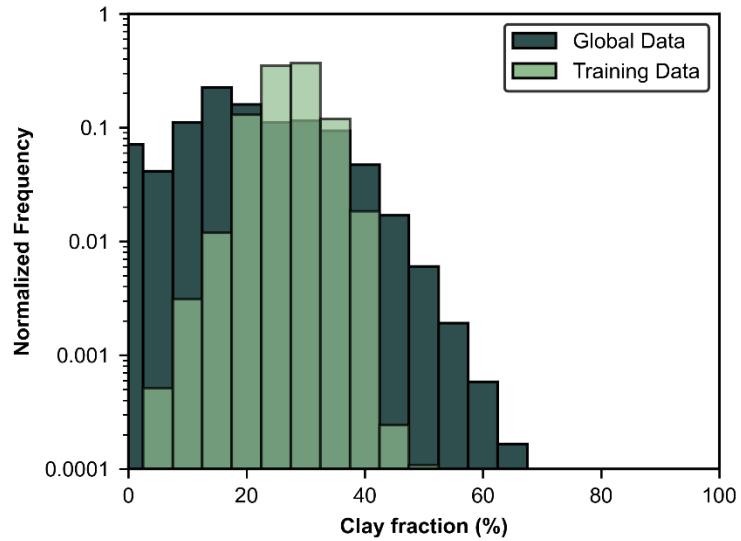


Fig. S2. Training data predictor parameter distribution: Clay fraction.

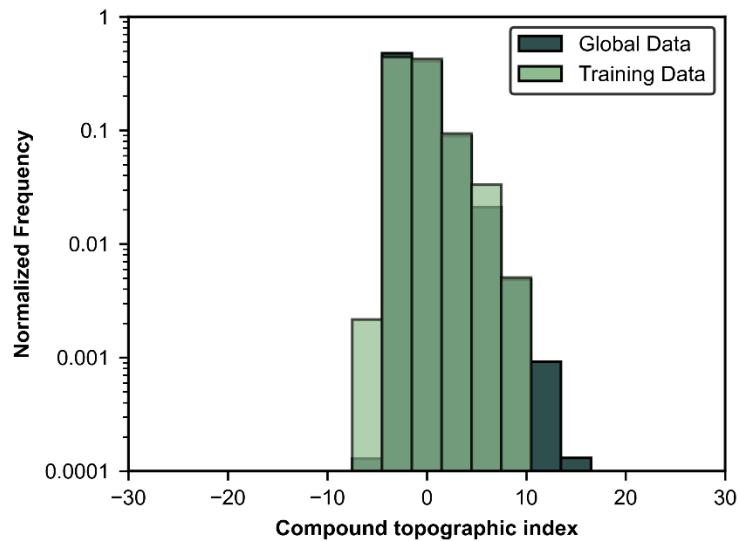


Fig. S3. Training data predictor parameter distribution: Compound topographic index.

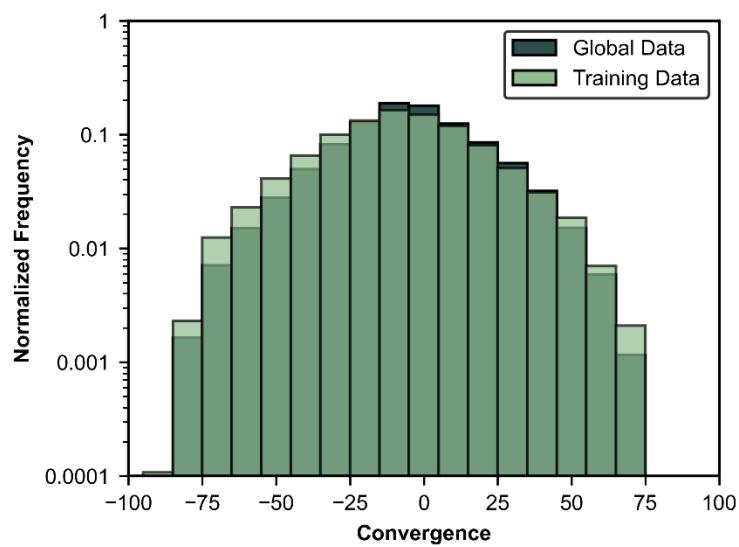


Fig. S4. Global model training data predictor parameter distribution: Convergence.

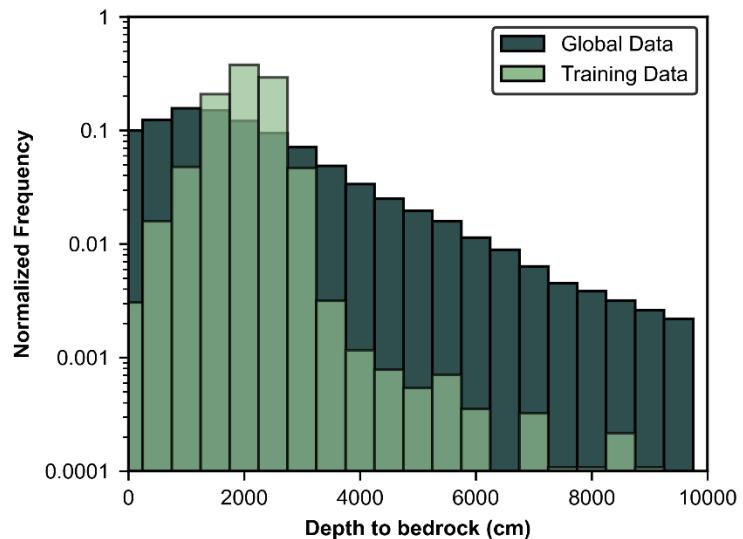


Fig. S5. Global model training data predictor parameter distribution: Depth to bedrock.

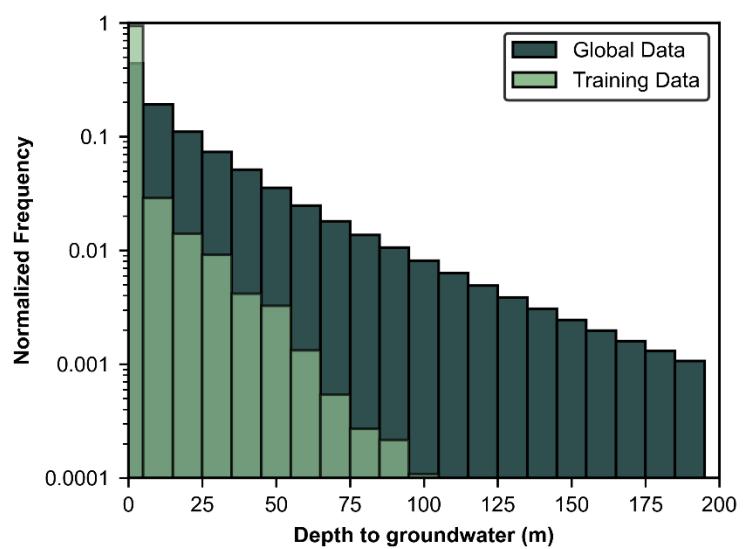


Fig. S6. Global model training data predictor parameter distribution: Depth to groundwater.

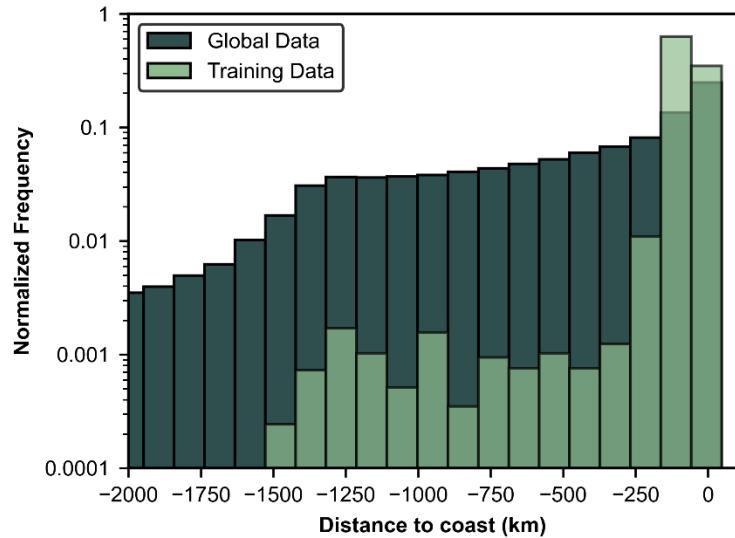


Fig. S7. Global model training data predictor parameter distribution: Distance to coast.

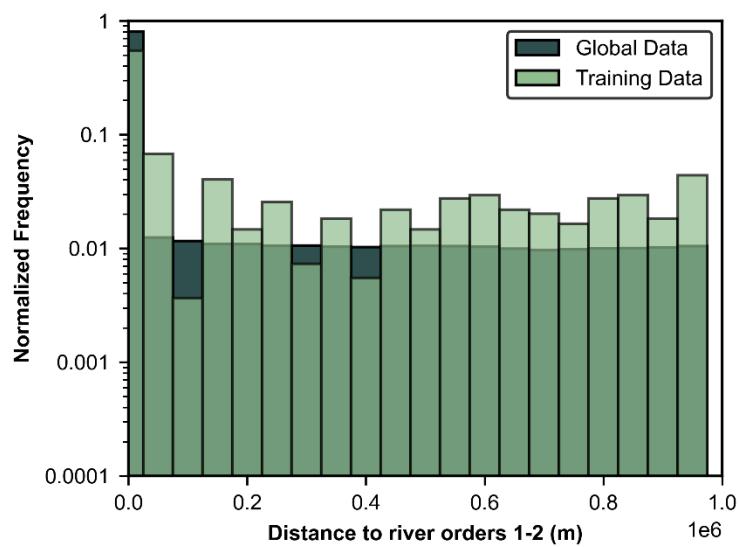


Fig. S8. Global model training data predictor parameter distribution: Distance to river orders 1-2.

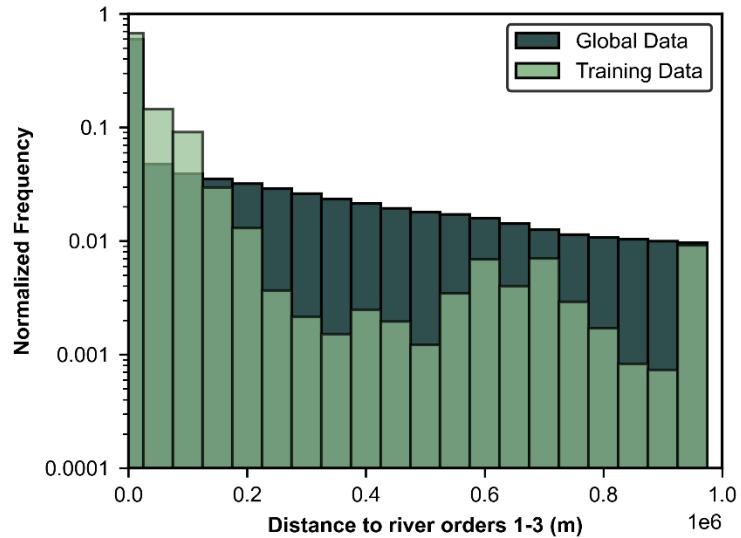


Fig. S9. Global model training data predictor parameter distribution: Distance to river orders 1-3.

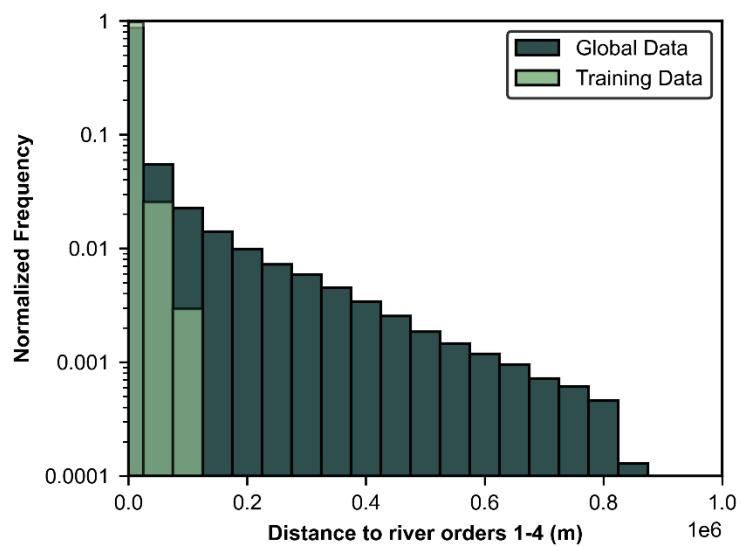


Fig. S10. Global model training data predictor parameter distribution: Distance to river orders 1-4.

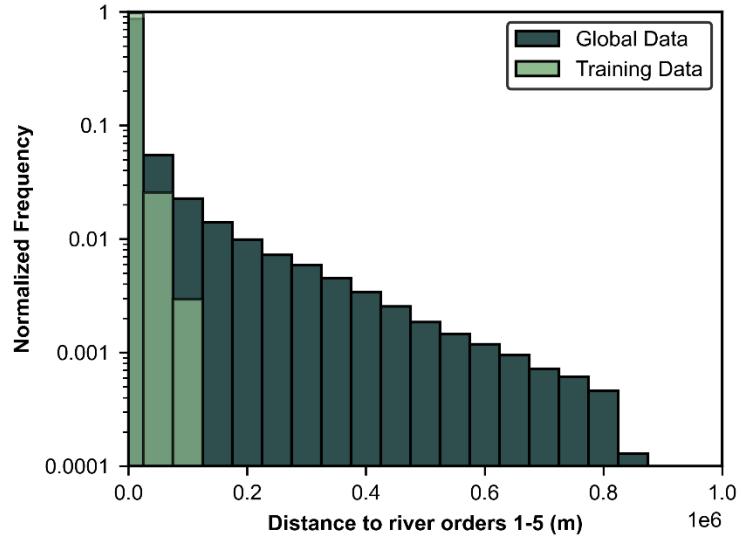


Fig. S11. Global model training data predictor parameter distribution: Distance to river orders 1-5.

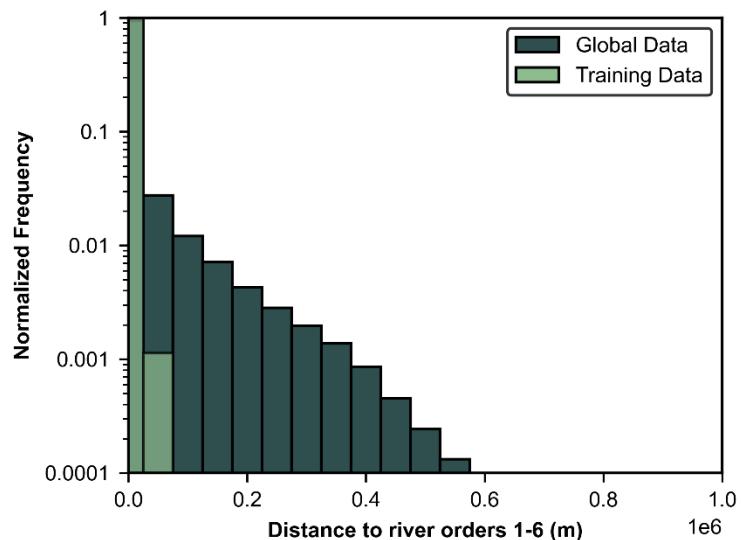


Fig. S12. Global model training data predictor parameter distribution: Distance to river orders 1-6.

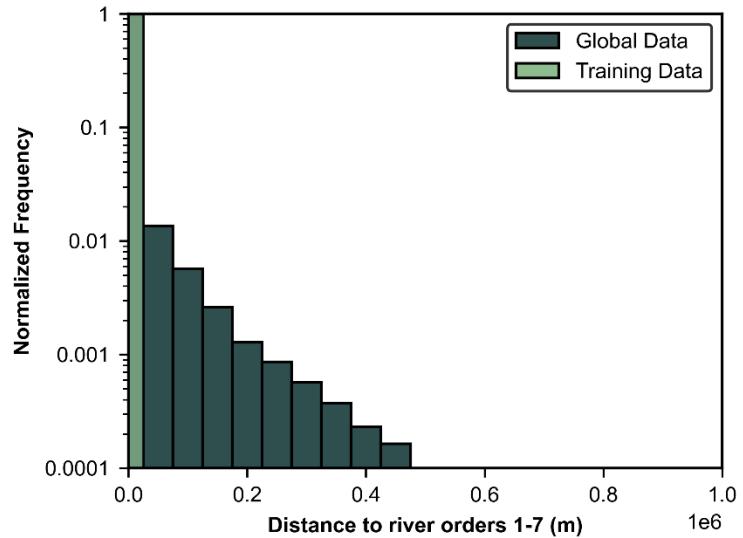


Fig. S13. Global model training data predictor parameter distribution: Distance to river orders 1-7.

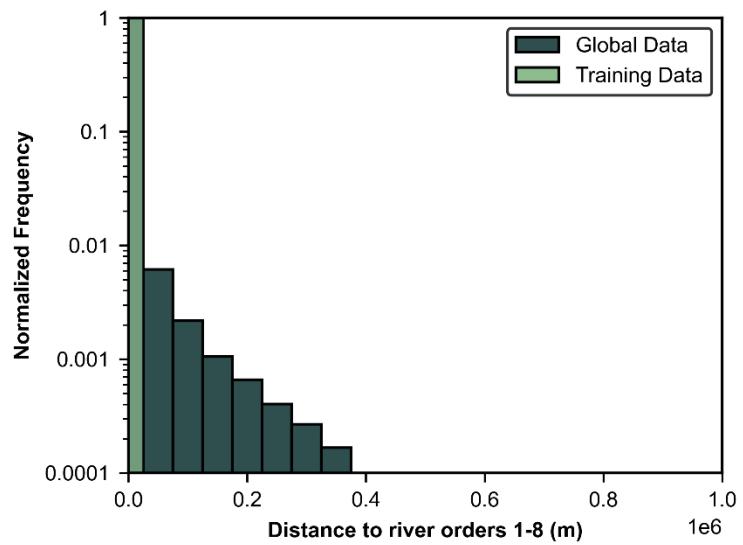


Fig. S14. Global model training data predictor parameter distribution: Distance to river orders 1-8.

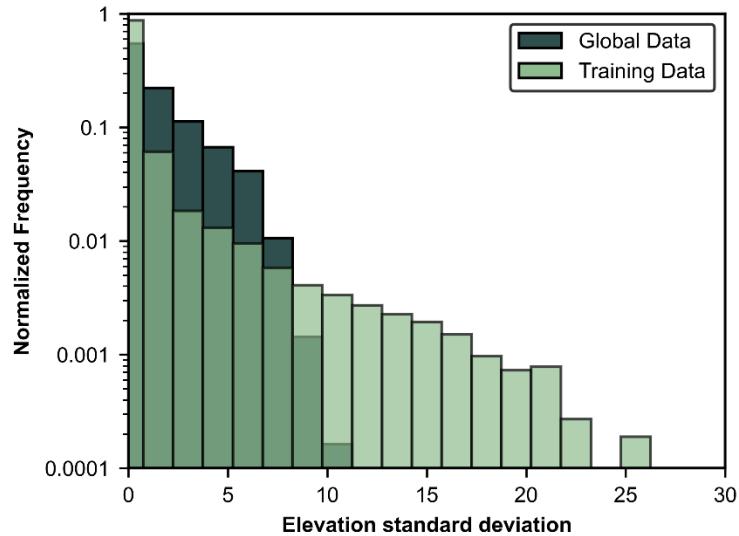


Fig. S15. Global model training data predictor parameter distribution: Elevation standard deviation.

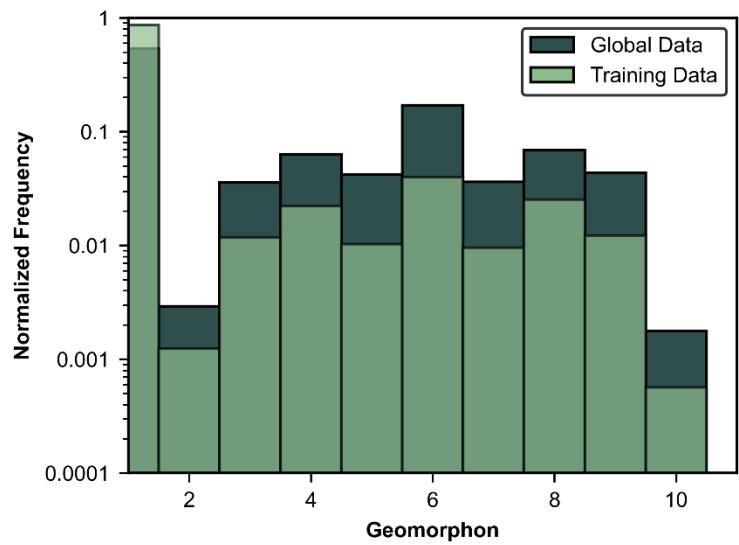


Fig. S16. Global model training data predictor parameter distribution: Geomorphon.

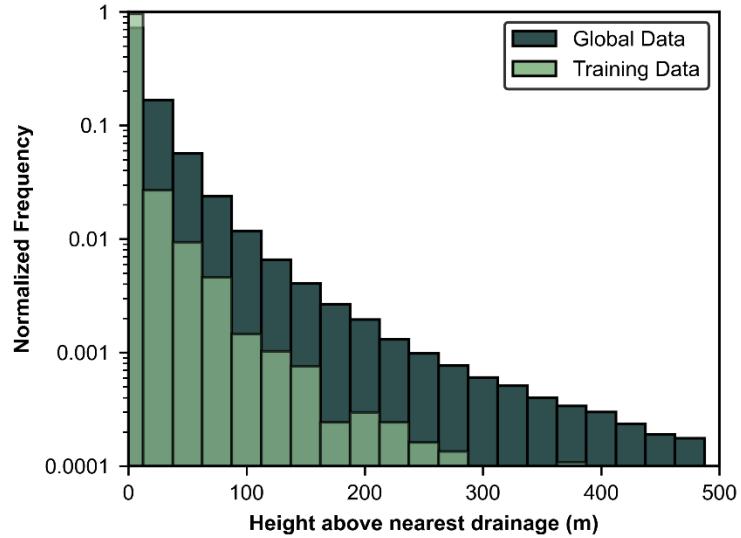


Fig. S17. Global model training data predictor parameter distribution: Height above nearest drainage.

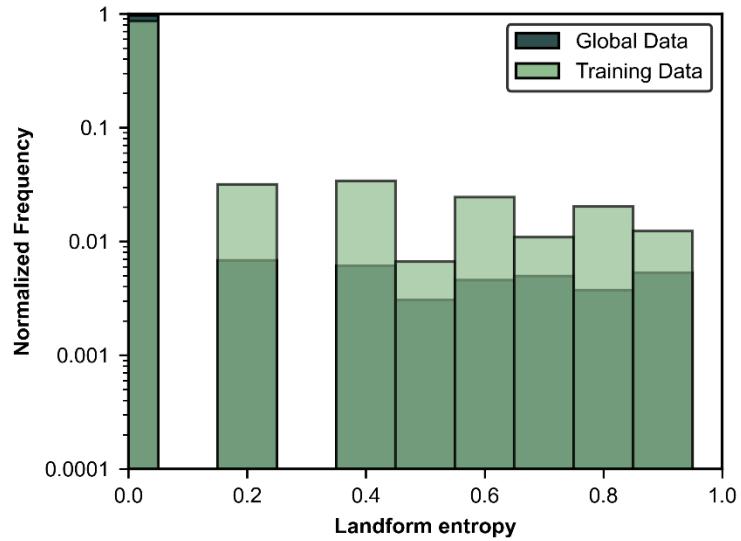


Fig. S18. Global model training data predictor parameter distribution: Landform entropy.

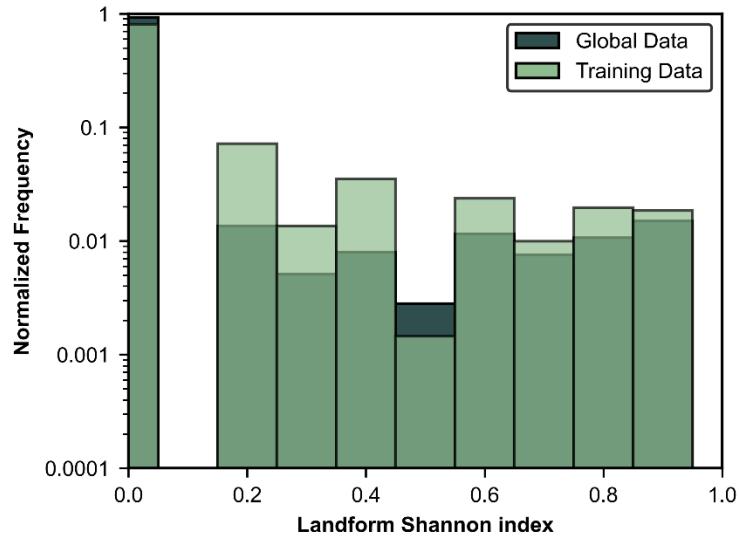


Fig. S19. Global model training data predictor parameter distribution: Landform Shannon index.

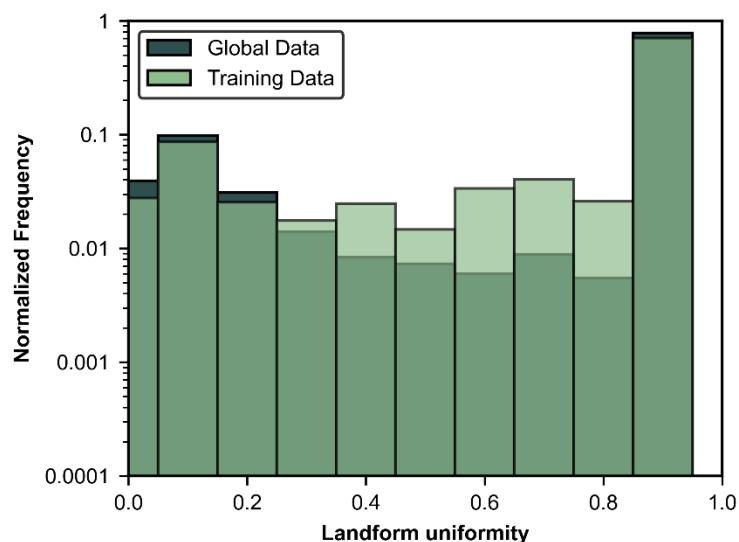


Fig. S20. Global model training data predictor parameter distribution: Landform uniformity.

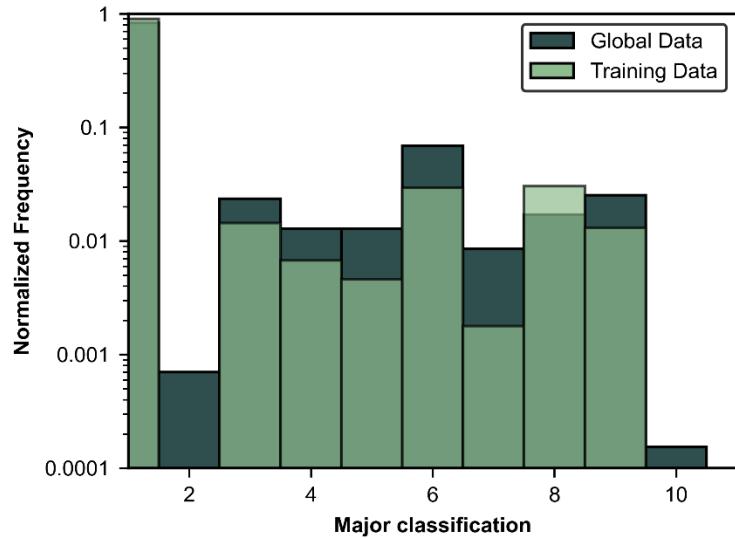


Fig. S21. Global model training data predictor parameter distribution: Major classification.

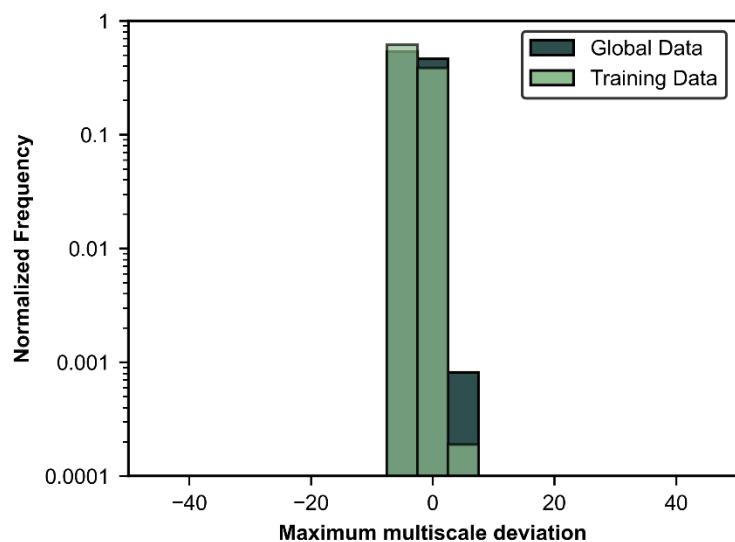


Fig. S22. Global model training data predictor parameter distribution: Maximum multiscale deviation.

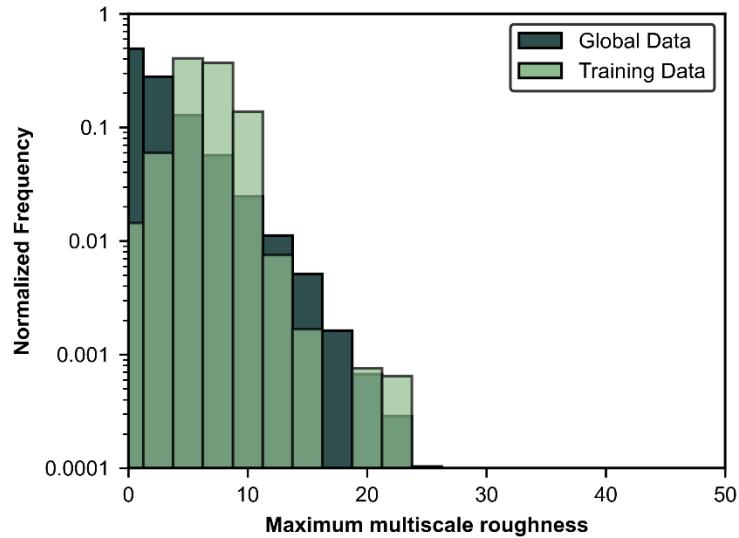


Fig. S23. Global model training data predictor parameter distribution: Maximum multiscale roughness.

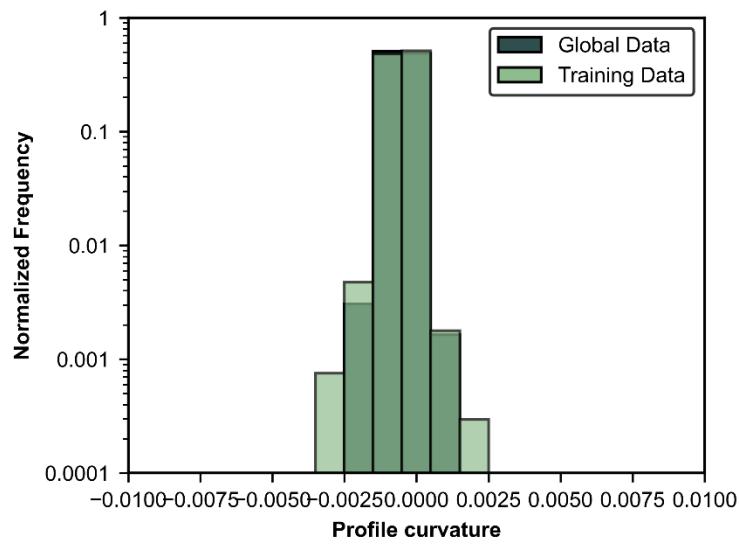


Fig. S24. Global model training data predictor parameter distribution: Profile curvature.

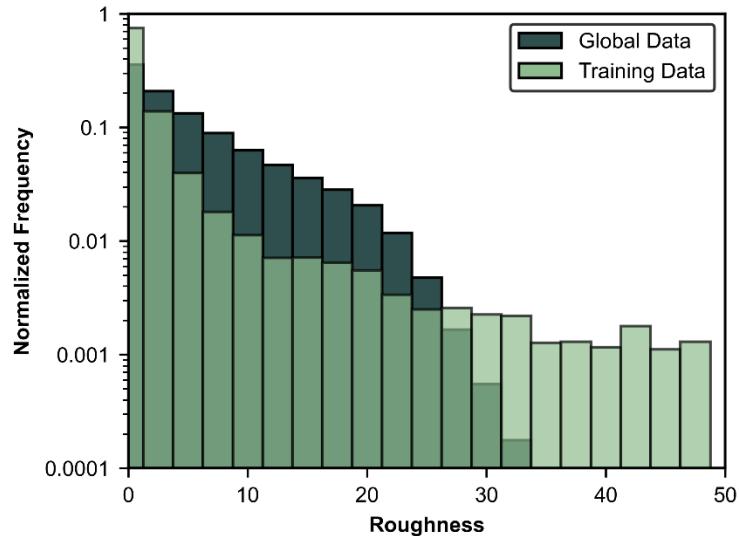


Fig. S25. Global model training data predictor parameter distribution: Roughness.

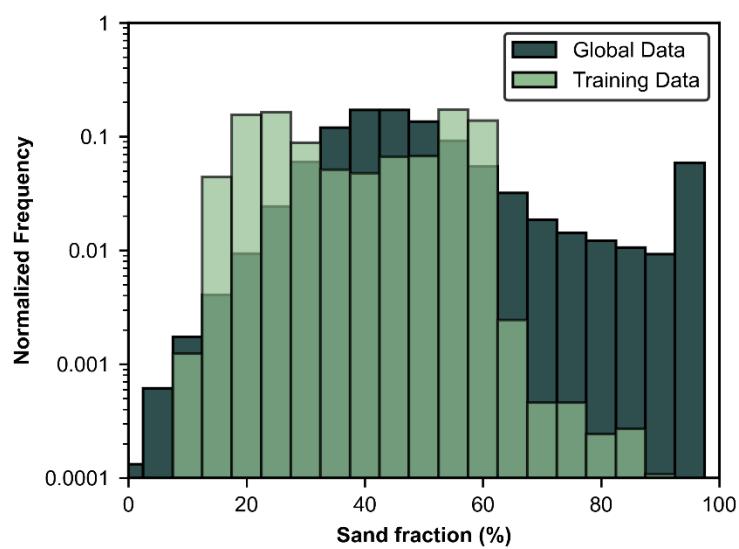


Fig. S26. Global model training data predictor parameter distribution: Sand fraction.

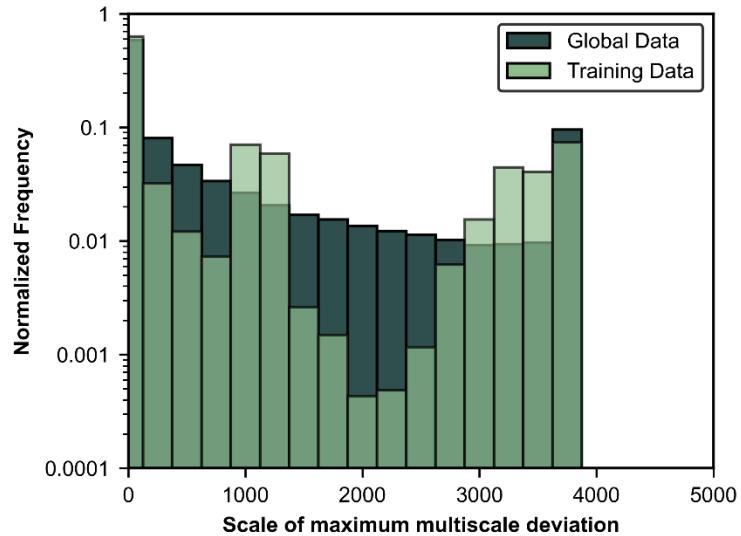


Fig. S27. Global model training data predictor parameter distribution: Scale of maximum multiscale deviation.

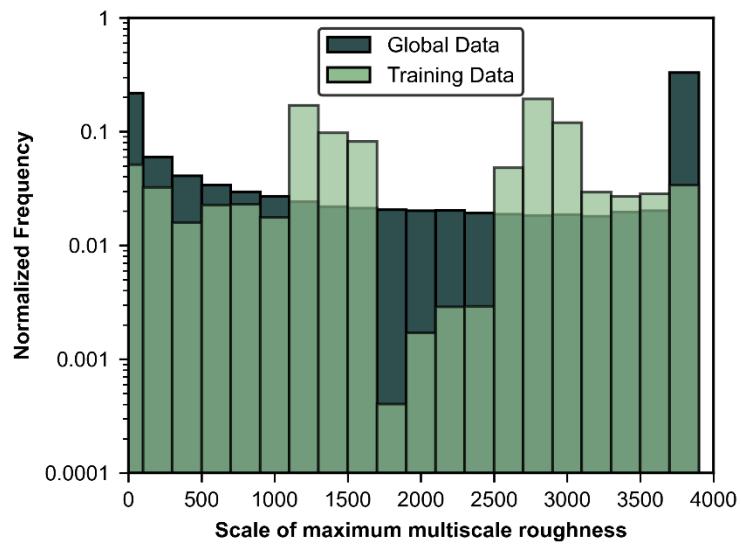


Fig. S28. Global model training data predictor parameter distribution: Scale of maximum multiscale roughness.

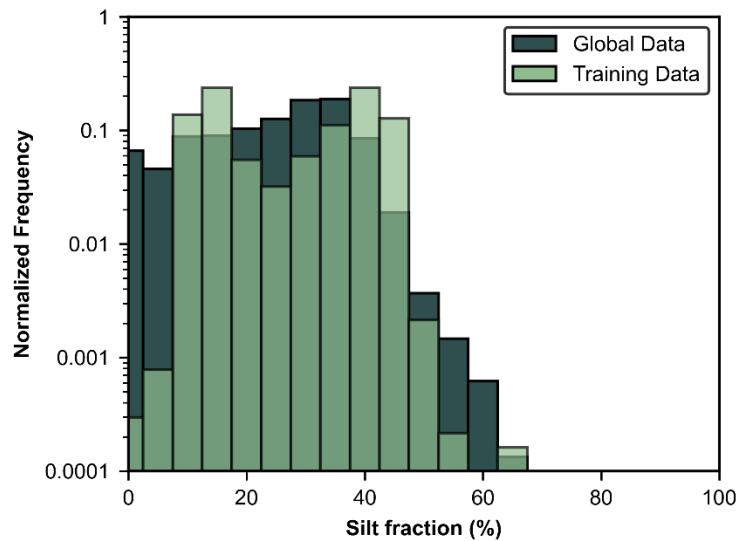


Fig. S29. Global model training data predictor parameter distribution: Silt fraction.

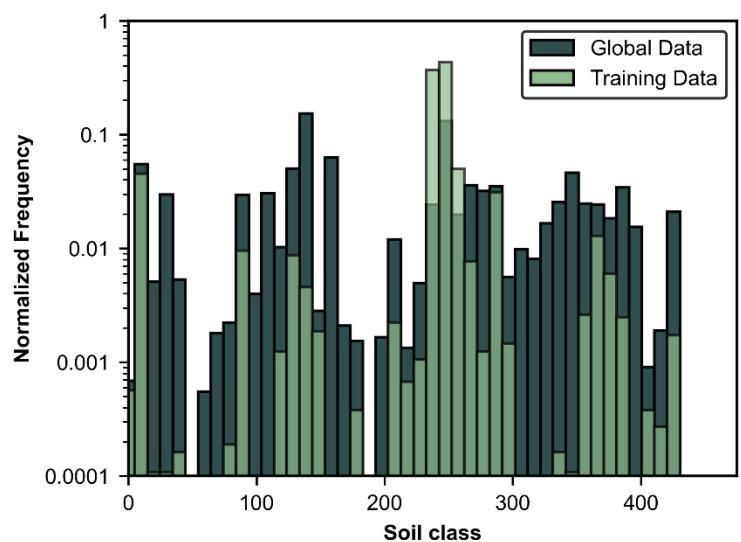


Fig. S30. Global model training data predictor parameter distribution: Soil classification.

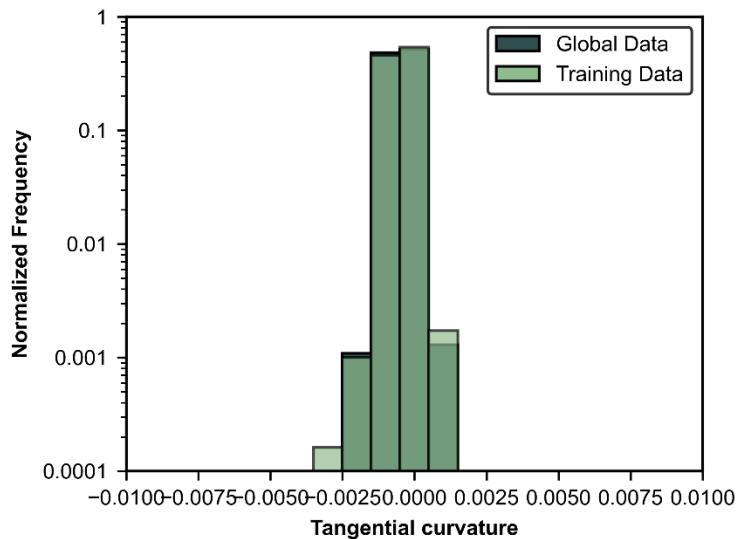


Fig. S31. Global model training data predictor parameter distribution: Tangential curvature.

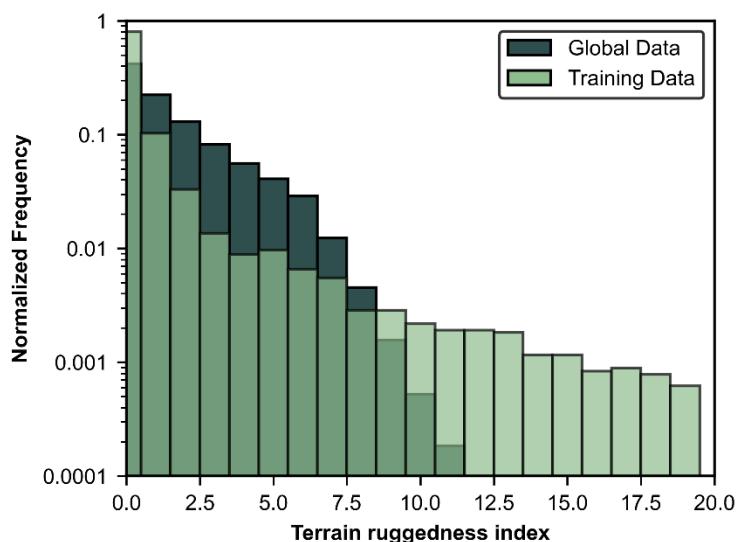


Fig. S32. Global model training data predictor parameter distribution: Terrain ruggedness index.

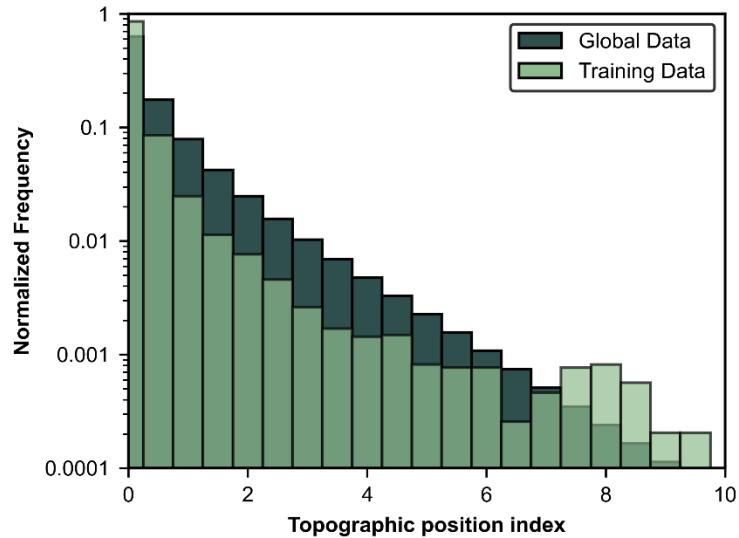


Fig. S33. Global model training data predictor parameter distribution: Topographic position index.

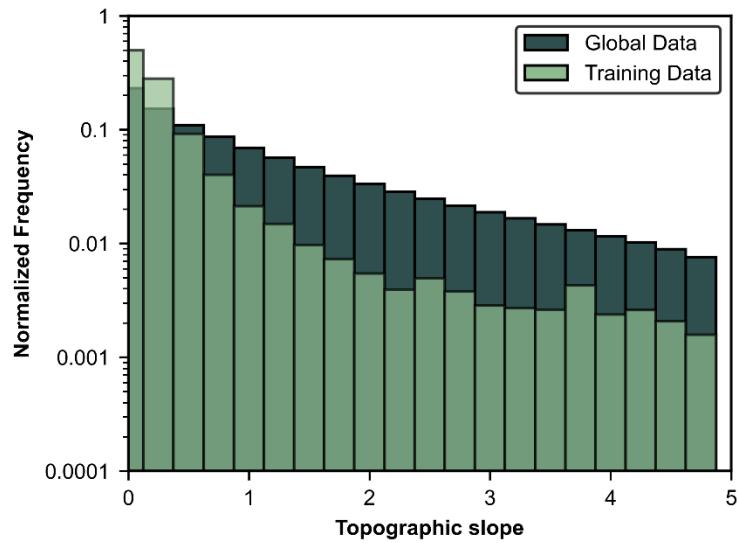


Fig. S34. Global model training data predictor parameter distribution: Topographic slope.

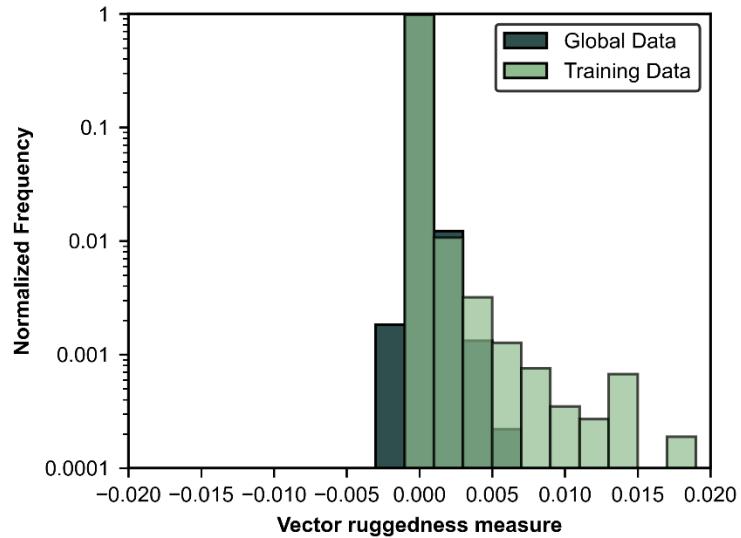


Fig. S35. Global model training data predictor parameter distribution: Vector ruggedness measure.

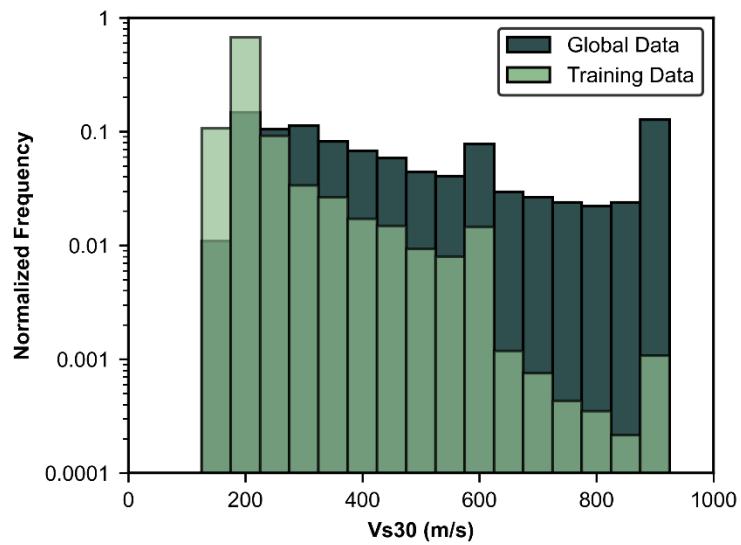


Fig. S36. Global model training data predictor parameter distribution: V_{s30} .

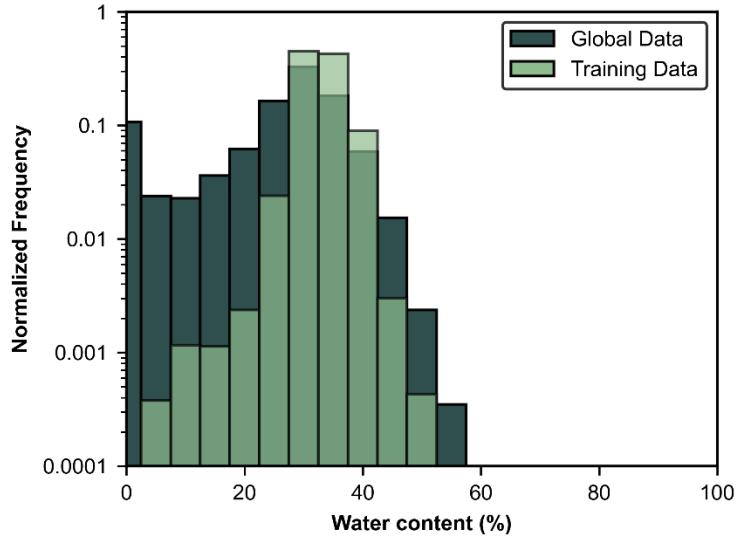


Fig. S37. Global model training data predictor parameter distribution: Water content.

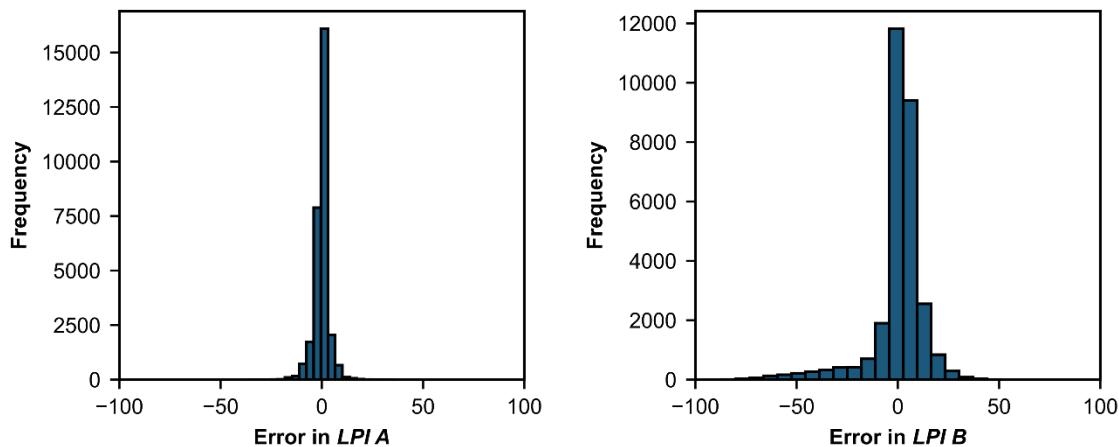


Fig. S38. Histograms of predicted error in *LPI A* and *B* for the global model training set.

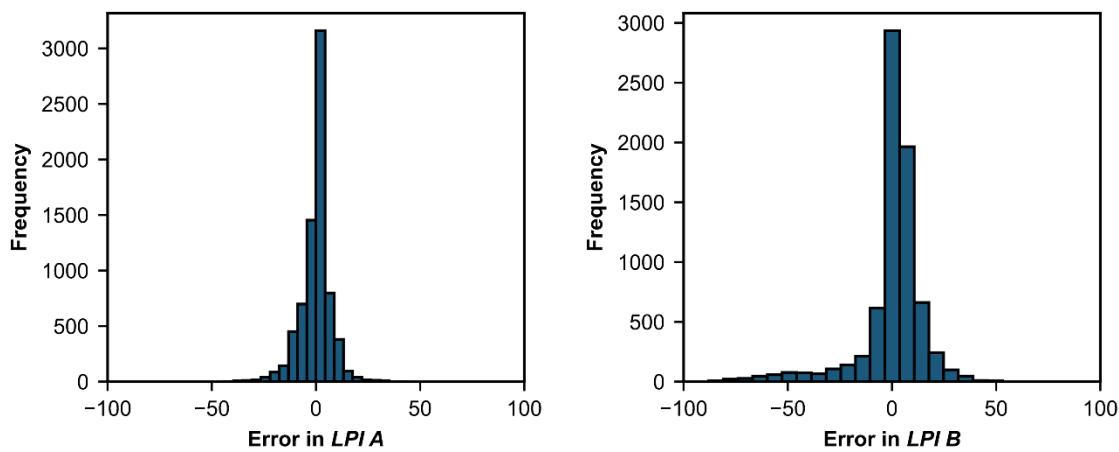


Fig. S39. Histograms of predicted error in *LPI A* and *B* for the global model testing set (Fig. 3).

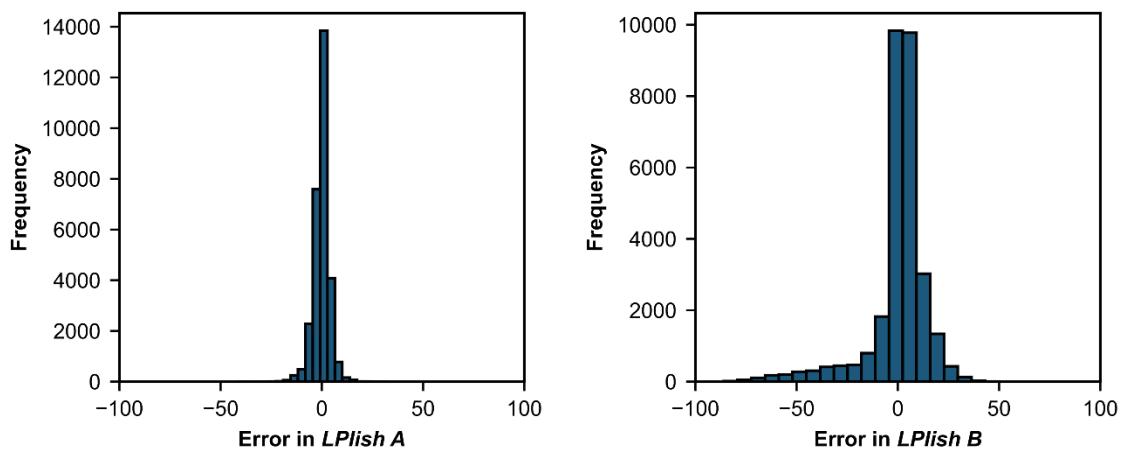


Fig. S40. Histograms of predicted error in *LPlish A* and *B* for the global model training set.

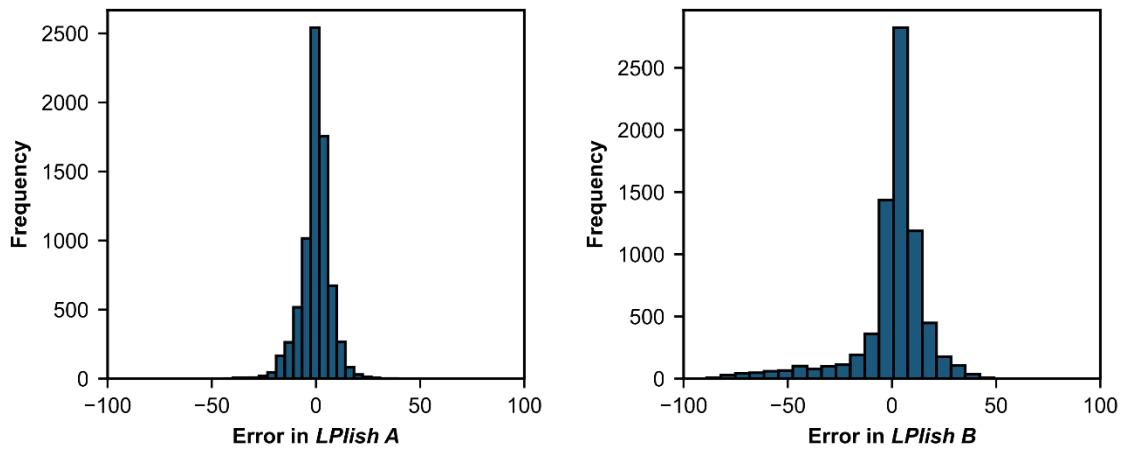


Fig. S41. Histograms of predicted error in *LPlish A* and *B* for the global model testing set.

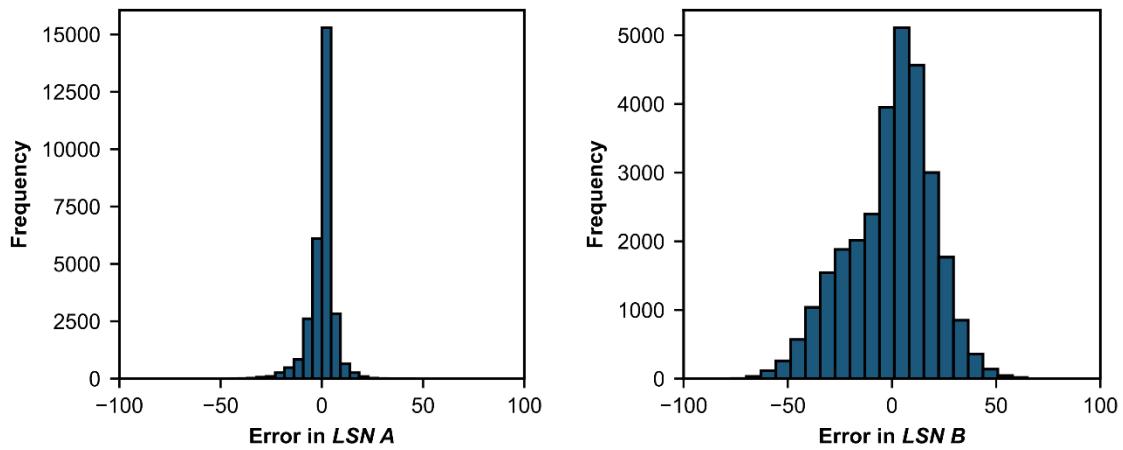


Fig. S42. Histograms of predicted error in *LSN A* and *B* for the global model training set.

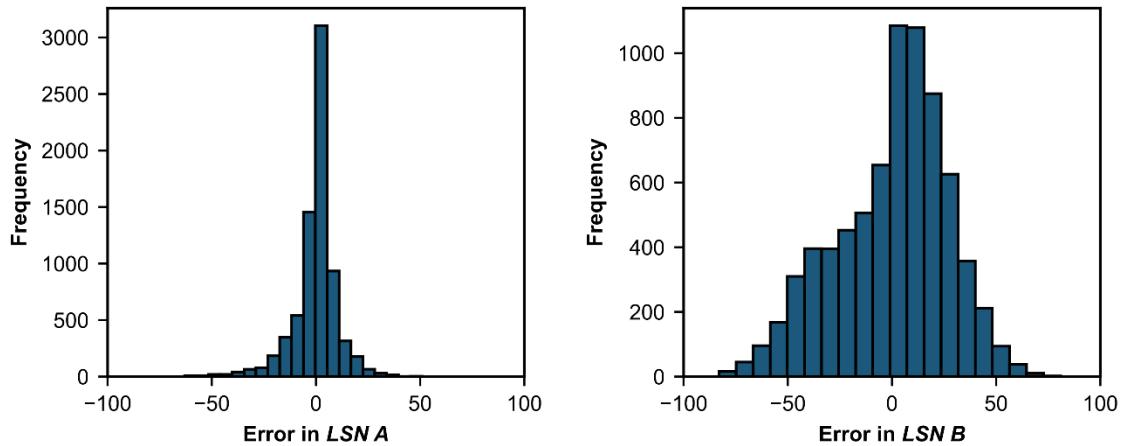


Fig. S43. Histograms of predicted error in $LSN\ A$ and B for the global model testing set.

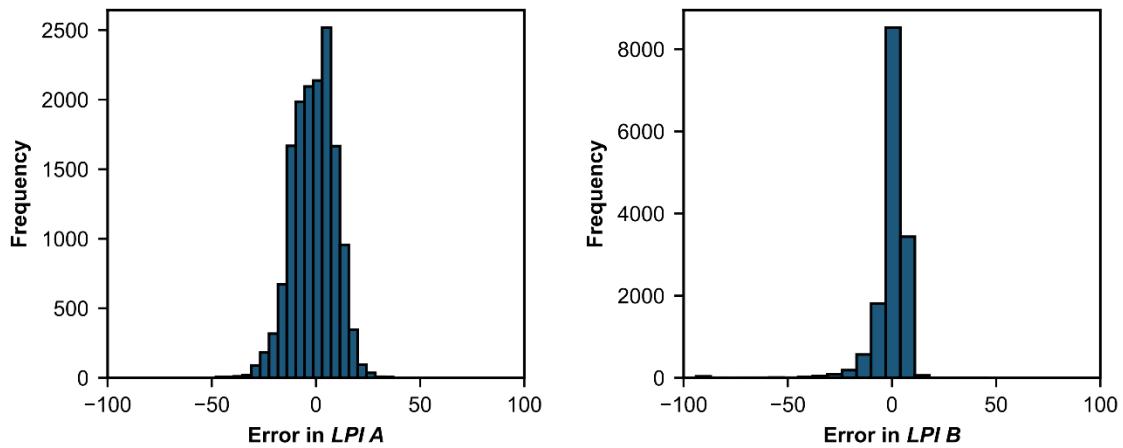


Fig. S44. Histograms of predicted error in $LPI\ A$ and B for the New Zealand model training set.

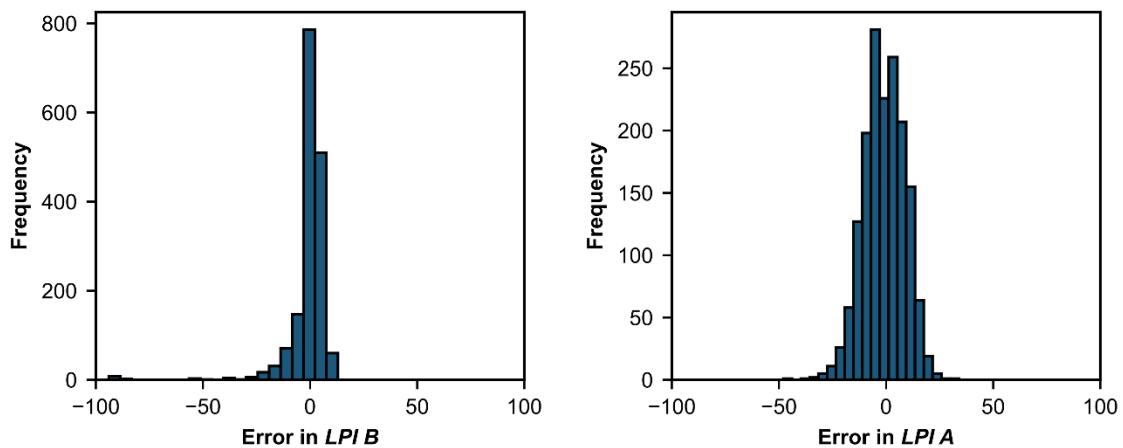


Fig. S45. Histograms of predicted error in $LPI\ A$ and B for the New Zealand model testing set.

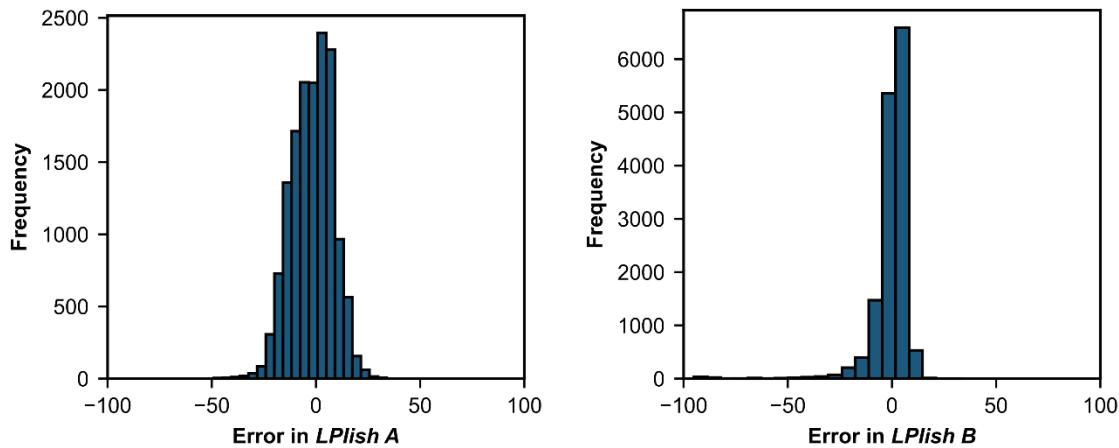


Fig. S46. Histograms of predicted error in *LPlish A* and *B* for the New Zealand model training set.

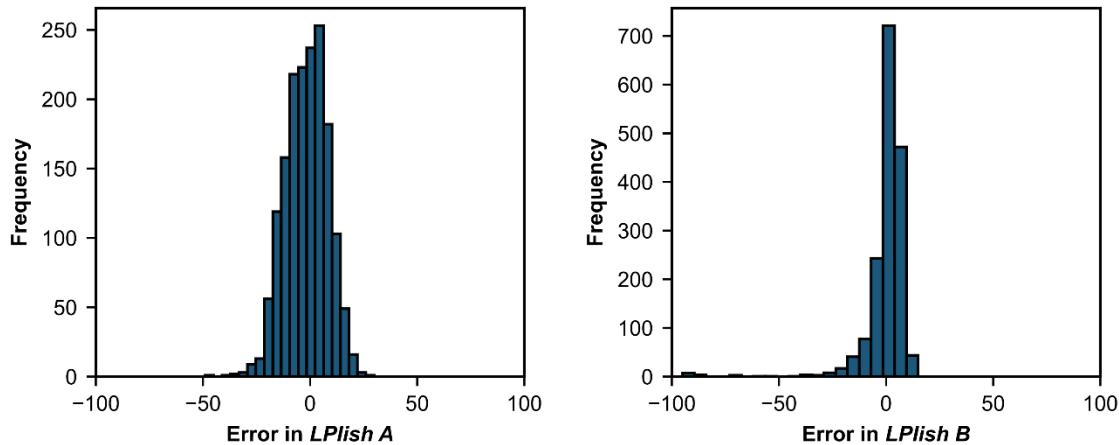


Fig. S47. Histograms of predicted error in *LPlish A* and *B* for the New Zealand model testing set.

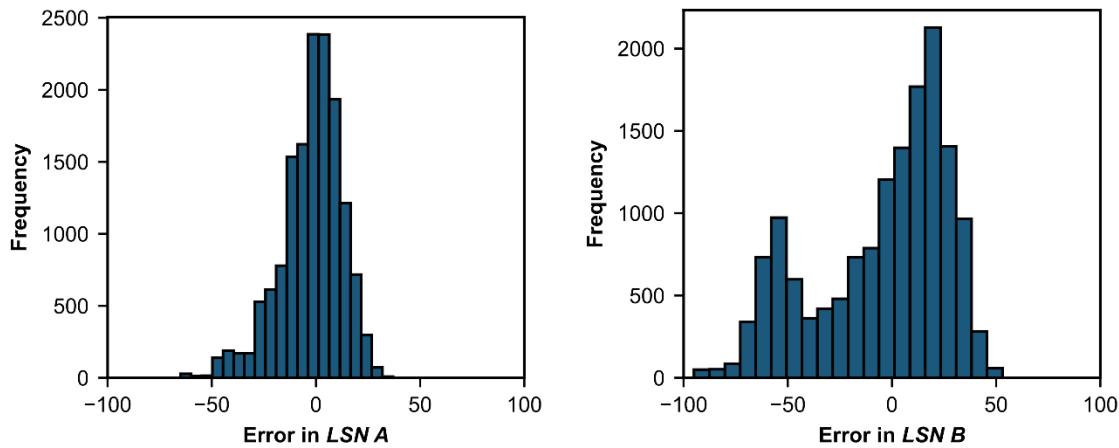


Fig. S48. Histograms of predicted error in *LSN A* and *B* for the New Zealand model training set.

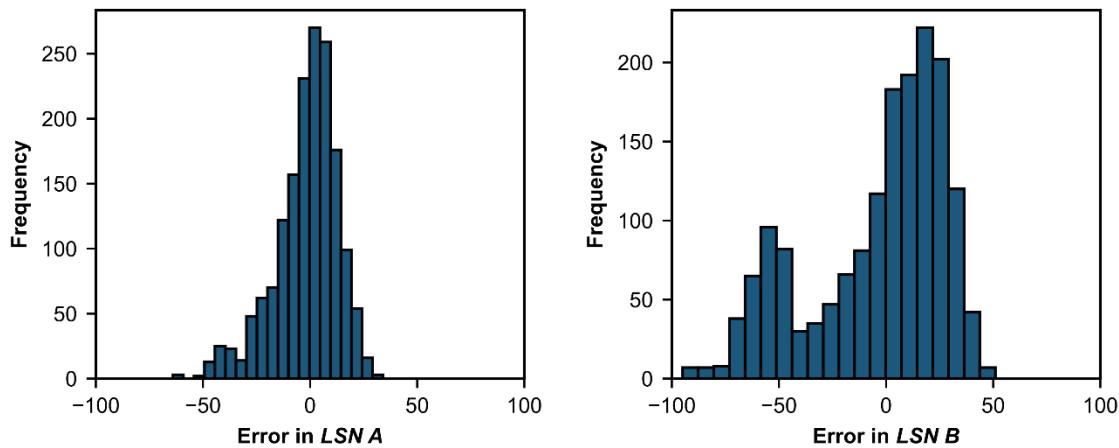


Fig. S49. Histograms of predicted error in *LSN A* and *B* for the New Zealand model testing set.

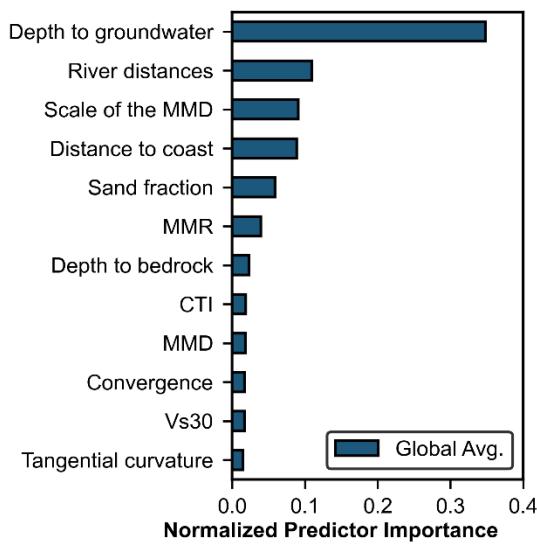


Fig. S50. Average normalized predictor importance for the most important variables in the global model (Fig. 5a).

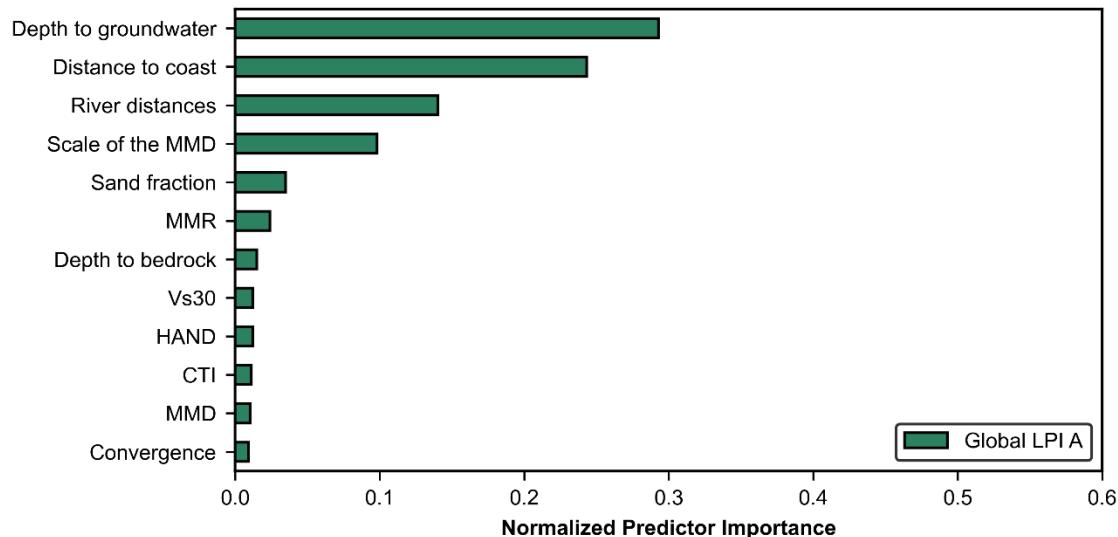


Fig. S51. Normalized predictor importance for the most important variables in the global *LPI A* model.

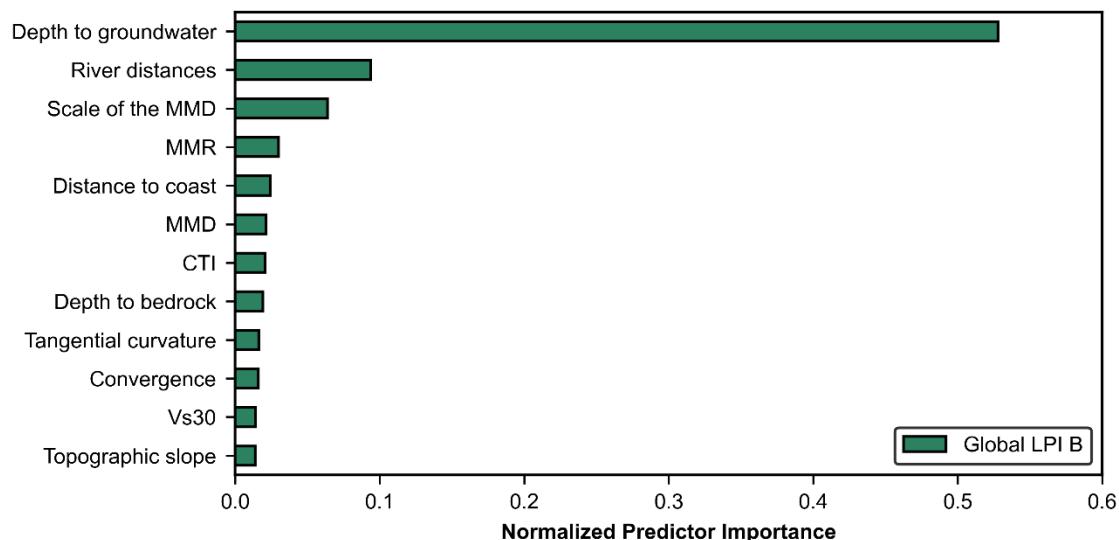


Fig. S52. Normalized predictor importance for the most important variables in the global *LPI B* model.

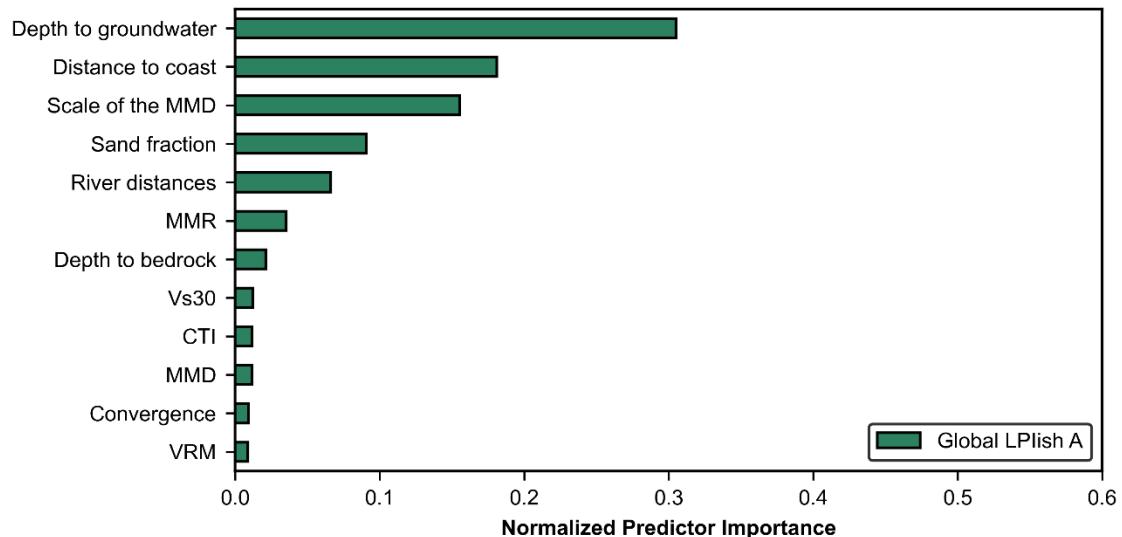


Fig. S53. Normalized predictor importance for the most important variables in the global *LPIish A* model.

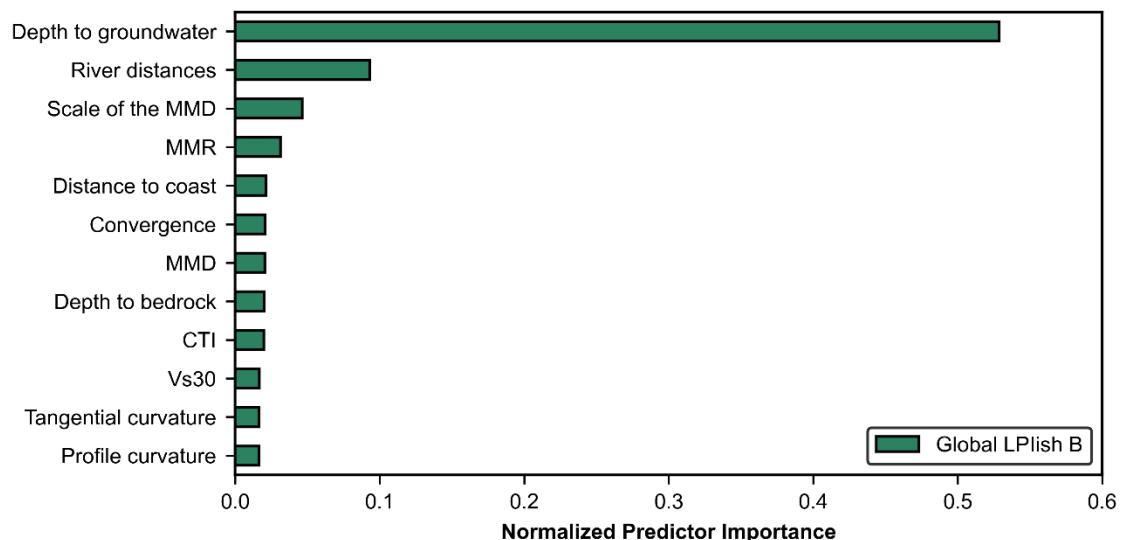


Fig. S54. Normalized predictor importance for the most important variables in the global *LPIish B* model.

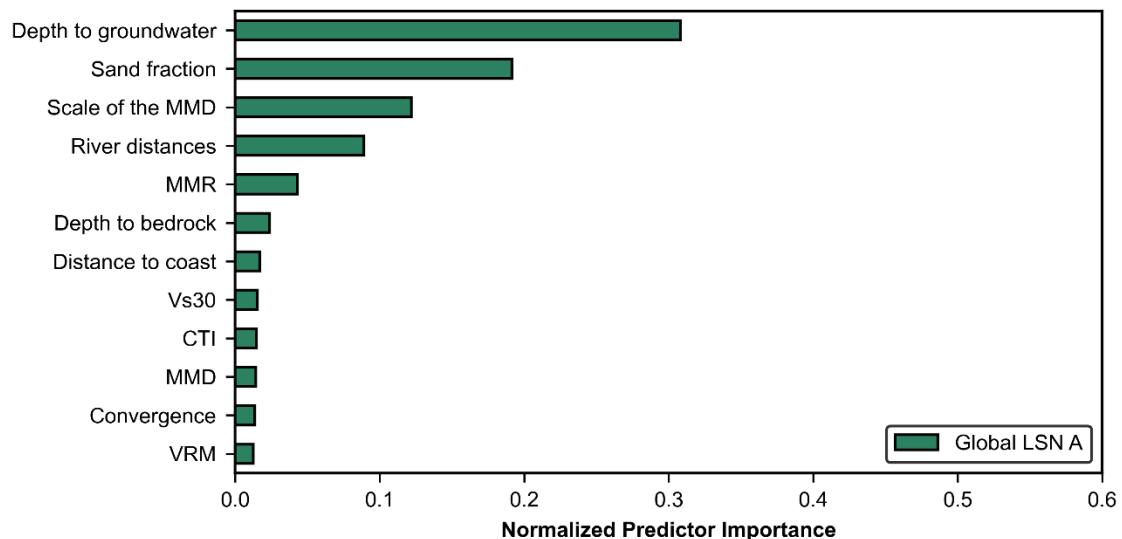


Fig. S55. Normalized predictor importance for the most important variables in the global LSN A model.

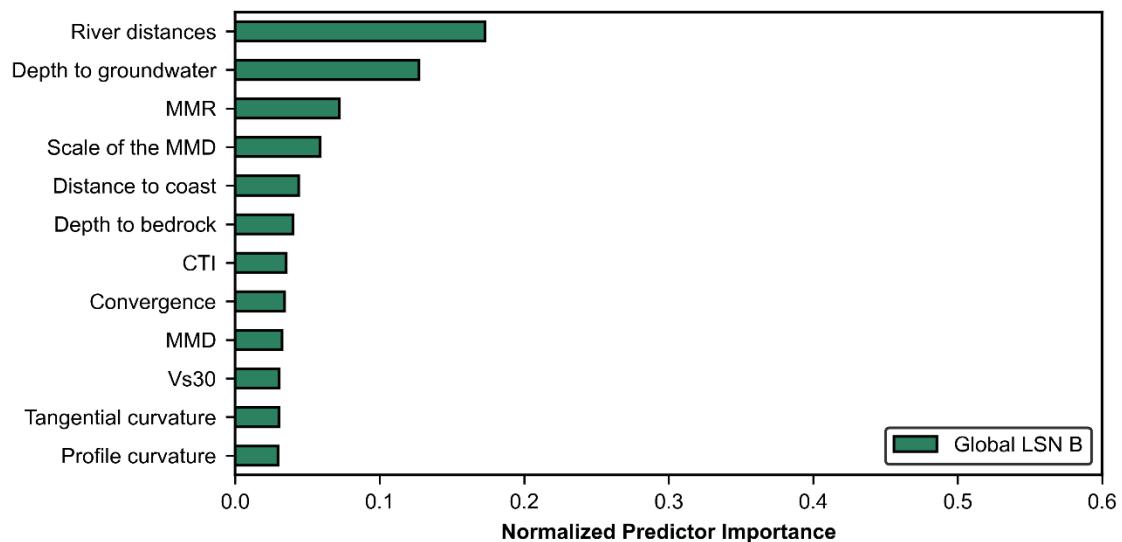


Fig. S56. Normalized predictor importance for the most important variables in the global LSN B model.

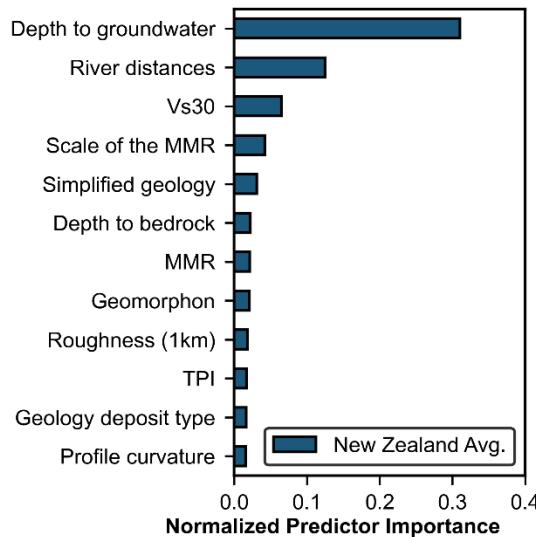


Fig. S57. Average normalized predictor importance for the most important variables in the New Zealand model (Fig. 5b).

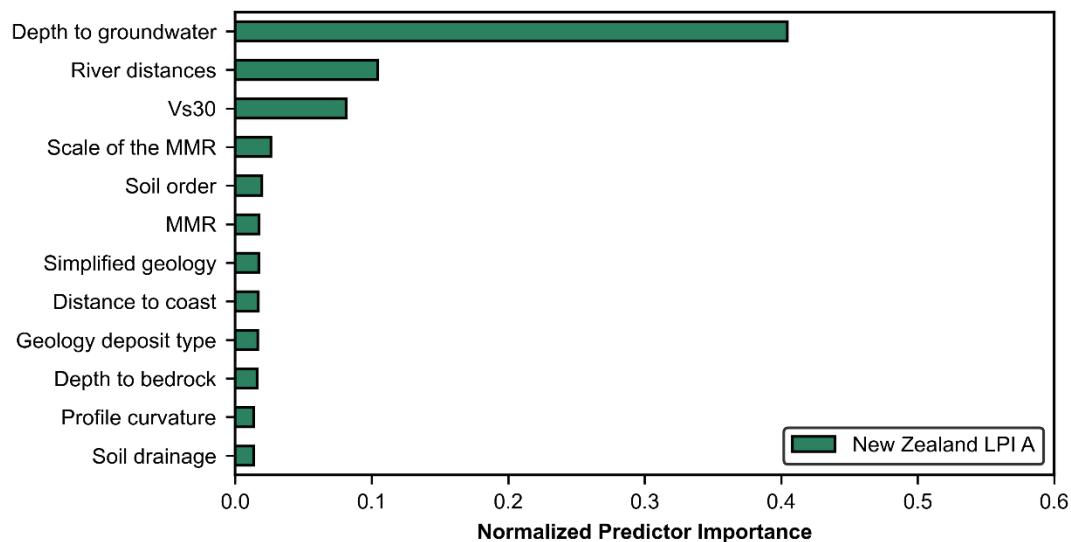


Fig. S58. Normalized predictor importance for the most important variables in the New Zealand *LPI A* model.

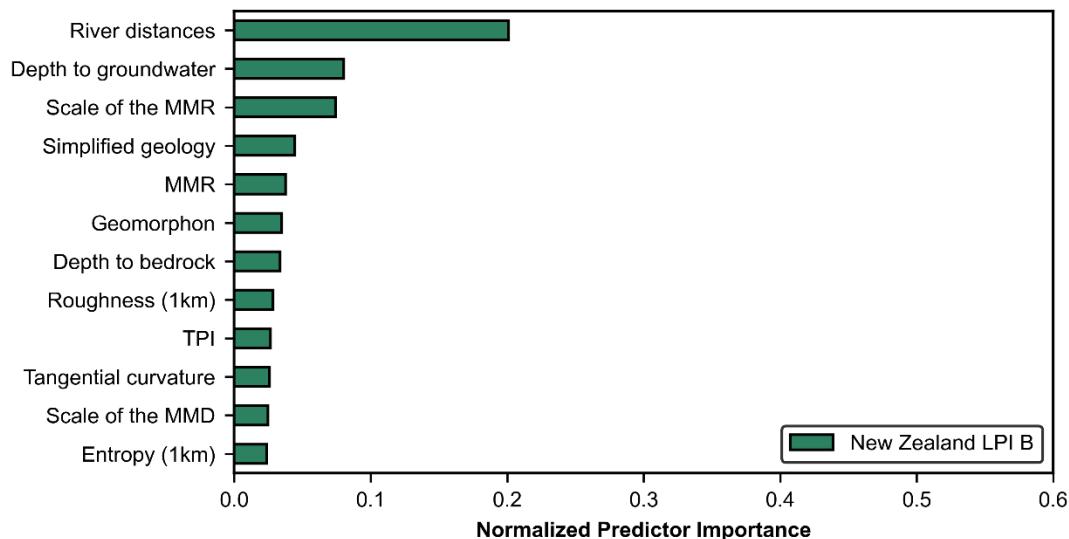


Fig. S59. Normalized predictor importance for the most important variables in the New Zealand *LPI B* model.

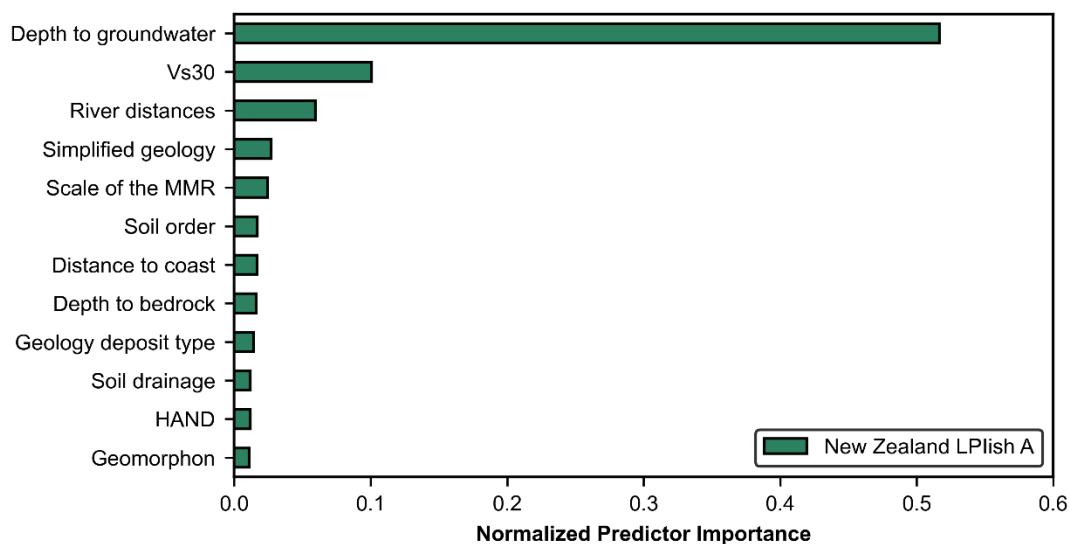


Fig. S60. Normalized predictor importance for the most important variables in the New Zealand *LPIish A* model.

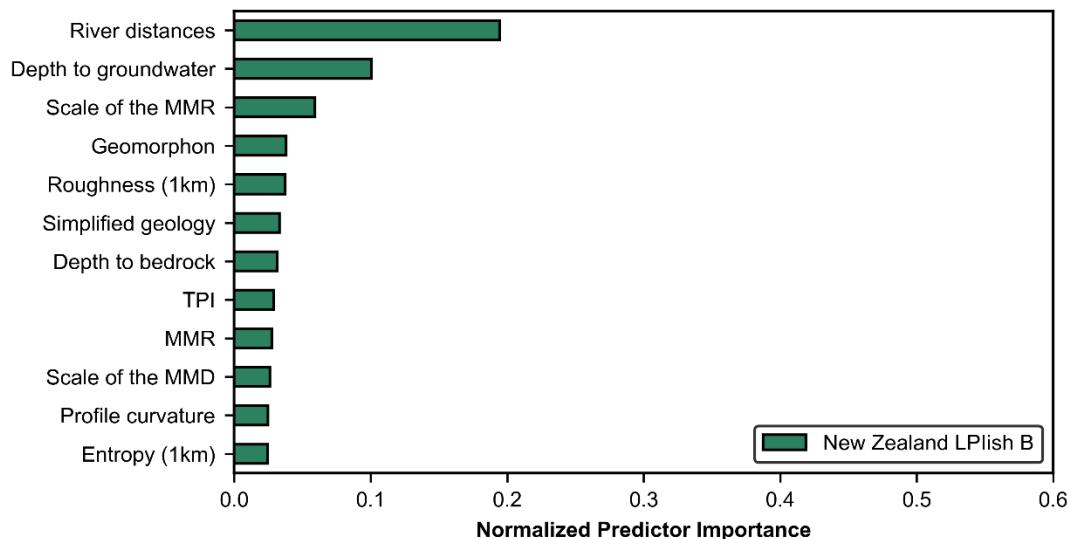


Fig. S61. Normalized predictor importance for the most important variables in the New Zealand *LPlish B* model.

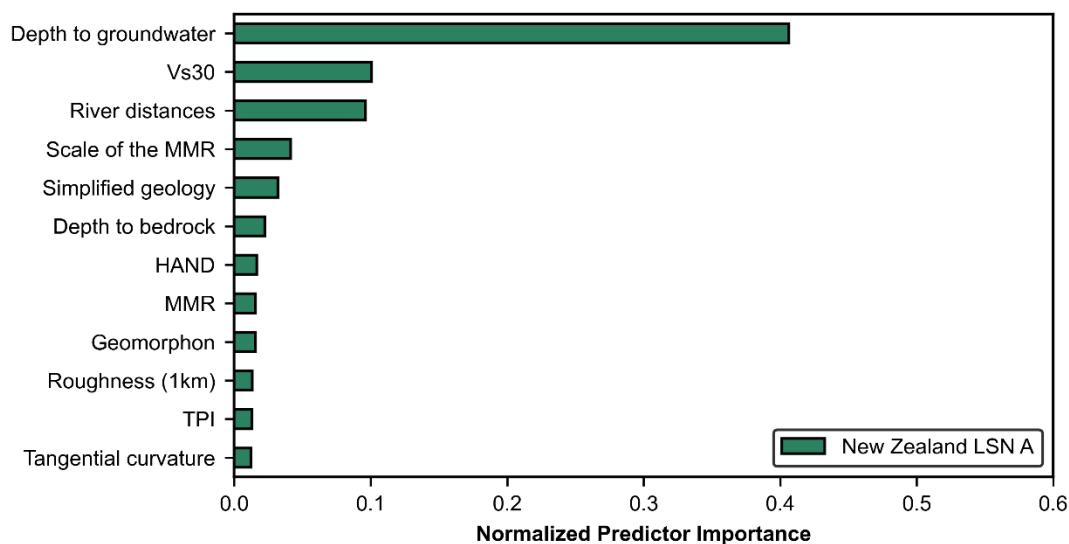


Fig. S62. Normalized predictor importance for the most important variables in the New Zealand *LSN A* model.

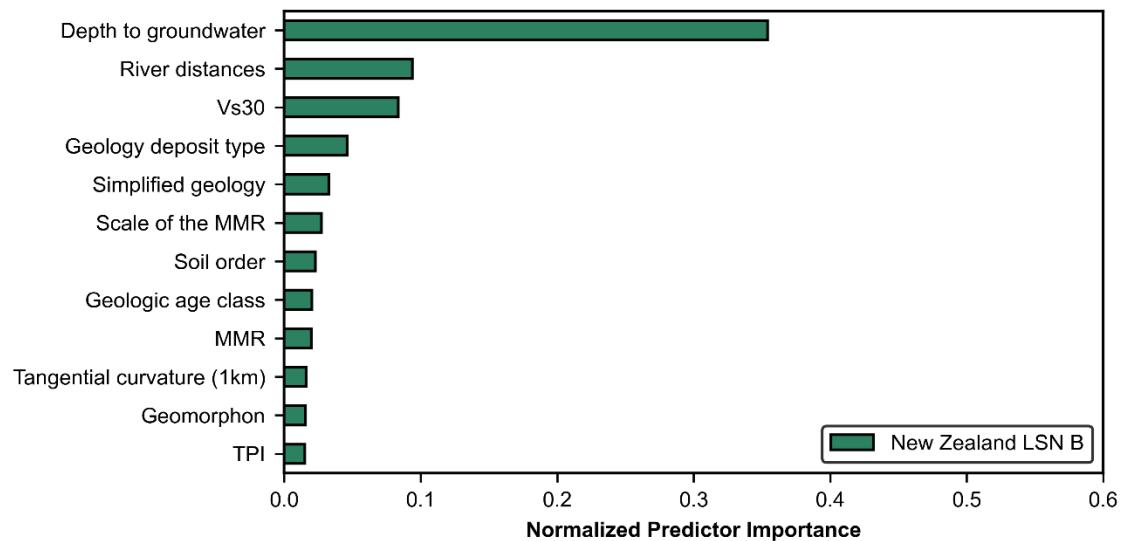


Fig. S63. Normalized predictor importance for the most important variables in the New Zealand *LSN B* model.

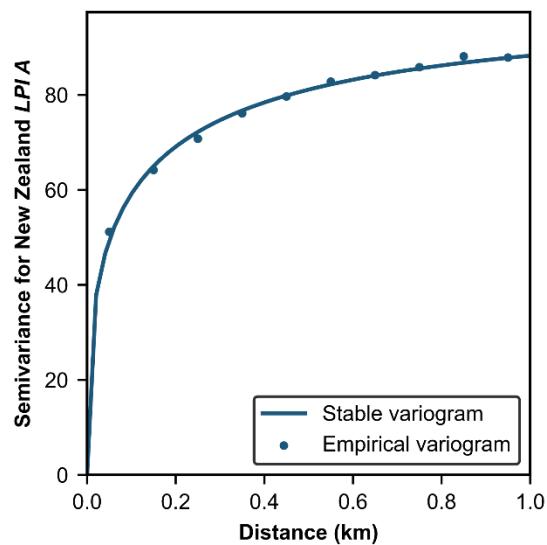


Fig. S64. Semivariogram used in regression kriging: *LPI A* in New Zealand.

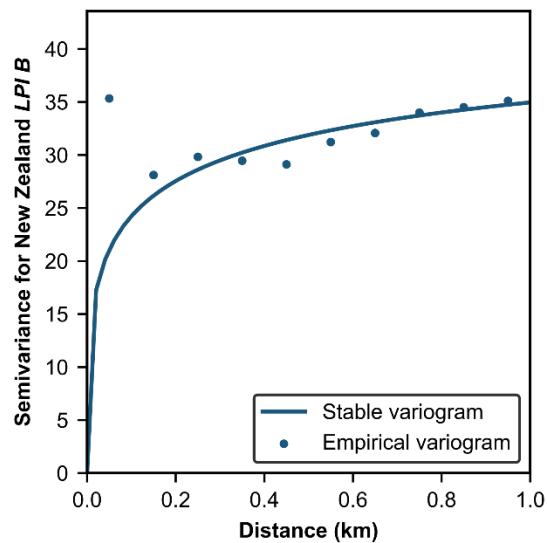


Fig. S65. Semivariogram used in regression kriging: *LPI B* in New Zealand.

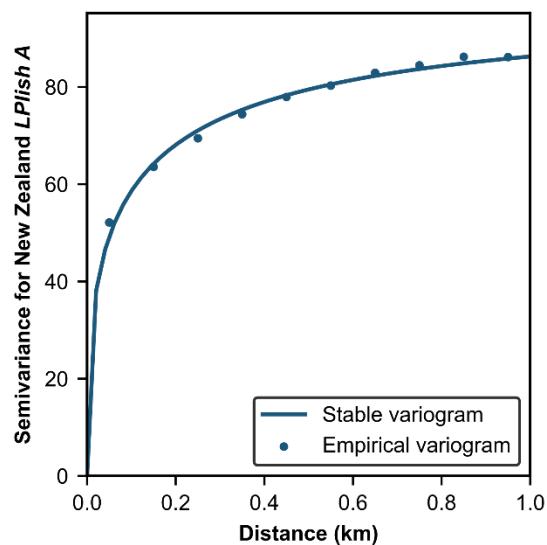


Fig. S66. Semivariogram used in regression kriging: *LPIish A* in New Zealand.

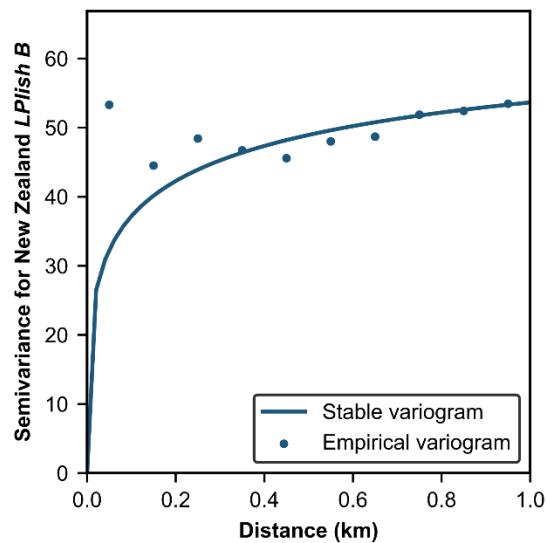


Fig. S67. Semivariogram used in regression kriging: *LPIish B* in New Zealand.

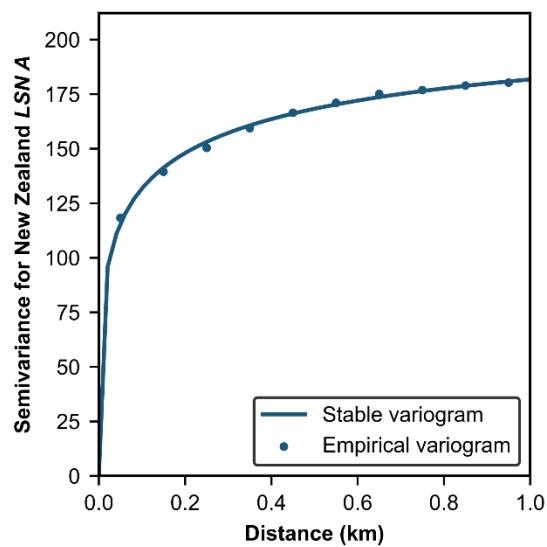


Fig. S68. Semivariogram used in regression kriging: *LSN A* in New Zealand.

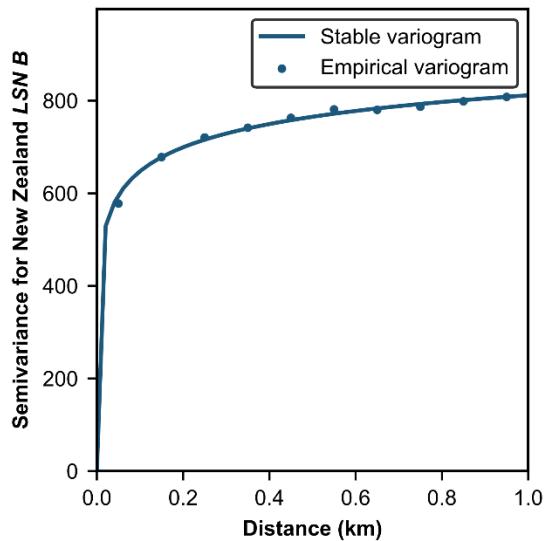


Fig. S69. Semivariogram used in regression kriging: *LSN B* in New Zealand.

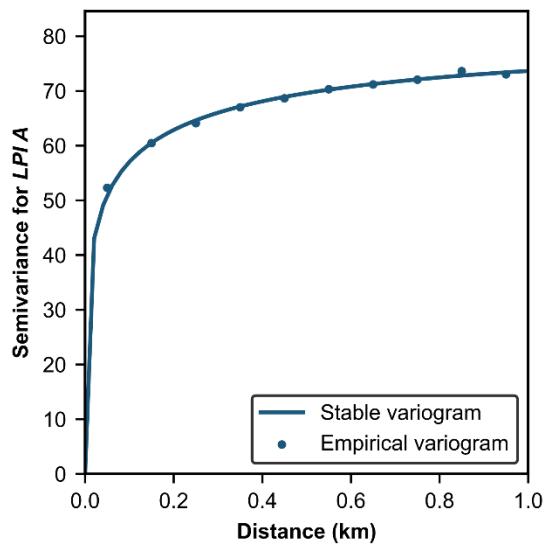


Fig. S70. Semivariogram used in global regression kriging: *LPI A*.

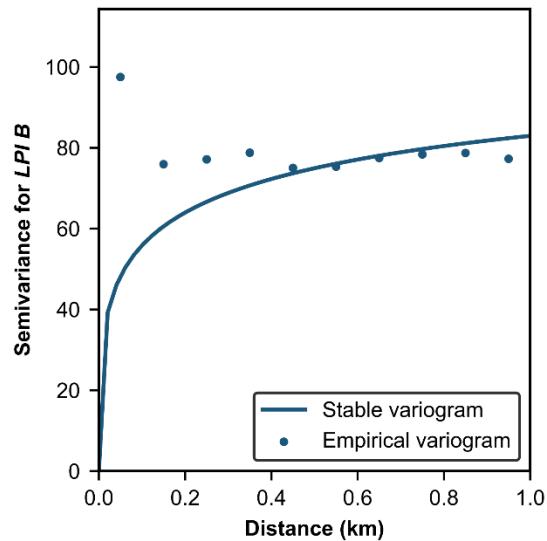


Fig. S71. Semivariogram used in global regression kriging: *LPI B*.

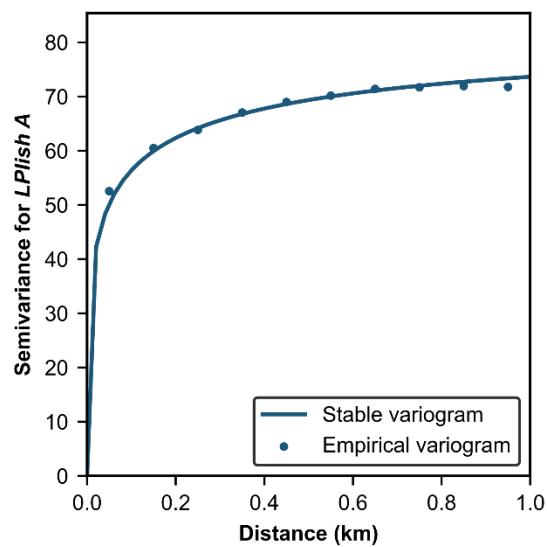


Fig. S72. Semivariogram used in global regression kriging: *LPIish A*.

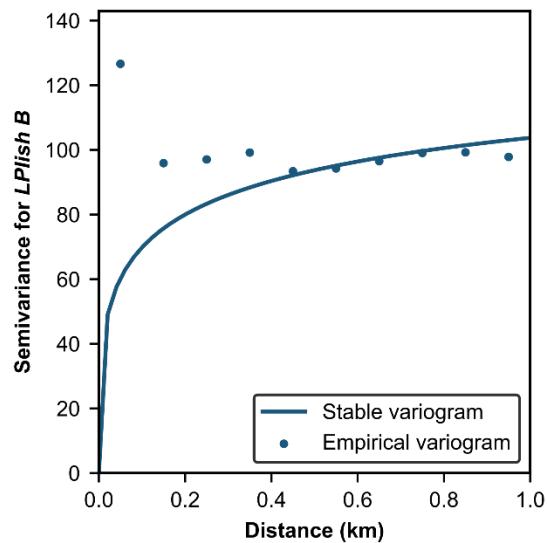


Fig. S73. Semivariogram used in global regression kriging: *LPlish B*.



Fig. S74. Semivariogram used in global regression kriging: *LSN A*.

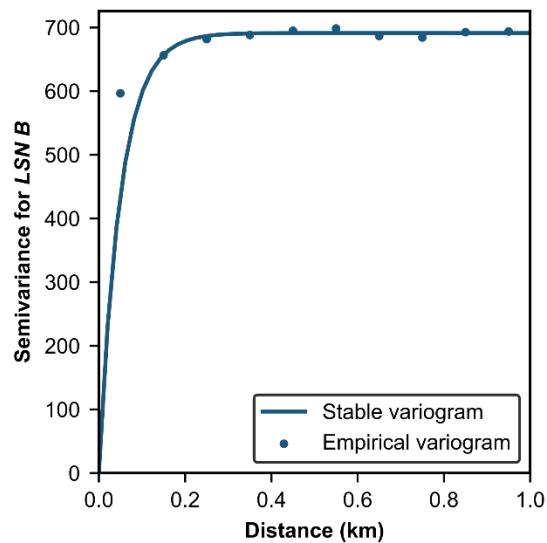


Fig. S75. Semivariogram used in global regression kriging: *LSN B*.

Part 3: Additional Tables

Table S1. Global model predictor variable information.

Variable	Description	Units	Spatial Resolution	Source	Access link
Bulk density	Soil bulk density (fine earth) at 100 cm depth. Based on machine learning predictions from global compilation of soil profiles and samples.	kg/m3	250 m	Hengl (2018a)	https://stac.openlandmap.org/bulkdens.fineearth_usda.4a1h/bulkdens.fineearth_usda.4a1h_19500101_20171231/bulkdens.fineearth_usda.4a1h_19500101_20171231.json?asset=asset-bulkdens.fineearth_usda.4a1h_m_250m_b100cm
Clay fraction	Clay content in % at 100 cm depth. Based on machine learning predictions from global compilation of soil profiles and samples.	kg/kg	250 m	Hengl (2018b)	https://zenodo.org/records/2525663
Compound topographic index	Compound topographic index, or topographic wetness index, is the logarithm of the cumulative upstream catchment area divided by the tangent of the local slope angle. It is a proxy of the long-term soil moisture availability.	--	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Convergence	Convergence is a terrain index that highlights the convergent areas as channels and divergent areas as ridges. It ranges from -100 for ridges to +100 for sink areas and 0 for planar or flat areas.	--	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Depth to bedrock	Depth to bedrock.	cm	250 m	Shangguan et al. (2017)	https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000686
Depth to groundwater	Depth to groundwater.	m	~100 m	Fan et al. (2013)	https://www.science.org/doi/10.1126/science.1229881
Distance to coast	Distance to coast as an interpolated geotiff to the 0.01-degrees from a 0.04-degree data set.	km	~1100 m (0.01 degrees)	NASA (2020)	https://oceancolor.gsfc.nasa.gov/images/resources/distfromcoast/GMT_intermediate_coast_distance_01d.zip
Distance to river	Distance to river computed for different flow orders (order 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8).	m	250 m	Lehner and Grill (2013)	https://www.hydrosheds.org/products/hydrorivers
Elevation standard deviation	Elevation standard deviation is a measure of the amount of elevation variation within a dataset computed using a 3×3 moving window, such that values near 0 indicate no variation, (i.e. flat areas), and areas with large values indicate high variation (i.e., very steep terrain).	m	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Geomorphon	Geomorphon, or geomorphological phonotypes, consists of 10 classes of geomorphological forms extracted from DEMs. The features include: flat, peak or summit, ridge, shoulder, spur, slope, hollow, footslope, valley, and pit or depression.	--	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Height above nearest drainage	Height above nearest drainage (HAND) normalizes topography according to the relative height along the drainage network.	m	1000 m	Nobre et al. (2011)	https://gee-community-catalog.org/projects/hand/
Landform entropy	Entropy is a gray-level co-occurrence matrix (GLCM)-based second-order image texture metric. It quantifies the disorderliness of pixel values (i.e., landform types), where a higher value indicates a more random distribution of landform types within an aggregated window.	--	1000 m	Amatulli et al. (2018)	https://www.nature.com/articles/sdata201840

Landform Shannon index	Shannon Index is another landform diversity index based on the proportion of grid cells covered by the landform types, where a higher value indicate more landform types and/or types having more similar proportions within an aggregation window.	--	1000 m	Amatulli et al. (2018)	https://www.nature.com/articles/sdata201840
Landform uniformity	Uniformity, also called the angular second moment, is another GLCM-based second-order image texture metric. It quantifies the uniformity of pixel values (i.e., landform types) within an aggregation window, for which a higher value indicates a more regular distribution of landform types within an aggregation window.	--	1000 m	Amatulli et al. (2018)	https://www.nature.com/articles/sdata201840
Majority	Majority is the landform class that covers most grid cells of the aggregation window. In case where more than one class is predominant, a random selection was permitted to choose only one class.	--	1000 m	Amatulli et al. (2018)	https://www.nature.com/articles/sdata201840
Maximum multiscale deviation	Maximum multiscale deviation is a dimensionless measure of topographic position, computed as the difference between focal cell elevation and mean elevation divided by the standard deviation of the surrounding cells. As such, a positive value indicates the focal cell is above the surrounding mean elevation, and a negative value indicates the focal cell is below the surrounding mean elevation. The magnitude value indicates the relative spread of the elevation distribution in its surrounding area, and the deviation consists of the estimation of spatial patterns using a range of window sizes.	--	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Maximum multiscale roughness	Maximum multiscale roughness is computed as the maximum spherical standard deviation (σ_s) of the sum of 3-dimensional vector components derived to calculate the vector ruggedness measure, identifying both the magnitude and scale.	degrees	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Profile curvature	Profile curvature describes the rate of change of a slope along a flow line, related to the acceleration of water flow across a surface.	radians/m	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Roughness	Roughness is computed as the largest absolute difference between a focal cell and its 8 surrounding cells. It ranges from values at or near 0 in flat areas to larger values in mountain areas.	m	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Sand fraction	Sand content in % at 100 cm depth. Based on machine learning predictions from global compilation of soil profiles and samples.	g/kg	250 m	Hengl (2018c)	https://zenodo.org/records/2525662
Scale of the maximum multiscale deviation	See Maximum multiscale deviation.	--	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Scale of the maximum multiscale roughness	See Maximum multiscale roughness.	degrees	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Silt fraction	Silt content in % at 100 cm depth. Based on machine learning predictions from global compilation of soil profiles and samples.	kg/kg	250 m	Hengl (2018d)	https://zenodo.org/records/2525676
Soil class	Distribution of the USDA soil great groups based on machine learning predictions from global compilation of soil profiles.	--	250 m	Hengel and Nauman (2018)	https://zenodo.org/records/3528062
Tangential curvature	Tangential curvature quantifies the rate of change perpendicular to the slope gradient.	radians/m	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Terrain ruggedness index	Terrain ruggedness index is computed as the mean of the absolute differences in elevation between a focal cell and its 8 surrounding cells. As such, flat areas have a value close to zero, while mountainous areas have large values (e.g., greater than 500 m).	m	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6

Topographic position index	Topographic position index is computed the difference between the elevation of a focal cell and the mean of its 8 surrounding cells. Zero values correspond to flat areas, and ridges and valleys are described by positive and negative values, respectively.	m	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Topographic slope	Topographic slope is the rate of change of elevation in the direction of the water flow line.	%	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Vector ruggedness measure	Vector ruggedness measure quantifies terrain ruggedness by means of sine and cosine of the slope within a moving aggregation window.	m	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Vs30	Average shear wave velocity of uppermost 30m.	m/s	100 m	Heath et al. (2020)	https://apps.usgs.gov/shakemap_geodata/vs30/global_vs30.grd
Water content	Soil water content (volumetric) in percent predicted at 100 cm depth. Based on machine learning predictions from global compilation of soil profiles and samples.	%	250 m	Hengel and Gupta (2019)	https://zenodo.org/records/2784001

Table S2. New Zealand model predictor variable information.

Variable	Description		Units	Spatial Resolution	Source	Access link	
Compound topographic index	Compound topographic index, or topographic wetness index, is the logarithm of the cumulative upstream catchment area divided by the tangent of the local slope angle. It is a proxy of the long-term soil moisture availability.		--	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6	
Convergence	Convergence is a terrain index that highlights the convergent areas as channels and divergent areas as ridges. It ranges from -100 for ridges to +100 for sink areas and 0 for planar or flat areas.		--	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6	
Depth to bedrock	Depth to bedrock.		cm	250 m	Shangguan et al. (2017)	https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000686	
Depth to groundwater	Depth to groundwater.		m	200 m	Westerhoff et al. (2018)	https://hess.copernicus.org/articles/22/6449/2018/	
Distance to coast	Distance to coast as an interpolated geotiff to the 0.01-degrees from a 0.04-degree data set.		km	~1100 m (0.01 degrees)	NASA (2020)	https://oceancolor.gsfc.nasa.gov/images/resources/distfromcoast/GMT_intermediate_coast_distance_01d.zip	
Distance to river	Strahler or 1 Strahler or 2 Strahler or 3 Strahler or 4 Strahler or 5	Distance to river computed for different Strahler orders (1, 2, 3, 4, 5) using the New Zealand river lines.		m	~100 m	LINZ (2020)	https://data.linz.govt.nz/layer/50327-nz-river-centrelines-topo-150k/history/
Elevation standard deviation	Elevation standard deviation is a measure of the amount of elevation variation within a dataset computed using a 3×3 moving window, such that values near 0 indicate no variation, (i.e. flat areas), and areas with large values indicate high variation (i.e., very steep terrain).		m	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6	
Geologic unit	Simplified Names Type 1 Type 2	Geologic units classified into simplified units (Simplified Names) by the authors, and further simplified into deposit type (Type 1) and Age (Type 2).		--	100 m	Heron (2018)	https://data.gns.cri.nz/gis/rest/services/NZL_GNS_250K_Geology_2018/NZL_GNS_250K_geology_FeatureService_All_Data/FeatureServer
Geomorphon	Geomorphon, or geomorphological phonotypes, consists of 10 classes of geomorphological forms extracted from DEMs. The features include: flat, peak or summit, ridge, shoulder, spur, slope, hollow, footslope, valley, and pit or depression.		--	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6	
Height above nearest drainage	Height above nearest drainage (HAND) normalizes topography according to the relative height along the drainage network.		m	1000 m	Nobre et al. (2011)	https://gee-community-catalog.org/projects/hand/	
Landform entropy	Entropy is a gray-level co-occurrence matrix (GLCM)-based second-order image texture metric. It quantifies the disorderliness of pixel values (i.e., landform types), where a higher value indicates a more random distribution of landform types within an aggregated window.		--	1000 m	Amatulli et al. (2018)	https://www.nature.com/articles/sdata201840	
Landform Shannon index	Shannon Index is another landform diversity index based on the proportion of grid cells covered by the landform types, where a higher value indicates more landform types and/or types having more similar proportions within an aggregation window.		--	1000 m	Amatulli et al. (2018)	https://www.nature.com/articles/sdata201840	
Landform uniformity	Uniformity, also called the angular second moment, is another GLCM-based second-order image texture metric. It quantifies the uniformity of pixel values (i.e., landform types) within an aggregation window, for which a higher value indicates a more regular distribution of landform types within an aggregation window.		--	1000 m	Amatulli et al. (2018)	https://www.nature.com/articles/sdata201840	
Major	Majority is a landform class that covers most grid cells of the aggregation window. In case where more than one class is predominant (same number of pixels), a random selection was permitted to choose only one class.		--	1000 m	Amatulli et al. (2018)	https://www.nature.com/articles/sdata201840	

Maximum multiscale deviation	Maximum multiscale deviation is a dimensionless measure of topographic position, computed as the difference between focal cell elevation and mean elevation divided by the standard deviation of the surrounding cells. As such, a positive value indicates the focal cell is above the surrounding mean elevation, and a negative value indicates the focal cell is below the surrounding mean elevation. The magnitude value indicates the relative spread of the elevation distribution in its surrounding area, and the deviation consists of the estimation of spatial patterns using a range of window sizes.	--	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Maximum multiscale roughness	Maximum multiscale roughness is computed as the maximum spherical standard deviation (σ_s) of the sum of 3-dimensional vector components derived to calculate the vector ruggedness measure, identifying both the magnitude and scale.	degrees	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Pfafstetter level (basin characterization)	The 'Pfafstetter' coding system has been implemented in the HydroBASINS product offering 12 hierarchically nested sub-basin breakdowns globally, of which the last eight (Level 5 through Level 12) are used as a predictor variable in this model.	--	~100 m	Lehner and Grill (2013)	https://www.hydrosheds.org/products/hydrobasins
Profile curvature	Profile curvature describes the rate of change of a slope along a flow line, related to the acceleration of water flow across a surface.	radians/m	~90 m (3 arc-sec) 1000 m	Amatulli et al. (2020) Amatulli et al. (2018)	https://www.nature.com/articles/s41597-020-0479-6 https://www.nature.com/articles/sdata201840
Roughness	Roughness is computed as the largest absolute difference between a focal cell and its 8 surrounding cells. It ranges from values at or near 0 in flat areas to larger values in mountain areas.	m	~90 m (3 arc-sec) 1000 m	Amatulli et al. (2020) Amatulli et al. (2018)	https://www.nature.com/articles/s41597-020-0479-6 https://www.nature.com/articles/sdata201840
Scale of the maximum multiscale deviation	See Maximum multiscale deviation.	--	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Scale of the maximum multiscale roughness	See Maximum multiscale roughness.	degrees	~90 m (3 arc-sec)	Amatulli et al. (2020)	https://www.nature.com/articles/s41597-020-0479-6
Soil depth	Soil depth classification, where classifications include deep, moderately deep, shallow, and very shallow.	--	~200 m	McNeill et al. (2018)	https://smap.landcareresearch.co.nz/maps-and-tools/app/
Soil drainage	Soil drainage classification, where classifications include very poorly drained, poorly drained, imperfectly drained, moderately well drained, and well drained.	--	~200 m	McNeill et al. (2018)	https://smap.landcareresearch.co.nz/maps-and-tools/app/
Soil order	A soil order classification system consistent with the New Zealand Soil Classification (NZSC), including Immature Gleys (Recent Gley NZSC Group) and Mature Gleys (other Gley NZSC Groups); Immature Pallics (Immature Pallic NZSC Group) and Mature Pallics (other Pallic NZSC Groups); Allophanic Browns (Allophanic NZSC Group) and Non-allophanic Browns (other Brown NZSC Groups). Organic soils (peats) were excluded.	--	~200 m	McNeill et al. (2018)	https://smap.landcareresearch.co.nz/maps-and-tools/app/
Tangential curvature	Tangential curvature quantifies the rate of change perpendicular to the slope gradient.	radians/m	~90 m (3 arc-sec) 1000 m	Amatulli et al. (2020) Amatulli et al. (2018)	https://www.nature.com/articles/s41597-020-0479-6 https://www.nature.com/articles/sdata201840
Terrain ruggedness index	Terrain ruggedness index is computed as the mean of the absolute differences in elevation between a focal cell and its 8 surrounding cells. As such, flat areas have a value close to zero, while mountainous areas have large values (e.g., greater than 500 m).	m	~90 m (3 arc-sec) 1000 m	Amatulli et al. (2020) Amatulli et al. (2018)	https://www.nature.com/articles/s41597-020-0479-6 https://www.nature.com/articles/sdata201840
Topographic position index	Topographic position index is computed the difference between the elevation of a focal cell and the mean of its 8 surrounding cells. Zero values correspond to flat areas, and ridges and valleys are described by positive and negative values, respectively.	m	~90 m (3 arc-sec) 1000 m	Amatulli et al. (2020) Amatulli et al. (2018)	https://www.nature.com/articles/s41597-020-0479-6 https://www.nature.com/articles/sdata201840
Topographic slope	Topographic slope is the rate of change of elevation in the direction of the water flow line.	%	~90 m (3 arc-sec) 1000 m	Amatulli et al. (2020) Amatulli et al. (2018)	https://www.nature.com/articles/s41597-020-0479-6 https://www.nature.com/articles/sdata201840
Vector ruggedness measure	Vector ruggedness measure quantifies terrain ruggedness by means of sine and cosine of the slope within a moving aggregation window.	m	~90 m (3 arc-sec) 1000 m	Amatulli et al. (2020) Amatulli et al. (2018)	https://www.nature.com/articles/s41597-020-0479-6 https://www.nature.com/articles/sdata201840
Vs30	Average shear wave velocity of uppermost 30m.	m/s	100 m	Foster et al. (2019)	https://journals.sagepub.com/doi/full/10.1193/121118EQS28 1M

Table S3. Performance statistics for the global and New Zealand models in testing and training.

Model			Performance in A				Performance in B				Performance in MI				Performance in PGF								
			MAE	AAE	SD	MSE	MAE	AAE	SD	MSE	MAE	MSD	AAE	ASD	MAE	MSD	AAE	ASD	Geyin and Maurer (2020) PGF Model				
			Triggering model	Dataset	Manifestation severity	β_m	θ_m																
Training	Global models	<i>LPI</i> -ML	2.0	2.4	3.7	14	4.0	7.7	13.2	173.0	2.2	6.6	4.1	6.2	3%	15%	10%	14%	Idriss and Boulanger (2008)	Global	All	1.436	6.993
		<i>LPI_{ISH}</i> -ML	2.0	2.6	3.9	15	5.0	9.1	14.8	17.1	2.9	7.1	4.5	6.6	3%	21%	13%	19%	Idriss and Boulanger (2008)	Global	All	2.264	3.116
		<i>LSN</i> -ML	2.0	3.8	6.0	36	13.0	16.2	20.3	413.8	3.1	9.5	5.5	8.7	3%	13%	8%	12%	Idriss and Boulanger (2008)	Global	All	1.147	13.148
	New Zealand models	<i>LPI</i> -ML	7.0	8.1	10.0	101	3.0	4.5	8.3	70.0	9.5	16.3	11.4	14.2	5%	24%	15%	23%	Idriss and Boulanger (2008)	New Zealand	Minor/All	1.774	4.095
		<i>LPI_{ISH}</i> -ML	7.0	8.0	9.8	100	3.0	5.0	9.1	83.6	9.3	16.3	11.5	14.5	4%	25%	14%	23%	Idriss and Boulanger (2008)	New Zealand	Minor/All	2.16	2.394
		<i>LSN</i> -ML	9.0	11.2	14.8	224	21.0	25.9	31.8	1037.8	12.5	23.5	16.3	21.4	8%	22%	14%	20%	Idriss and Boulanger (2008)	New Zealand	Minor/All	1.477	14.536
Testing	Global models	<i>LPI</i> -ML	3.0	4.8	7.0	50	5.0	9.2	15.5	239	4.5	11.3	6.9	10.0	8%	22%	15%	20%	Idriss and Boulanger (2008)	Global	All	1.436	6.993
		<i>LPI_{ISH}</i> -ML	3.0	4.7	6.8	46	6.0	10.6	17.1	292	4.6	11.1	7.0	10.0	6%	25%	17%	23%	Idriss and Boulanger (2008)	Global	All	2.264	3.116
		<i>LSN</i> -ML	4.0	6.8	10.5	111	18.0	21.6	26.8	718	4.9	16.7	9.8	15.1	7%	22%	14%	20%	Idriss and Boulanger (2008)	Global	All	1.147	13.148
	New Zealand models	<i>LPI</i> -ML	7.0	7.9	9.7	95	3.0	4.7	9.5	91.7	9.5	15.9	11.3	13.9	5%	24%	14%	22%	Idriss and Boulanger (2008)	New Zealand	Minor/All	1.774	4.095
		<i>LPI_{ISH}</i> -ML	7.0	8.1	9.9	100	3.0	5.2	10.4	107.4	9.8	16.5	11.7	14.6	4%	25%	14%	25%	Idriss and Boulanger (2008)	New Zealand	Minor/All	2.16	2.394
		<i>LSN</i> -ML	9.0	11.1	14.7	219	21.0	25.4	31.6	1012	12.5	23.4	16.1	21.2	8%	22%	14%	20%	Idriss and Boulanger (2008)	New Zealand	Minor/All	1.477	14.536

*Acronyms: AAE = average (mean) absolute error; ASD = average (mean) standard deviation; *LPI* = liquefaction potential index; *LPI_{ISH}* = modified *LPI*; *LSN* = liquefaction severity number; MAE = median absolute error; MI = manifestation index; MSD = median standard deviation; MSE = mean squared error; PGF = probability of ground failure; SD = standard deviation.

Table S4. Summary of semivariogram parameters.

Model		Nugget	Sill	Length Scale (km)	Alpha	Number of lags	Major Range (km)
Global models	<i>LPI A</i>	0.0	84.3	0.223	0.300	10	1.0
	<i>LPI B</i>	0.0	140.0	0.300	0.300	10	1.0
	<i>LPIish A</i>	0.0	83.6	0.215	0.300	10	1.0
	<i>LPIish B</i>	0.0	174.0	0.300	0.300	10	1.0
	<i>LSN A</i>	0.0	238.0	0.230	0.407	10	1.0
	<i>LSN B</i>	0.0	665.0	0.050	1.000	10	1.0
New Zealand models	<i>LPI A</i>	0.0	97.4	0.118	0.403	10	1.0
	<i>LPI B</i>	0.0	43.6	0.200	0.300	10	1.0
	<i>LPIish A</i>	0.0	95.2	0.112	0.394	10	1.0
	<i>LPIish B</i>	0.0	66.9	0.200	0.300	10	1.0
	<i>LSN A</i>	0.0	212.0	0.110	0.301	10	1.0
	<i>LSN B</i>	0.0	998.0	0.080	0.205	10	1.0

BIBLIOGRAPHY OF PUBLICATIONS RESULTING FROM THE WORK

Sanger, M.D., Geyin, M., & Maurer, B.W. (2024). Mechanics-informed machine learning for geospatial modeling of soil liquefaction: global and national surrogate models for simulation and near-real-time response. *In Review*.