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ABSTRACT

Using machine learning (ML), high performance computing, and a large body of geospatial
information, we develop surrogate models to predict soil liquefaction across regional scales. Two
sets of models — one global and one specific to New Zealand — are trained by learning to mimic
geotechnical models at the sites of in-situ tests. Our geospatial approach has conceptual advantages
in that predictions: (i) are anchored to mechanics, which encourages more sensible response and
scaling across the domains of soil, site, and loading characteristics; (ii) are driven by ML, which
allows more predictive information to be used, with greater potential for it to be exploited; (ii1) are
geostatistically updated by subsurface data, which anchors the predictions to known conditions;
and (iv) are precomputed everywhere on earth for all conceivable earthquakes, which allows the
models to be executed very easily, thus encouraging user adoption and evaluation. Test
applications suggest that: (i) the proposed models outperform others to a statistically significant
degree; (ii) the geostatistical updating further improves performance; and (iii) the anticipated
advantages of region-specific models may largely be negated by the benefits of learning from
larger global datasets. These models are best suited for regional-scale liquefaction hazard
simulation and near-real-time response and are accompanied by variance products that convey
where, and to what degree, the ML-predicted liquefaction response is influenced by local
geotechnical data.
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INTRODUCTION

Reliable predictions of soil liquefaction are desired both prior to an earthquake for planning and
mitigation, and immediately after for informing response and recovery. Such predictions could
ideally be made: (i) quickly, as in near-real-time after an event; (ii) at high resolution, consistent
with the scale of infrastructure assets or property parcels; and (iii) over the areal extents impacted
by large earthquakes, such as those of a city or transportation network. However, because state-
of-practice liquefaction models require subsurface geotechnical data such as cone penetration test
(CPT) measurements, they cannot be implemented continuously across a large area. As a result,
models that use “geospatial” proxy variables are often used in regional-scale studies. These
variables include metrics of topography, geology, hydrology, geomorphology, ecology,
groundwater, and climate that are available from existing maps, models, and remote-sensing
datasets, and which correlate with traits pertinent to liquefaction (e.g., soil thickness, density,
saturation, and typology). By way of these variables, geospatial models essentially infer subsurface
conditions without subsurface measurements and can thus rapidly predict liquefaction at any
number of locations.

Models of this type have existed for several decades (“HAZUS” from the National Institute
of Building Science (1997) was among the first), yet they have gained new attention in recent
years, driven by advances in liquefaction observation data, geospatial variables, and empirical
learning techniques (e.g., machine learning, ML). For example, the seminal model of Zhu et al.
(2017), later updated by Rashidian and Baise (2020), is adopted by the United States Geological
Survey (USGS) as part of their post-earthquake informational products (e.g., Allstadt et al., 2022).
It is difficult, of course, to predict liquefaction without site-specific subsurface data, especially
across the diverse environments and geologic conditions found globally. Recent tests of geospatial
and CPT-based liquefaction models demonstrate the promising potential of geospatial data, as well
as clear shortcomings in current models (Geyin et al., 2020). Studies that utilize geospatial models
for predicting liquefaction have since increased — in local and global contexts — and include efforts
in Australia (Jena et al., 2023), New Zealand (e.g., Lin et al., 2021; Azul et al., 2024), the United
States (Geyin et al., 2023; Bullock et al., 2023), Turkey (Asadi et al., 2024), the European Union
(e.g., Bozzoni et al., 2021; Todorovic and Silva, 2022), and Korea (Kim, 2023), among others.

While recent literature has grown the science and adoption of geospatial models, we contend
existing models share one or more significant limitations. First, they tend to directly predict
outcomes (i.e., liquefaction manifestations, or lack thereof) without explicit consideration of, or
insights into, the mechanistic causes of those outcomes. Liquefaction is best predicted by
mechanics and much has been learned of these mechanics over the last 50 years. This knowledge
is continually embedded in state-of-practice geotechnical models, yet geospatial models tend not
to learn from, or anchor to, these mechanistic models in any way. The lack of a mechanistic
backbone could be overcome with enough training data, such that a model “relearns” the governing
mechanics by way of observed outcomes, but current liquefaction inventories are arguably too
sparse, with data from perhaps one earthquake annually. As a result, geospatial models can depart
from mechanistic principles, especially in poorly populated regions of their parameter spaces (e.g.,
a model may predict liquefaction when the shaking intensity or duration is easily judged by an
expert as insufficient). In some cases, ad-hoc corrections have been used to limit the misgivings
of data sparsity (e.g., Allstadt et al., 2022). The problem posed by geospatial modeling might thus
ideally be parsed into the empirical (prediction of subsurface engineering properties, conditioned



on geospatial variables) and the mechanistic (prediction of liquefaction effects, conditioned on
engineering properties).

Second, geospatial models tend not to be updated by subsurface geotechnical data. Because
geospatial predictions implicitly infer subsurface traits, they could presumably be improved with
direct measurements of those traits. Geotechnical data is increasingly accessible in regional and
national community databases, some of which already contain hundreds of thousands of tests.
These data are likely to grow indefinitely, through continual testing and increased availability of
historic data. When input to geotechnical models, geotechnical data can produce predictions of
liquefaction that differ greatly from those of their geospatial counterparts. The lack of
communication between geotechnical and geospatial data and models is a significant lost
opportunity. Geospatial models would undoubtedly benefit from consideration of subsurface data,
where available.

Third, existing geospatial models tend to use relatively few of the publicly available geospatial
variables. Rashidian and Baise (2020), for example, use five. One variable represents demand
(peak ground velocity, PGV) and four represent capacity (distance to water, mean annual
precipitation, and the expected groundwater depth and shear-wave velocity over the upper 30 m
(Vs30)). While these inputs seem to model liquefaction hazards with relative sufficiency, at least in
certain locations and events, more predictive information is needed to further improve model
performance and portability (i.e., stability across events, regions, and subsurface conditions). As
an example, Geyin et al. (2020) observed that the inability to infer soil typology (and thus,
liquefaction susceptibility) was a common cause of geospatial mispredictions.

Fourth, existing geospatial models tend to be trained by traditional statistical methods (e.g.,
logistic regression). In this regard, the potential of geospatial modeling — using many variables that
weakly correlate to subsurface traits in nonlinear, interrelated ways — may not be fully realized.
Logistic regression requires: (i) hypotheses of what variables matter and how; (ii) little-to-no
correlation between variables; and (ii1) linearity between variables and targets, which often
deviates from reality where behaviors are nonlinear. Better predictions might be realized using
emergent “artificial intelligence (Al)” techniques (such as ML), which could allow more predictive
information to be used, with greater potential for that information to be exploited. Todorovic and
Silva (2022), for example, trained an ML model to directly predict liquefaction observations using
several geospatial variables, similar to Rashidian and Baise (2020), and showed evidence of
improvement in unbiased tests.

Fifth, although Al brings opportunity to geotechnical engineering, existing Al liquefaction
models are rife with problems (Maurer and Sanger, 2023). Most problematic with respect to the
scientific process is that Al models are rarely provided. A large majority of publications describe
the development and performance of an Al model, but do not “define” the model (i.e., do not
provide code, software, or any means of use), meaning it cannot be applied or tested by anyone.
Beyond this immediate concern is another specific to geospatial models: are they feasible to
implement? Consider a hypothetical model that uses many high-resolution variables. Deploying
such a model globally could require compilation and storage of hundreds, if not thousands, of
gigabytes of geospatial data. The model itself could also be unwieldy in size. This presents a barrier
to all but large enterprises if the required data cannot easily be downloaded and stored locally. It
may be argued that even geospatial models with only a few variables do not lend themselves well
to adoption and testing, given that those variables must be individually located (often from broken

5



hyperlinks) and may need to be globally computed from other raw data. If a model is not easily
implemented, it will not be adopted, tested, or improved. It is thus critical to package data for users,
build software interfaces, and/or develop modeling strategies that circumvent the problem of size
altogether. Al models will otherwise not be used.

In this paper, we train geospatial liquefaction models (henceforth GLMs) that directly address
each of these limitations using an approach that is very different from others, and which builds on
concepts introduced in Geyin et al. (2022). Rather than predict liquefaction observations directly,
we train geospatial “surrogate” models to mimic the predictions of geotechnical models at sites of
in-situ tests. By anchoring to mechanistic models, the geospatial models benefit from the
knowledge embedded therein. This encourages more sensible model response and scaling across
the domains of soil, site, and earthquake loading characteristics. The predictions are made using a
very large library of geospatial information, are trained using ML techniques, and are
geostatistically updated in the vicinity of subsurface data, such that the geospatial models are
brought into agreement with geotechnical predictions where available. Furthermore, the models
are designed for ease of use. This is accomplished by effectively precomputing the expected
liquefaction response at every location on earth for all potential earthquakes. This response is
stored as mapped parameters that await ground-motion information from a specific earthquake
(e.g., one that has just occurred, or a scenario event of interest). When convolved, these inputs
rapidly produce probabilistic predictions of liquefaction impacts, giving the model near-real-time
capability without requiring high-performance computing (HPC) resources nor advanced
modeling capabilities. We develop surrogate ML models for several geotechnical models, such
that their predictions can be ensembled, and we explore the prospects of region-specific GLMs by
developing one in New Zealand. The projected benefits of our approach are further developed in
Data and Methodology.

DATA AND METHODOLOGY

Subsurface Data and Geotechnical Predictions as Model Targets

Subsurface data — and geotechnical model predictions using these data — underpin our approach.
These are used both to train the GLMs and to subsequently anchor their predictions to reality, such
that predictions near in-situ tests are updated by (i.e., brought in closer agreement with)
geotechnical models. By transferring the prediction target from liquefaction observations to
subsurface data, the potential training set becomes orders-of-magnitude larger and samples Earth’s
terrain more broadly. This is because the sites of in-situ tests do not need to have experienced an
earthquake (i.e., be liquefaction “case histories”) but merely require data that can be input to a
state-of-practice liquefaction model (currently CPT, Vs, or standard penetration test (SPT)
measurements). Given the rise of community data, and research policies and infrastructures that
reward data sharing (e.g., Baker et al., 2024), the disparity between the number of geotechnical
tests and the number of liquefaction observations will only increase. This should allow the models
developed herein to be retrained and improved more frequently, whereas geospatial models that
train directly on liquefaction observations may advance less rapidly, with new data from at most a
few earthquakes annually, each subjecting sample sites to just one level of seismic loading.
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Fig. 1. Spatial distribution of CPT training and test data (a) globally, with a closer look at
(b) the conterminous United States and (c) New Zealand.

In this study we focus on CPTs and compile ~37,000 total tests from 48 U.S. states and 19
countries, as mapped in Fig. 1. Sources include prior international compilations (Geyin and
Maurer, 2021a) and existing databases in Italy (Regione Emilia-Romagna, 2024), New Zealand
(New Zealand EQC, 2016), and the United States (USGS, 2019). Considerable data were also
newly compiled for this project from several thousand analog sources — focusing on North America
— and are digitally available from Sanger et al. (2024a) and Rasanen et al. (2024). Although this
collection of data is in many ways unprecedented, some regions of interest are still poorly
represented and additional data is needed, as always, while other regions are data rich (e.g., Italy,
New Zealand, United States), evoking questions of model bias. To address these issues, this study
includes: (i) parameter distributions comparing the training set with global conditions; (ii) several
types of unbiased model tests; and (iii) maps depicting the degree to which model predictions are
influenced by geotechnical data. Additionally, the models are constrained to the training domain
of select, influential parameters, meaning the models generally do not make predictions for
conditions unencountered in training. These and other limitations and uncertainties are further
discussed later.

Each CPT was subjected to a loading array defined by peak ground accelerations (PGAs) of
0.05 g to 2.0 g and rupture magnitudes of 4.5 to 9.0. For each loading, the factor-of-safety against



liquefaction triggering was computed as a function of depth using the Idriss and Boulanger (2008)
model, which has been shown, to a statistically significant degree, to perform at least as well as all
other models common in practice (Geyin et al., 2020). Soil fines content was estimated from the
CPT soil-behavior-type-index, Ic (Robertson, 2009), via the Boulanger and Idriss (2016) model,
except in New Zealand where the regional model of Maurer et al. (2019) was used. Soils with Ic
>2.5 were assumed not susceptible to liquefaction per Maurer et al. (2019). Corrections for CPT
volume-averaging effects (e.g., Boulanger and DeJong, 2018) were not applied based on the
findings of Geyin and Maurer (2021b) and Yost et al. (2021). To predict manifestations, or
consequences, of liquefaction at the ground surface, the results from triggering analysis were input
to three models: the liquefaction potential index (LPI) (Iwasaki et al., 1978); a modified LPI,
termed LPIisy (Maurer et al., 2015a); and the liquefaction severity number (LSN) (van Ballegooy
et al., 2014). These models, which each output an index (often called a “vulnerability index”), are
used in land-use planning, hazard mapping, and engineering site-assessment to predict a soil
profile’s cumulative liquefaction response, or damage potential, at the ground surface. Fragility
functions conditioned on LPI, LPI;sy, and LSN have been trained using case-history data to predict
the probabilities of certain outcomes, including ground failure (i.e., deformation and ejecta) (Geyin
and Maurer, 2020), pipeline rupture (Toprak et al., 2019), and foundation damage (Maurer et al.,
2024). Because LPI, LPI;su, and LSN are well known in the literature and available in engineering
software (e.g., CLIQ by GeoLogismiki; Design Studio by Infinity Studio), their formulae are
omitted here but provided in the Supplemental Materials.

Shown in Fig. 2 are the resulting LPI values at four of the ~37,000 CPT sites, plotted as a
function of magnitude-scaled PGA (PGAu). The relationship between LPI and PGAy is a unique
signature of each site, with no two sites having identical responses. If it were possible to obtain
this signature remotely (i.e., without in-situ data), then the expected liquefaction response across
all levels of loading would, in effect, be predicted. To that end, we fit a simple but flexible
functional form to these data:

0,for PGAy < 0.1g
Eq. 1
A/100233 for PGAy > 0.1g 4D

B

MI(PGAM) = {A " (tan—l(B % (PGAM _

where MI is the manifestation index (i.e., LPI, LPIisy, or LSN), PGAuy is as previously
defined, and 4 and B are independent fitting parameters that will subsequently be predicted by
ML. Eq. (1) is expressly formulated so that 4 and B may be stored in 16-bit format, which
substantially compresses the size of eventual model products. Although 4 and B lack exact
physical meaning, A4 generally captures the cumulative thickness of strata susceptible to
liquefaction (i.e., what MI is attained at relatively high PGAy) and B generally captures the
cumulative liquefaction potential of those strata (i.e., how fast MI increases at relatively low
PGAy). The fitting of Eq. (1) to the MI data results in a fitting error, or uncertainty, that is normally
distributed, unbiased, and very small for most sites. We view this uncertainty as negligible
compared to others, and when considering what Eq. (1) conceptually permits: a geospatial
prediction of liquefaction response that is mechanics-informed and updatable using geotechnical
data, for all seismic loading. And, because 4 and B are event-independent, they can be globally
predicted in advance of their use, at which time LPI, LPl;su, and LSN are computable at low
computational cost. An added advantage of this modularity is that users can pair these predictions
with fragility functions of their choice, making it feasible to tailor products for different needs and



utilize the latest models, since fragility functions are frequently proposed or updated using new
case-history data.
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Fig. 2. Example LPI versus PGAu curves for four sites.

Geospatial Predictors as Model Features

Whereas liquefaction is best modeled considering mechanics, the relationship between geospatial
variables and subsurface traits is empirical, involving many interrelated correlations. Domain
expertise may guide the selection of variables, but there is no expectation these variables will relate
to soil traits in a mechanistic way. In the current effort, two sets of models are developed to predict
LPI, LPIisy, and LSN via parameters 4 and B: (i) a global model, meaning predictors must be
globally available; and (i1) a model specific to New Zealand, which will be used to judge the
potential for region-specific models to perform better. Although global models can train on more
data, region-specific models have two attractions: (i) conditions are likely to be more consistent
(e.g., geology, geomorphology, and climate); and (ii) better predictor variables may be available,
with higher resolution or more regional specificity, as compared to those with global coverage.
For these reasons, the relationships between variables and targets could have less variance in a
regional setting. New Zealand was chosen for this pilot because it has a large amount of
geotechnical data and several region-specific predictors (e.g., national models of groundwater,
Vs30, geology, and soils).

A total of 37 variables were ultimately chosen for the global models through an iterative
process that considered correlation structures, measurements of variable importance and model
performance, overfitting behavior, and the authors’ judgement, both in selecting provisional
variables and when inspecting final products. The name, spatial resolution, and source of each
variable is in Table 1. Most variables are available at multiple spatial resolutions, but only one was
ultimately adopted through the process above. Many other provisional variables were omitted
entirely (e.g., mean annual precipitation). Table S1 in the Supplemental Materials provides
additional information for each variable, including definitions, descriptions, and hyperlinked
sources. However, the end-user is reminded that these variables are not required to execute the



models (in contrast to other geospatial models), since model predictions will be stored as mapped

parameters A and B.

Table 1. Summary of predictor variable information.

Variable Units Resolution Source

Bulk density kg/m3 | 250 m Hengl (2018a)

Clay fraction kg/kg | 250 m Hengl (2018b)
Compound topographic index (CTI) - ~90 m (3 arc-sec) Amatulli et al. (2020)
Convergence -- ~90 m (3 arc-sec) Amatulli et al. (2020)
Depth to bedrock cm 250 m Shangguan et al. (2017)
Depth to groundwater m ~100 m Fan et al. (2013)
Distance to coast km ~1100 m (0.01 deg) | NASA (2020)

River distances (Flow orders 1-8) m 250 m Lehner and Grill (2013)
Elevation standard deviation m ~90 m (3 arc-sec) Amatulli et al. (2020)
Geomorphon -- ~90 m (3 arc-sec) Amatulli et al. (2020)
Height above nearest drainage (HAND) | m 1000 m Nobre et al. (2011)
Landform entropy - 1000 m Amatulli et al. (2018)
Landform Shannon index - 1000 m Amatulli et al. (2018)
Landform uniformity - 1000 m Amatulli et al. (2018)
Major -- 1000 m Amatulli et al. (2018)
Maximum multiscale deviation (MMD) | -- ~90 m (3 arc-sec) Amatulli et al. (2020)
Maximum multiscale roughness (MMR) | deg ~90 m (3 arc-sec) Amatulli et al. (2020)
Profile curvature rad/m | ~90 m (3 arc-sec) Amatulli et al. (2020)
Roughness m ~90 m (3 arc-sec) Amatulli et al. (2020)
Sand fraction g/kg 250 m Hengl (2018c¢)

Scale of the MMD - ~90 m (3 arc-sec) Amatulli et al. (2020)
Scale of the MMR deg ~90 m (3 arc-sec) Amatulli et al. (2020)
Silt fraction kg/kg 250 m Hengl (2018d)

Soil class -- 250 m Hengel and Nauman (2018)
Tangential curvature rad/m | ~90 m (3 arc-sec) Amatulli et al. (2020)
Terrain ruggedness index (TRI) m ~90 m (3 arc-sec) Amatulli et al. (2020)
Topographic position index (TPI) m ~90 m (3 arc-sec) Amatulli et al. (2020)
Topographic slope % ~90 m (3 arc-sec) Amatulli et al. (2020)
Vector ruggedness measure (VRM) m ~90 m (3 arc-sec) Amatulli et al. (2020)
Vs30 m/s 100 m Heath et al. (2020)
Water content % 250 m Hengel and Gupta (2019)

The variables in Table 1, which were sampled at ~37,000 CPT sites, include measurements
derived from elevation models and hydrologic datasets (e.g., height above nearest drainage,
compound topographic index, distance to rivers of different flow-orders), and predictions made by
other models (e.g., soil class, water content, and clay fraction). The goal of these variables is to
correlate to soil thickness, saturation, density, and typology. To evaluate the potential for model
bias and the need for bias mitigation (e.g., data resampling, variable transformations), the variables
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in Table 1 were also sampled at all locations on earth and the resulting distributions were compared
to those from CPT sites, as shown in Figs. S1-S37. It is apparent from these comparisons that deep
groundwater conditions are underrepresented at CPT locations. Each CPT was therefore duplicated
and randomly assigned a new groundwater depth of up to 50 m. These synthetic data were included
in training so that the ML model better understands the expected liquefaction response (as
predicted by geotechnical models) across a broader spectrum of groundwater conditions.
Importantly, these cases — which are relatively easy to predict once the significance of deep
groundwater is learned — are never included in statistics of model performance. In other words, the
training set includes synthetic data, but the training and test performance metrics will not. For the
New Zealand model, 43 variables were ultimately adopted and sampled at the locations of 16,475
CPTs in New Zealand. Of these, unique variables not used in the global model are summarized in
Table 2 and complete variable information is provided in Table S2. Aside from differing CPT
datasets and predictor variables, the methodologies applied globally and in New Zealand are
otherwise the same.

Table 2. Summary of predictor information for New Zealand that differs from the global model.

Variable Units Resolution Source
Depth to groundwater m ~200 m Westerhoff et al. (2018)
Distance to coast km ~1100 m NASA (2020)
River distances (Strahler orders 1 to 5) m ~100 m LINZ (2020)
Geologic unit, Deposit Type, Age -- 100 m Heron (2018)
Pfafstetter level basin characterization -- ~100 m Lehner and Grill (2013)
Profile curvature rad/m 1000 m Amatulli et al. (2018)
Roughness m 1000 m Amatulli et al. (2018)
Soil depth -- ~200 m McNeill et al. (2018)
Soil drainage -- ~200 m McNeill et al. (2018)
Soil order -- ~200 m McNeill et al. (2018)
Tangential curvature rad/m 1000 m Amatulli et al. (2018)
TRI m 1000 m Amatulli et al. (2018)
TPI m 1000 m Amatulli et al. (2018)
Topographic slope % 1000 m Amatulli et al. (2018)
VRM m 1000 m Amatulli et al. (2018)
Vs30 m/s 100 m Foster et al. (2019)
Model Training

AI/ML techniques allow for more predictive information to be used and increase the potential for
that information to be exploited. Simultaneously, a large majority of existing AI/ML liquefaction
models have serious flaws, as documented by Maurer and Sanger (2023) who reviewed 75 such
models. Among other failings, many publications: (1) did not test against any existing model; (i1)
departed from best practices in model development (e.g., cross validation, unbiased test sets, tests
of statistical significance); and (iii) did not provide a usable model to readers. Consequently, it is
often unclear how well these models perform, why they should be adopted, and how they could
even be used. We are thus keenly aware of the pitfalls with AI/ML tools and address them in our
methodology.
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Having compiled predictor variables at CPT sites where parameters 4 and B were obtained,
the data were parsed into training (90%) and test (10%) sets. Several types of ML algorithms were
used to train provisional models, including different neural networks, and decision tree ensembles
formed by bagging, boosting, or random forests. Through this iterative process, during which the
training, cross validation, and test-set performances were judged for performance and overfitting
behavior, bagged decision-tree ensembles were ultimately chosen, both for the global and New
Zealand models. Decision trees map a specific combination of inputs to an expected output by way
of recursive decision forks. Because a single tree is typically not especially accurate and is prone
to overfitting, trees are usually ensembled. In bagging, which is also known as bootstrap
aggregating, many variants of the training set are sampled via bootstrapping, and each is used to
train a model. The outputs from the various trees are then ensembled, or averaged, to form a
prediction. Owing to this resampling and averaging approach, bagging tends to reduce variance
and avoid overfitting, compared to other ensembling methods. An additional advantage of
decision-tree models is that they are relatively interpretable versus more convoluted model
architectures.

Many model iterations were created using different loss functions, k-fold cross validation
partitions, and predictor variables. The model hyperparameters were individually optimized for
each of the six targets (i.e., 4 and B for LPI, LPI;sy, and LSN) using a parallelized grid search
algorithm to optimize the ten-fold-cross validation mean-square-error (MSE). The adoption of the
MSE loss function gives some preference to reducing major mispredictions at the possible expense
of more minor mispredictions. The final tuned models, which used the predictor variables
summarized in Tables 1 and 2, again employed ten-fold cross validation to mitigate overfitting.
Given the clustering of data in some locales (e.g., the Christchurch, New Zealand, metropolitan
area), a heuristic weighting scheme based on spatial point density was applied. This downweighed
the influence of data in Christchurch by ~50%. Although such weighting diminishes performance
on the training and test sets, it was desirable in pursuit of more generalizable models. The
performance, implementation, and geostatistical updating of these models 1s next discussed.

RESULTS AND DISCUSSION

Model Performance, Application, and Geostatistical Updating

Using these data and methods, 12 distinct ML models were developed to predict A and B for the
three geotechnical models and two datasets. A representative example of performance is shown in
Fig. 3 for the global LPI model’s A and B using its test set. Analogous figures for all models, both
in training and testing, appear in Figs. S38-S49. Prediction residuals (defined throughout this paper
as predicted — observed) are generally unbiased and normally distributed, and 4 is consistently
predicted better than B. This might mean that the thickness of liquefiable material (which relates
more to A) is easier to predict than the liquefaction resistance of that material (which relates more
to B). Another explanation is that 4 does more to define the overall shape of the MI-PGAy curves
(Fig. 2) and is thus a stronger site signature than B, which adds nuance to the curves but is less
important overall. It is worth asking whether the models for B are needed, given their large
variances, or if it would be acceptable to instead make B constant for all predictions. This may be
answered using the Nash-Sutcliffe coefficient, £ (Nash and Sutcliffe, 1970). E = 1.0 indicates a
perfect model whereas E < 0 indicates that adopting a mean value for B would be better than using
a model to predict it. In this case, E values for all global B models are positive and average 0.36.
Thus, while opting not to use the B models might not diminish predictions of MI substantially, it
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is still better to predict B. Because A4 and B lack exact physical meaning, and because they do not
have equal influence in Eq. (1), it is more informative to assess performance by predicting the final
targets (e.g., LPI).
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Fig. 3. Predicted vs. observed LPI A and LPI B for the global model test set.

In this regard, Fig. 4 illustrates LP/ residuals as a function of PGAu for the global model
test set. Across the domain 0 < PGAy < 1 g, these residuals have a median absolute error (MAE)
of 4.5 and a median standard deviation (MSD) of 11, meaning that 68% of LPI prediction errors
are less than 11 and 95% are less than +22. While readers familiar with LP/ could initially judge
these errors as being nontrivial, it is important to note that: (i) large errors are predominantly
associated with large LPI targets; and (ii) errors in LPI become less consequential as LPI increases.
According to the fragility functions of Geyin and Maurer (2020), for example, which predict the
probability of ground failure (PGF’) conditioned on LPI, an error of 20 is less consequential at LP/
= 30 than an error of 2 at LPI = 3. This is because the expected likelihoods and severities of
liquefaction manifestations become relatively constant at large LPI. The same is true of LPI;sy and
LSN, and for this reason, errors are best interpreted after transformation to consequence predictions
(i.e., by predicting outcomes conditioned on these indices). In this context, the MAE and MSD of
4.5 and 11 equate to errors in PGF of 8% and 22%, respectively, per Geyin and Maurer (2020).
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Fig. 4. LPI residuals as a function of PGAy for the global model test set.

This process was repeated for all global and New Zealand models, for which the results on
the test set are summarized in Table 3 (complete performance statistics are provided in Table S3).
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The ML methodology’s ability to mimic predicted LPI and LPI;sy values is very similar, whereas
greater MAE and MSD are observed in the LSN predictions. However, because the mapping of M/
to PGF is least sensitive for variations in LSN (e.g., using the fragility functions of Geyin and
Maurer (2020)), the larger errors in predicted LSN do not usually translate to larger errors in PGF.
Overall, the results in Table 3 suggest the ML models are similarly effective at mimicking PGF
predictions based on any of the three geotechnical models. It must be emphasized, of course, that
accurately mimicking the predictions of a geotechnical model does not guarantee accurate
predictions of liquefaction phenomena (the ML models’ abilities to predict liquefaction will be
tested momentarily). Geotechnical models may also have different efficacies, albeit there is
generally too little global liquefaction case-history data to establish statistical significance or
consensus on which models perform best (e.g., Geyin et al., 2020; Rasanen et al., 2023). For this
reason, users may wish to ensemble the predictions from one or more of the ML models developed
here.

Table 3. Summary of test set performance for global and New Zealand models.

A B MI PGF
Model | o | Standard | p | Standard | b vien | MAE | MSD
Deviation Deviation
Global
LPI-ML 3.0 7.0 5.0 15.5 4.5 11.3 8% 22%
LPIl;sy-ML 3.0 6.8 6.0 17.1 4.6 11.1 6% 25%
LSN-ML 4.0 10.5 18.0 26.8 49 16.7 7% 22%
New Zealand

LPI-ML 7.0 9.7 3.0 9.5 9.5 15.9 5% 24%
LPIisy-ML 7.0 9.9 3.0 10.4 9.8 16.5 4% 25%
LSN-ML 9.0 14.7 21.0 31.6 12.5 23.4 8% 22%

Although ML models have justly been criticized as opaque, interrogative techniques are
continually advancing and the ability to understand ML predictions made from tree-based
architectures 1s nearing that of traditional regression. Insights can be gained, for example, from the
computed predictor importance (e.g., Auret and Aldrich, 2011), which may be interpreted as each
variable’s relative contribution to model predictions. This method of ML interpretation has been
used for prior geohazard models (e.g., Durante and Rathje, 2021; Geyin and Maurer, 2023).
Because variable importances are similar across multiple models, we illustrate average importance
for the global and New Zealand models (Fig. 5) and provide results for all models as Figs. S50-
S63. Unsurprisingly, the most influential variable in both models is groundwater depth, which on
average is ~300 times more influential than the least important variables included, one example of
which is the majority landform class at 1-km resolution. Although the “majority,” which includes
10 classes (e.g., valley, footslope, ridge), is important for a small number of predictions, most
global sample sites reside in the flatlands. At 90-m resolution, the majority landform classification
variable referred to as “geomorphon” (employing the terminology of original datasets used by
Amatulli et al., 2018 and 2020), becomes more important, and notably one of the most important
variables in the New Zealand model. The global and New Zealand models share a handful of
similarly important predictors, but the emergence of regional geology (e.g., the “Simplified
geology” and “Geology deposit type”), as important in the New Zealand model substantiates the
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value of such knowledge in predicting liquefaction hazard. Near-surface geologic information,
which is not consistently available at global scale, was substituted using proxy models like “Sand
fraction,” but future iterations of the presented global model will look to benefit from improved
geologic characterization. It should be noted that predictor importance describes a model’s
behavior, which does not necessarily reflect correlation between predictors and targets,
independent of a model. As an example, a variable could conceivably correlate to a target, but if it
also correlates with other variables, it may have diminished influence on that model’s predictions.

Depth to groundwater Depth to groundwater
River distances River distances
Scale of the MMD Vs30
Distance to coast Scale of the MMR
Sand fraction Simplified geclogy
MMR Depth to bedrock
Depth to bedrock MMR
CTI Geomorphon
MMD Roughness (1km)
Convergence TPI
Vs30 Geology deposit type
Tangential curvature Profile curvature [- New Zealand Avg. ]
O.IO 0?2 0.4 0:0 0:1 0:2 0?3 0.4
Normalized Predictor Importance Normalized Predictor Importance

Fig. 5. Average normalized predictor importance for the global and New Zealand models.

The results in Fig. 5 allude to both the utility and insufficiency of variables in prior geospatial
models. Three of the four capacity variables in Rashidian and Baise (2020), for example, are
measured distance to water (i.e., coastline or rivers) and predicted groundwater depth and V3.
These three variables are consistently important in the ML models. Yet other proxies for soil
thickness (e.g., predicted depth to rock), saturation (e.g., height above nearest drainage, compound
topographic index), depositional environment (e.g., maximum multiscale deviation, roughness),
and typology (e.g., mapped surface geology, predicted sand and silt fractions) are also influential
within the model architecture and lead to predictions that are spatially more nuanced. Notably, the
distance to rivers has more gradation here than in other geospatial models in that it includes
distances to seven different flow volumes (e.g., major rivers, but also seasonal drainages, are
separately considered). The results in Fig. 5 have implications for forward application, since errors
in the most influential variables (e.g., a mispredicted groundwater depth or surface geology) are
more likely to propagate to errors in liquefaction predictions.

The trained models were implemented to predict 4 and B values worldwide by sampling
variables at a resolution of ~90 m (0.000833 degrees). Substantial storage, memory, and processing
capacity were required to: (i) sample ~40 global variables with total file size exceeding 1 TB; (ii)
use these variables to make predictions with all ML models; and (iii) repeat for ~200 million
locations on earth. HPC resources were required to meet computational demands for this work,
made possible through DesignSafe at the Texas Advanced Computing Center (Rathje et al., 2017)
and the University of Washington. To minimize computational requirements and file sizes for end-
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users, and to reduce model extrapolations beyond the training data, predictions were made only
for locations with 90-m topographic slope < 5° (Amatulli et al., 2020). This describes ~98% of
CPT sample locations. Predictions were also not made for lakes (Messager et al., 2016), glaciers
(RGI Consortium, 2023), the Greenland Ice Sheet (Lewis, 2009), and permafrost, both continuous
and discontinuous (Brown et al., 2002). A few small and generally uninhabited islands were also
excluded. With these exceptions, the global and New Zealand models have continuous coverage.

Predictions of 4 and B were next geostatistically updated in the vicinities of CPT
measurements via regression kriging (e.g., Hengl et al., 2007), which merges model predictions
(i.e., “regression”) with spatial interpolation of model residuals (i.e., “kriging”). With this
approach, 4 and B residuals are predicted using nearby CPTs (where residuals are known), and
these predictions are used to update the 4 and B models as needed. Central to this approach is a
semivariogram, which describes the spatial correlation of residuals. Here, a stable semivariogram
was chosen for its best fit of data across all models:

Semivariance (h) = b+ ¢, (1 — e_h /r“) (Eq. 2)

where b is the nugget, or non-spatial variance; c, is the sill which describes the variance
of residuals at distances beyond the range, where residuals become uncorrelated; h is the separation
distance between locations; r is the effective range, or length scale of the model, which represents
the distance over which correlation significantly decreases; and o is the shape parameter, which
describes the model as more Gaussian or more exponential (Wackernagel, 2003). Semivariograms
were individually fit to residuals for the 12 4 and B models using a major range of 1 km and the
resulting parameters are summarized in Table S4. All semivariograms are provided in Figs. S64-
S75. Using this information, residuals were spatially predicted for all ML models. Predicted
residuals approach observed residuals at CPT sites and decay with distance toward zero (the mean
residual for all models), governed by the semivariogram in Eq. (2). In parallel, the variance of
residuals approaches zero at CPT sites and increases toward the overall model uncertainty at
locations distant from CPTs. It should be noted that the nugget in Eq. (2), which governs residuals
at a separation distance of zero (i.e., at CPT sites), is zero, meaning geotechnical measurement or
model uncertainties are not considered. These could be the uncertainties of CPT measurements or
those of LPI, LPI;su, and LSN. The nugget could also reflect sources of spatial variation at distances
smaller than sampling intervals. In other words, 4 and B are quite unlikely to be constant over an
individual 90-m map pixel, contrary to how the maps could be interpreted. However, because the
nugget is not well constrained by the empirical data and would require judgement or additional
data to define, it is here resigned to zero, which is a common default in kriging. This could be
revisited in future model iterations.

Using kriged residuals, the global and New Zealand models were updated such that
predictions of 4 and B (and by corollary, predictions of liquefaction response) are scaled up or
down in the vicinities of CPTs, thereby anchoring the ML models to known conditions. To convey
the degree to which ML predictions are updated by local geotechnical data, the variance of
residuals modeled by regression kriging is given in an accompanying set of maps. We opt to map
a classification of these variances as follows: 3 = total ML model variance (i.e., no geotechnical
influence), 2 = majority ML model variance (i.e., minor geotechnical influence); 1 = minority ML
model variance (i.e., moderate geotechnical influence); and 0 = little to no ML model variance
(i.e., major geotechnical influence). These maps thus communicate where, and to what degree, the
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predicted liquefaction response is influenced by geotechnical data and models. To this end, Fig. 6
demonstrates an example of updating predictions for the LPI model and the associated variance
classifications in San Bernadino, California.

The updated global and New Zealand models and the related variance classifications are
provided as 90-m resolution geotiff files from Sanger et al. (2024b,¢) (see Data Availability) with
separate 4 and B rasters for each of the three geotechnical models. The global models are further
parsed into seven geographical regions. One of these (Oceania) includes New Zealand, providing
one example from which the benefits of region-specific GLMs can be judged. The complete global
and New Zealand file packages are respectively 33 GB and 85 MB. However, if executing one
global model (e.g., LPI) for one continent (e.g., North America), the required files diminish to ~1.5
GB.

Residuals LPIA
W 20 B 29

San Bern'af:iino:_gA

Fig. 6. An example in San Bernadino, California to illustrate LP/ A a) before geotechnical
updating, b) in terms of kriged residuals, and c) after geotechnical updating.

When combined with a “ShakeMap” of PGAu, parameters A and B produce predictions of
LPI, LPIisy, and LSN via Eq. (1). Because these predictions have, in effect, been made for all
locations and all possible earthquakes, the expected liquefaction response is queried at very low
computational expense. A simple script is provided by Sanger et al. (2024d) to implement any of
the developed models. The script is written to interact with USGS ShakeMaps in .xml format,
which are called via a user-input web address. ShakeMaps are easily obtained from USGS or
analogous global organizations, both for countless scenario earthquakes and for those that have
just occurred. As with other geospatial models, predictions can be made in near-real-time to inform
response, reconnaissance, and decision-making in the aftermath of an event. For consistency with
how the models were trained, PGAy should be computed from PGA with the magnitude-scaling
factor of Idriss and Boulanger (2008):

PG

PGAy = ~=, where MSF = 6.9 exp (=) — 0.058 < 1.8 (Eq. 3)

17



where M = moment magnitude and PGA is that at the surface, having been corrected for
site effects (e.g., the PGA in any USGS ShakeMap). The resulting event-specific mapped
predictions of LPI, LPIlisy, and LSN can be propagated via fragility functions, or “damage”
functions, that have been conditioned on M/ to predict the probabilities of various outcomes (e.g.,
Geyin and Maurer, 2020, Toprak et al., 2019, Maurer et al., 2024). In this paper, results are
presented as probability of liquefaction-induced ground deformation or ejecta observed at the
surface (i.e., the probability of observing at least one liquefaction manifestation in the given map
pixel, “PGF”) using the fragility functions of Geyin and Maurer (2020). These are the fragility
functions recommended for general use of the presented models.

To demonstrate model application and the effects of updating, the global model is here
applied to the 11 February 2012, Mw6.1 Christchurch, New Zealand, earthquake. Results are
shown in Fig. 7 for a portion of Christchurch, centered on the Burwood neighborhood, which
experienced widespread liquefaction. CPT sites are also mapped and are symbolized based on
whether liquefaction manifestations were observed, as compiled by Geyin et al. (2021). Predictions
by the geospatial model of Rashidian and Baise (2020), henceforth RB20, are shown in Fig. 7A
and somewhat underpredict manifestations, with sites of positive observation having a modal
probability of 47%. Predictions by the global ML model, before and after updating, are shown in
Figs. 7B and 7C, respectively. As compared to RB20, the manifestation probabilities predicted by
the ML model tend to be higher, especially in the east of the mapped area, and have more spatial
nuance due to the inclusion of more geospatial information. This nuance is increased by updating,
which in Fig. 7C can generally be observed to improve predictions. ML predictions tend to be
scaled up and down, respectively, in areas with and without observed liquefaction. It is emphasized
that this updating is not driven by liquefaction observations, but rather, by geotechnical data and
models that more correctly predict these observations. The classified variance of kriged residuals
is shown in Fig. 7D, from which a user can quickly understand where predictions are predominated
by geotechnical models, and where they are purely those of ML.

The ML models developed here will ultimately be judged in the context of predicting
liquefaction effects in the field. To that end, we conduct tests to answer three research questions
and compare against predictions by RB20. Because variants of RB20 are in use, we also execute
that which is adopted in the USGS ground failure product with ad-hoc modifications (Allstadt et
al., 2022), as well as the Zhu et al. (2017) model upon which RB20 is based. These three versions
are very similar; thus, we report performance that which performs best in each test. To quantify
model performance, the Brier Score (BS) is adopted:

Brier Score (BS) = %Z?’:l(Pi - 0,)? (Eq. 4)

where P is the predicted probability, O is the observed probability (0 or 1), N is the total
number of observations, and i is the observation index. The BS is essentially MSE for probabilistic
classification models. BS = 0 defines a perfect model, BS = 1 denotes a perfectly useless model,
BS = 0.5 represents a model which randomly predicts the outcome, and BS = 0.25 represents a
model which estimates predicted probability of 50% for every event. Therefore, a BS < 0.25 is
considered a “good” model, increasingly good as BS approaches 0. The BS simultaneously
measures: (i) the degree to which positive and negative class distributions are segregated by a
model; and (i1) the degree to which this segregation centers on a probability of 50%. Although the
first of these could instead be measured by the area under a receiver-operating-characteristic curve
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(i.e., ROC AUC) (e.g., Fawcett, 2006), AUC does not consider the latter. A model could have a
perfect AUC but the model output at which two classes are best separated could be very far from
50% probability. The AUC is thus better suited for models that output an index without statistical
meaning, such as LPI. To account for finite-sample uncertainty, we compute p-values via bootstrap
sampling and use these results to test for statistical significance, adopting the common significance
threshold of 0.05. These values convey the probability that any two BS values came from the same
population (i.e., that differences in model performance arose by chance and not because one model
is better than another). Any p-value below 0.05 denotes that one model’s BS differs from another’s
with at least 95% confidence.

Testing performance on “unseen” case histories

The first question is: how does the ML model perform prior to updating with geotechnical data
and models? In other words, how do the ML and RB20 models compare in regions unknown to
each model’s training set and devoid of CPT data? We use three liquefaction inventories that
postdate RB20’s training set and which occurred in regions where no CPTs were compiled in the
current effort: the 2019 Ridgecrest (Zimmaro et al., 2020), 2019 Puerto Rico (Allstadt and
Thompson, 2021), and 2023 Turkey earthquakes (Cetin et al., 2023; Taftsoglou et al., 2023).
Negative observations were randomly sampled from the extents of each event’s ShakeMap, such
that map cells without positive observations were assumed negative. Although this assignment is
obviously uncertain, it is a pragmatic and common assumption in the geospatial modeling
literature, permitting an assessment of performance to be made over a very large area. In addition
to the three surrogate geotechnical models, we test the performance of these models when
averaged, or ensembled. The results of this test are in Table 4. The LPI;sy model performed best
of the three ML models, which all outperformed RB20 to a statistically significant degree.

Table 4. Summary of global model performance in unbiased testing.

Model BS p-Value against RB20
RB20 0.27 --
LPI-ML 0.13 <0.001
LPIisy-ML 0.13 <0.001
LSN-ML 0.16 <0.001
Ensemble 0.13 <0.001
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Fig. 7. An example in Christchurch, New Zealand to illustrate the predicted PGF according to a)
RB20, and according to the presented global model b) before and c) after geotechnical updating,
as well as the d) classified variance of geotechnical model influence on the predictions.
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Testing distributed global performance before and after updating.

The second question is: does updating improve model performance? In other words, how does
each ML model perform before and after updating at sites with CPTs, and how does this compare
to RB20? We adopt the inventory of 332 liquefaction case histories compiled from 25 global
earthquakes by Rateria et al. (2024). This compilation includes both positive and negative
observations made at the locations of CPTs. This evaluation includes bias that is difficult to
quantify. RB20 previously trained on liquefaction inventories from 21 of these earthquakes and
the ML models were similarly trained on CPTs from ~90% of sites tested here (albeit these sites
represent less than 1% of the total training set). In these tests the three ML models perform very
similarly and see a similar, modest improvement from updating. This indicates the ML models
predict response relatively accurately without subsurface measurements, but that knowledge from
such measurements does improve performance further. The ML models outperform RB20 by a
statistically significant margin, increasingly so after updating, as summarized in Table 5.

Table 5. Summary of global model performance in global case histories.

Model BS p-Value against RB20
RB20 0.30 -
Before Updating
LPI-ML 0.24 0.01
LPILisg-ML 0.23 0.02
LSN-ML 0.25 0.005
Ensemble 0.23 0.009
After Updating
LPI-ML 0.22 <0.001
LPlLisg-ML 0.21 <0.001
LSN-ML 0.23 <0.001
Ensemble 0.21 <0.001

Testing the efficacy of regional models

The third question is: can model regionalization improve performance? We adopt an inventory of
16,836 observations compiled by Geyin et al. (2021) after three earthquakes in Canterbury, New
Zealand: the 4 Sept. 2010 My7.1 Darfield, 22 Feb. 2011 My6.2 Christchurch, and 14 Feb. 2016
My,5.7 Christchurch ruptures. Because these observations were made at CPT sites, the global and
New Zealand models give nearly identical predictions after geotechnical updating. For this reason,
we assess ML model performance prior to updating and compare against RB20, as summarized in
Table 6. In general, the region-specific ML models perform marginally better than their global
counterparts. Due to the large number of observations, these differences tend to be statistically
significant. Still, the less than dramatic improvement suggests that region-specific models may not
be successful elsewhere, given that New Zealand has both considerable geotechnical data and
high-quality regional variables. These advantages may be outweighed by the benefits of learning
from substantially more data. All ML models significantly outperform RB20, albeit this test is not
without bias. RB20 trained on inventories from two of these three events, which all affected the
same area, and the ML models were trained on CPTs from this affected region, albeit these CPTs
were down weighted during training due to their high spatial density. Collectively, results from
the three tests suggest that the ML models developed herein warrant adoption and further testing.
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Table 6. Summary of global and New Zealand model performance in case histories from
Canterbury earthquake sequence.

Model BS p-Value against RB20
RB20 0.20 --
Global
LPI-ML 0.16 <0.001
LPlLisi-ML 0.14 <0.001
LSN-ML 0.18 <0.001
Ensemble 0.15 <0.001
New Zealand
LPI-ML 0.16 <0.001
LPlLisi-ML 0.14 <0.001
LSN-ML 0.17 <0.001
Ensemble 0.16 <0.001

Limitations, Uncertainties, and Future Work

The developed models are subject to limitations and uncertainties not yet discussed. First, using
triggering models other than Idriss and Boulanger (2008) could have altered predictions of LPI,
LPIisu, and LSN. However, because the fragility functions used in forward application are specific
to Idriss and Boulanger (2008), any systematic shifts in triggering predictions by another model
would be mitigated using a fragility function specific to that model (e.g., Geyin and Maurer, 2020).
More broadly, the adopted geotechnical models will inevitably be supplanted. Our methodology
should improve as these underpinning models improve, and as additional geotechnical data
become available, both for training and updating. An important caveat pertains to lateral spreading.
Although cases of lateral spreading were included in the preceding tests, they depend on factors
not considered by LPI, LPI;su, nor LSN, which can thus predict it poorly (e.g., Maurer et al. 2015b).
This might be improved by merging the predicted LPI with topographic data, as formulated by
Rashidian and Gillins (2018), but this possibility was not tested.

Second, CPTs may be preferentially performed in ground where liquefaction hazards are
expected and/or where premature refusal is less likely. If so, the proposed models might
overpredict liquefaction, particularly in regions unrepresented in training, albeit the limited tests
performed here do not indicate any such tendency. Nonetheless, SPTs could help evaluate this
possibility and improve the model in geologies and regions where CPTs are uncommon. Moreover,
it should be recognized that model uncertainties could exceed those indicated by the test statistics
in data-poor areas. As more geotechnical data become available, the presented models can be
updated in two ways: (1) model retraining; and (ii) model re-kriging. The first is computationally
expensive and unlikely to result in major changes unless the new data are large in quantity or
otherwise expand parameter space of the current training set. The second could feasibly be done
frequently, including by those who wish to geostatistically update the ML models with emergent
or proprietary data for a specific municipality, large project site, or network of distributed
infrastructure.

Third, the ML models are inherently limited by the accuracies and spatial resolutions of
geospatial predictors, some of which are themselves prediction models. Mispredictions of
liquefaction are therefore more likely where influential variables such as the predicted
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groundwater depth are inaccurate, where subsurface conditions change at a finer scale than the
geospatial variables, or where subsurface conditions are otherwise uncaptured by those variables.
Terrain abutting flat land could erroneously be predicted to liquefy, for example, or deposits highly
susceptible to liquefaction, such as artificial fill, could go unnoticed unless sampled by CPTs. It is
also conceivable that variables could be judged as unimportant in the current models, or may have
been omitted entirely, because the training data are insufficient to elucidate their predictive value.
Conversely, variables could mistakenly be judged as important if correlations in the data falsely
suggest causality. This is true of any empirical model. Although domain knowledge was used to
omit variables and several overfitting techniques were employed, additional data are inevitably
desired for further development.

Lastly, geostatistical updating could be performed using other methods that could alter
expectations of liquefaction in the vicinity of CPTs. Our updating was not bound by predictor
variables but possibly could be. As an example, an overprediction of 4 or B in a sandy deposit may
not necessarily indicate that 4 or B is also overpredicted in a gravelly deposit several hundred
meters away, in contrast to what a univariate semivariogram conveys. Although improvements are
inevitably warranted, this study proposed and demonstrated a new approach to developing GLMs
that arguably has many merits. Ultimately, additional data and analyses will verify or refine the
results shared here and succinctly summarized below.

CONCLUSIONS

Using mechanics-informed machine learning, this study trained and tested surrogate models to
predict soil liquefaction using geospatial information. Two models were developed to mimic three
different geotechnical models: one globally applicable, and one specific to New Zealand. These
models have several conceptual advantages over prior geospatial approaches, as detailed in the
introduction, and were shown to provide improved predictions in test applications. These tests
suggested that the geospatial ML models themselves (i.e., prior to geotechnical updating via
kriging) outperform other geospatial methods, and that updating further improves their
performance. Tests of the New Zealand model suggested that while region-specific models may
perform best, their benefits could be largely negated by the advantages of learning from
substantially larger global datasets. Although developed using a large body of geospatial
information, machine learning, and high-performance computing, the models are packaged in an
easy-to-use format that requires only simple arithmetic to execute, and which encourages adoption
and further testing.
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PROJECT DATA

The geotechnical and geospatial data used in model development are all publicly available, as
described and referenced in the text. The model products are available from the DesignSafe Data
Depot, including:

(1) global GLM geotiffs for LPI, LPIisu, and LSN: Sanger et al. (2024b);
(i1) New Zealand GLM geotiffs for LPI, LPIisu, and LSN: Sanger et al. (2024c¢); and
(ii1))  an example model-use script for Python (Jupyter Notebook): Sanger et al. (2024d).
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SUPPLEMENTAL MATERIALS

Part 1: Manifestation Indices (MIs)

To predict manifestations, or consequences, of liquefaction at the ground surface the results from
triggering analysis were input to three models: the liquefaction potential index (LPI) (Iwasaki et
al., 1978); a modified LPI, termed LPI;isy (Maurer et al., 2015); and the liquefaction severity
number (LSN) (van Ballegooy et al., 2014). These models, which each output an index (often called
a “vulnerability index”), are widely used in land-use planning, hazard mapping, and engineering
site-assessment to predict a soil profile’s cumulative liquefaction response, or damage potential,
at the ground surface. In the following, these three indies are defined and differences between them
are discussed.

The Liquefaction Potential Index (LPI) is defined as (Iwasaki et al. 1978):

z=20m

LPI = [ f(FSyg) - f(2)dz (S1)
where F§;, is factor-of-safety against liquefaction and z is depth in meters, such that:

1—FSuy  FSu <1
f(FSuq) = { 0, FSy =1

_(10-05z, z<20m
f(Z)_{ 0, z>20m

Here, F(FSiiq) and w(z) are functions that weigh the respective influences of FSji; and z on
surface manifestation. LP/ thus assumes that surface manifestation depends on the thickness of all
liquefied strata in a profile’s upper 20 m, their proximity to the ground surface, and the amount by
which FSj;, in each stratum is less than 1.0. LPI can range from zero to 100.

A modified LPI was proposed by Maurer et al. (2015) and inspired by Ishihara (1985), who
proposed limit-state curves for predicting manifestations as a function of the “crust” thickness
(H1), among other factors. Using these curves, Maurer et al. (2015) modified LP! to include the
observed influence of H;. Given its provenance, the result was termed LPI;sy and is defined by:

20m

LPlLgy = le F(FSyq) - w(2) dz (S2)
where FS;;, is factor-of-safety against liquefaction and z is depth in meters, such that:

1—FSjq, if FSjig <1 NHy-m(FS;;q) <3
f(FSliq):{ llg lf lig 1 m( llq)

otherwise

m(FSl- ) = exp > -1
1 25.56(1 — FSy;q)

In Eq. (S2), F(FSiy) and w(z) have the same objective as in LPI, but are functionally
different, such that F(FSi4) accounts for the crust thickness through parameter H; and w(z) is
defined by w(z) = 25.56 - z'!. Maurer et al. (2015) recommended a minimum H; of 0.4 m, even if
liquefiable soils are present at shallower depths. Provided this constraint, LPI;sy can range from
zero to 100.
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The Liquefaction Severity Number (LSN) is adapted from methods for estimating post-
liquefaction volumetric strain (e.g., to predict ground settlement), modified to include a power-
law depth weighting function (van Ballegooy et al. 2014):

o & "w(2)dz (S3)

where &, is volumetric strain (%) and w(z) = 10 - z"'. While there are many methods to
estimate &, van Ballegooy et al. (2014) used that of Zhang et al. (2002), which we also adopt. LSN
values can surpass 100 if liquefiable soils are near the surface, but typically are between zero and
100. These values are not quantities of predicted settlement, but rather, are index values & la LP/
and LPIsy that correlate to the probability of surface manifestation.

Distinctions between LPI, LPI;su, and LSN are noted as follows. First, the depth weighting
functions, which account for the influence of depth of liquefied strata on surface manifestation, all
differ. LPI employs a function that decays linearly with depth, whereas LPIisy and LSN use
nonlinear functions that weigh near-surface soils exponentially more than soils at greater depth.
These models also account for the influence of liquefaction triggering differently. LPI and LPIisy
use FSiy and apply a linear weighting, such that soils with FSj;, closer to zero are weighted more,
and soils with FSi; above one are weighted none. Conversely LSN transforms the FSiq, into &,,
which may have conceptual advantages. Namely, €, accounts for the fact that soils with FS;; > 1
could possibly contribute to surface manifestation, given that excess pore pressure could be
generated, and caps the contribution for soils with very low FSji4, given that the consequences may
not differ for soils with FSi; = 0 versus, say, FSii; = 0.4. A possible detraction to this cap is that a
soil with computed FSji; = 0 is more likely to liquefy than one with computed FSj;; = 0.4, but the
treatment of these two predictions as identical removes consideration of this likelihood. Finally,
LPIsy has a unique feature in that it explicitly accounts for the crust thickness through parameter
Hj, such that there is a crust thickness beyond which surface manifestation is next expected,
regardless of the FSi, at depth. In contrast, LP/ and LSN account for the crust thickness more
implicitly and loosely via their depth weighting factors.
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Part 2: Additional Figures
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Fig. S1. Training data predictor parameter distribution: Bulk density.
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Fig. S2. Training data predictor parameter distribution: Clay fraction.
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Fig. S3. Training data predictor parameter distribution: Compound topographic index.
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Fig. S4. Global model training data predictor parameter distribution: Convergence.
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Fig. SS. Global model training data predictor parameter distribution: Depth to bedrock.

Hl Global Data
[ Training Data

o
a

0.01

Normalized Frequency

0.001

0.0001
0 25 50 75 100 125 150 175 200
Depth to groundwater (m)

Fig. S6. Global model training data predictor parameter distribution: Depth to groundwater.
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Fig. S7. Global model training data predictor parameter distribution: Distance to coast.
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Fig. S8. Global model training data predictor parameter distribution: Distance to river orders 1-2.
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Fig. S9. Global model training data predictor parameter distribution: Distance to river orders 1-3.
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Fig. S10. Global model training data predictor parameter distribution: Distance to river orders 1-
4.
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Fig. S11. Global model training data predictor parameter distribution: Distance to river orders 1-
5.

I CGlobal Data
1 Training Data

P 0.1
Qo
c
[
=
o
o
L
< 0.01
@
N
©
£
]
Z  0.001
0.0001 T T
0.0 0.2 0.4 0.6 0.8 1.0
Distance to river orders 1-6 (m) 1e6

Fig. S12. Global model training data predictor parameter distribution: Distance to river orders 1-
6.
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Fig. S13. Global model training data predictor parameter distribution: Distance to river orders 1-
7.
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Fig. S14. Global model training data predictor parameter distribution: Distance to river orders 1-
8.
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Fig. S15. Global model training data predictor parameter distribution: Elevation standard
deviation.
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Fig. S16. Global model training data predictor parameter distribution: Geomorphon.
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Fig. S17. Global model training data predictor parameter distribution: Height above nearest

drainage.
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Fig. S18. Global model training data predictor parameter distribution: Landform entropy.
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Fig. S19. Global model training data predictor parameter distribution: Landform Shannon index.
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Fig. S20. Global model training data predictor parameter distribution: Landform uniformity.
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Fig. S21. Global model training data predictor parameter distribution: Major classification.
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Fig. S22. Global model training data predictor parameter distribution: Maximum multiscale
deviation.
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Fig. S23. Global model training data predictor parameter distribution: Maximum multiscale

roughness.
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Fig. S24. Global model training data predictor parameter distribution: Profile curvature.
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Fig. S25. Global model training data predictor parameter distribution: Roughness.
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Fig. S26. Global model training data predictor parameter distribution: Sand fraction.
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Fig. S27. Global model training data predictor parameter distribution: Scale of maximum
multiscale deviation.
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Fig. S28. Global model training data predictor parameter distribution: Scale of maximum
multiscale roughness.
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Fig. S29. Global model training data predictor parameter distribution: Silt fraction.
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Fig. S30. Global model training data predictor parameter distribution: Soil classification.
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Fig. S31. Global model training data predictor parameter distribution: Tangential curvature.
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Fig. S32. Global model training data predictor parameter distribution: Terrain ruggedness index.

47



I Global Data

[ Training Data

o
a

0.01

Normalized Frequency

0.001

0.0001

Topographic position index

Fig. S33. Global model training data predictor parameter distribution: Topographic position
index.
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Fig. S34. Global model training data predictor parameter distribution: Topographic slope.
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Fig. S35. Global model training data predictor parameter distribution: Vector ruggedness
measure.
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Fig. S36. Global model training data predictor parameter distribution: V3o.

49



1

Hl Global Data
[ Training Data

= 01

[+

c

Q

=

T

o

[N

<  0.01

O

N

©

£

c

Z  0.001

0.0001 T T

0 20 40 60 80 100
Water content (%)

Fig. S37. Global model training data predictor parameter distribution: Water content.
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Fig. S39. Histograms of predicted error in LPI A and B for the global model testing set (Fig. 3).
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Fig. S40. Histograms of predicted error in LPlish A and B for the global model training set.
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Fig. S41. Histograms of predicted error in LPlish A and B for the global model testing set.

15000 A

12500 A

10000 +

7500 A

Frequency

5000 A

2500

0
-100

T
-50 0
Errorin LSN A

50

100

5000 -

4000 -

Frequency
N} w
o o
o o
o o

L l

1000

-100

100

=50 0 50
Error in LSN B

Fig. S42. Histograms of predicted error in LSN A and B for the global model training set.
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Fig. S43. Histograms of predicted error in LSN A and B for the global model testing set.
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Fig. S44. Histograms of predicted error in LPI A and B for the New Zealand model training set.
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Fig. S45. Histograms of predicted error in LPI 4 and B for the New Zealand model testing set.
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-50 0

Errorin LSN A

50

100

53

Frequency

700 A
600
500 -
400
300 A
200 A

100

-100

-50

0
Error in LPlish B

50

100

2000

1500

1000

Frequency

500

0 =
-100

-50 0

Errorin LSN B

50

100



250 7 200 .
200 A
Py = 150 -
e e
ﬂg’_ 150 A ﬂg’_
o @ 100 -
L 100 -+ L
50 - 50 4
0 - 0 -
-100 -50 0 50 100 -100 -50 0 50 100
Errorin LSN A Errorin LSN B

Fig. S49. Histograms of predicted error in LSN A and B for the New Zealand model testing set.
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Fig. S50. Average normalized predictor importance for the most important variables in the
global model (Fig. 5a).
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Fig. S51. Normalized predictor importance for the most important variables in the global LPI A
model.
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Fig. S52. Normalized predictor importance for the most important variables in the global LPI B
model.
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Fig. S53. Normalized predictor importance for the most important variables in the global LPlish
A model.
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Fig. S54. Normalized predictor importance for the most important variables in the global LPlish
B model.
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Fig. S55. Normalized predictor importance for the most important variables in the global LSN 4
model.
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Fig. S56. Normalized predictor importance for the most important variables in the global LSN B
model.
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Fig. S57. Average normalized predictor importance for the most important variables in the New
Zealand model (Fig. 5b).

Depth to groundwater
River distances

Vs30

Scale of the MMR
Soil order

MMR

Simplified geology
Distance to coast
Geology deposit type
Depth to bedrock

Profile curvature

Soil drainage (B New Zealand LPIA|

T T T

) ) T
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Normalized Predictor Importance

Fig. S58. Normalized predictor importance for the most important variables in the New Zealand
LPI 4 model.
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Fig. S59. Normalized predictor importance for the most important variables in the New Zealand
LPI B model.
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Fig. S60. Normalized predictor importance for the most important variables in the New Zealand
LPlish A model.
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Fig. S61. Normalized predictor importance for the most important variables in the New Zealand
LPlish B model.
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Fig. S62. Normalized predictor importance for the most important variables in the New Zealand
LSN A model.

60



Depth to groundwater
River distances

Vs30

Geology deposit type
Simplified geology
Scale of the MMR
Soil order

Geologic age class

MMR
Tangential curvature (1km)
Geomorphon
- (EEE New Zealand LSN B |
I 1 1 1 T 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Normalized Predictor Importance

Fig. S63. Normalized predictor importance for the most important variables in the New Zealand

LSN B model.
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Fig. S64. Semivariogram used in regression kriging: LPI A in New Zealand.
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Fig. S65. Semivariogram used in regression kriging: LP/ B in New Zealand.
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Fig. S66. Semivariogram used in regression kriging: LPlish A in New Zealand.
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Fig. S67. Semivariogram used in regression kriging: LPlish B in New Zealand.
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Fig. S68. Semivariogram used in regression kriging: LSN 4 in New Zealand.
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Fig. S69. Semivariogram used in regression kriging: LSN B in New Zealand.
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Fig. S70. Semivariogram used in global regression kriging: LPI A.
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Fig. S71. Semivariogram used in global regression kriging: LP/ B.
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Fig. S72. Semivariogram used in global regression kriging: LPlish A.
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Fig. S73. Semivariogram used in global regression kriging: LPlish B.
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Fig. S74. Semivariogram used in global regression kriging: LSN 4.
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Part 3: Additional Tables

Table S1. Global model predictor variable information.
Variable Description Units Spatial Resolution Source Access link
https://stac.openlandmap.org/bulkdens.fineearth_usda.4alh/bulkd
. Soil bulk density (fine earth) at 100 cm depth. Based on machine learning ens.fineearth_usda.4alh 19500101 20171231/bulkdens.fineearth
Bulk density predictions from global compilation of soil profiles and samples. kg/m3 250m Hengl (20182) usda.4alh 19500101 20171231.json?.asset=asset-
bulkdens.fineearth usda.4alh m 250m_b100cm
. Clay content in % at 100 cm depth. Based on machine learning )
Clay fraction predictions from global compilation of soil profiles and samples. kg/kg 250 m Hengl (2018b) https://zenodo.org/records/2525663
Compound topographic index, or topographic wetness index, is the
Compouqd topographic logarithm of the cumulative up strearp catchment area divided by t.h © -- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
index tangent of the local slope angle. It is a proxy of the long-term soil
moisture availability.
Convergence is a terrain index that highlights the convergent areas as
Convergence channels and divergent areas as ridges. It ranges from —100 for ridges to -- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
+100 for sink areas and 0 for planar or flat areas.
Depth to bedrock Depth to bedrock. om 250 m Shangguan et al. (2017) https://agupubs.onlmehbrary.(\;\gézxgzom/do1/fu11/ 10.1002/2016MS
Depth to groundwater Depth to groundwater. m ~100 m Fan et al. (2013) https://www.science.org/doi/10.1126/science. 1229881
. Distance to coast as an interpolated geottiff to the 0.01-degrees from a ~1100 m (0.01 https://oceancolor.gsfc.nasa.gov/images/resources/distfromcoast/
Distance to coast 0.04-degree data set. km degrees) NASA (2020) GMT intermediate coast distance 01d.zip
1-2
1-3
. 1 -4 . . .
Dlstgnce 1-5 Distance to river computed for different flow orders (order 1-2, 1-3, 1-4, m 250 m Lehner and Grill (2013) https://www.hydrosheds.org/products/hydrorivers
to river 1-5, 1-6, 1-7, 1-8).
1-6
1-7
1-8
Elevation standard deviation is a measure of the amount of elevation
Elevat1op s'tandard variation within a dgtqset computgd using a 3 X 3 moving window, Sl.lCh m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
deviation that values near 0 indicate no variation, (i.e. flat areas), and areas with
large values indicate high variation (i.e., very steep terrain).
Geomorphon, or geomorphological phonotypes, consists of 10 classes of
Geomorphon geomorphologlcg I fprms extracted from DEMs. The features include: flat, -- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
peak or summit, ridge, shoulder, spur, slope, hollow, footslope, valley,
and pit or depression.
Height abpve nearest Height above nearest d?alnag-e (HAND) norma.hzes topography according m 1000 m Nobre et al. (2011) https./ece-community-catalog.ore/projects/hand/
drainage to the relative height along the drainage network.
Entropy is a gray-level co-occurrence matrix (GLCM)-based second-
Landform entropy order image texture metric. It quantifies the disorderliness of pixel values -- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840

(i.e., landform types), where a higher value indicates a more random
distribution of landform types within an aggregated window.
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https://stac.openlandmap.org/bulkdens.fineearth_usda.4a1h/bulkdens.fineearth_usda.4a1h_19500101_20171231/bulkdens.fineearth_usda.4a1h_19500101_20171231.json?.asset=asset-bulkdens.fineearth_usda.4a1h_m_250m_b100cm
https://stac.openlandmap.org/bulkdens.fineearth_usda.4a1h/bulkdens.fineearth_usda.4a1h_19500101_20171231/bulkdens.fineearth_usda.4a1h_19500101_20171231.json?.asset=asset-bulkdens.fineearth_usda.4a1h_m_250m_b100cm
https://stac.openlandmap.org/bulkdens.fineearth_usda.4a1h/bulkdens.fineearth_usda.4a1h_19500101_20171231/bulkdens.fineearth_usda.4a1h_19500101_20171231.json?.asset=asset-bulkdens.fineearth_usda.4a1h_m_250m_b100cm
https://stac.openlandmap.org/bulkdens.fineearth_usda.4a1h/bulkdens.fineearth_usda.4a1h_19500101_20171231/bulkdens.fineearth_usda.4a1h_19500101_20171231.json?.asset=asset-bulkdens.fineearth_usda.4a1h_m_250m_b100cm
https://zenodo.org/records/2525663
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000686
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000686
https://www.hydrosheds.org/products/hydrorivers
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://gee-community-catalog.org/projects/hand/
https://www.nature.com/articles/sdata201840

Landform Shannon
index

Shannon Index is another landform diversity index based on the
proportion of grid cells covered by the landform types, where a higher
value indicate more landform types and/or types having more similar
proportions within an aggregation window.

1000 m

Amatulli et al. (2018)

https://www.nature.com/articles/sdata201840

Landform uniformity

Uniformity, also called the angular second moment, is another GLCM-
based second-order image texture metric. It quantifies the uniformity of
pixel values (i.e., landform types) within an aggregation window, for
which a higher value indicates a more regular distribution of landform
types within an aggregation window.

1000 m

Amatulli et al. (2018)

https://www.nature.com/articles/sdata201840

Majority

Majority is the landform class that covers most grid cells of the
aggregation window. In case where more than one class is predominant, a
random selection was permitted to choose only one class.

1000 m

Amatulli et al. (2018)

https://www.nature.com/articles/sdata201840

Maximum multiscale
deviation

Maximum multiscale deviation is a dimensionless measure of
topographic position, computed as the difference between focal cell
elevation and mean elevation divided by the standard deviation of the
surrounding cells. As such, a positive value indicates the focal cell is
above the surrounding mean elevation, and a negative value indicates the
focal cell is below the surrounding mean elevation. The magnitude value
indicates the relative spread of the elevation distribution in its
surrounding area, and the deviation consists of the estimation of spatial
patterns using a range of window sizes.

~90 m (3 arc-sec)

Amatulli et al. (2020)

https://www.nature.com/articles/s41597-020-0479-6

Maximum multiscale

Maximum multiscale roughness is computed as the maximum spherical
standard deviation (os) of the sum of 3-dimensional vector components

degrees

~90 m (3 arc-sec)

Amatulli et al. (2020)

https://www.nature.com/articles/s41597-020-0479-6

roughness derived to calculate the vector ruggedness measure, identifying both the
magnitude and scale.
Profile curvature Profile curvature describes the rate of change of a slope along a flow line, radians/m | ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
related to the acceleration of water flow across a surface.
Roughness is computed as the largest absolute difference between a focal
Roughness cell and its 8 surrounding cells. It ranges from values at or near 0 in flat m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
areas to larger values in mountain areas.
. Sand content in % at 100 cm depth. Based on machine learning )

Sand fraction predictions from global compilation of soil profiles and samples. g/kg 250 m Hengl (2018c¢) https://zenodo.org/records/2525662

Scale 0 fthe maximumm See Maximum multiscale deviation. -- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
multiscale deviation
Scale'of the maximum See Maximum multiscale roughness. degrees ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
multiscale roughness
. o . . -
Silt fraction Silt content in % at 100 cm (_iep Fh' Baseq on machine learning predictions kg/kg 250 m Hengl (2018d) https://zenodo.org/records/2525676
from global compilation of soil profiles and samples.
Soil class Distribution O.f the USDA soil great groups based on machine learning -- 250 m Hengel and Nauman (2018) https://zenodo.org/records/3528062
predictions from global compilation of soil profiles.
. Tangential curvature quantifies the rate of change perpendicular to the . . ) .
Tangential curvature slope gradient radians/m | ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
Terrain ruggedness index is computed as the mean of the absolute

Terrain ruggedness differences in elevation between a focal cell and its 8 surrounding cells. m 90 m (3 arc-sec) Amatulli et al. (2020) htts://www.nature.com/articles/s41597-020-0479-6

index

As such, flat areas have a value close to zero, while mountainous areas
have large values (e.g., greater than 500 m).
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https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://zenodo.org/records/2525662
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://zenodo.org/records/2525676
https://zenodo.org/records/3528062
https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6

Topographic position

Topographic position index is computed the difference between the
elevation of a focal cell and the mean of its 8 surrounding cells. Zero

index values correspond to flat areas, and ridges and valleys are described by m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
positive and negative values, respectively.
Topographic slope Topographic slope is the rate ‘(z/t;feliaﬁﬁsv()lflleelevatlon in the direction of the % ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
VeCtOrLZfofedneSS Vif;‘:;ﬁf%gi‘f:Zﬁiﬁfpg“;ﬁff: gjﬁ;ggggigrg‘ztsiﬁyw?ﬁg@ of m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
Vs30 Average shear wave velocity of uppermost 30m. m/s 100 m Heath et al. (2020) https://apps.usgs.gov/shakemap _geodata/vs30/global_vs30.grd
Soil water content (volumetric) in percent predicted at 100 cm depth.
Water content Based on machine learning predictions from global compilation of soil % 250 m Hengel and Gupta (2019) https://zenodo.org/records/2784001

profiles and samples.
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https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://apps.usgs.gov/shakemap_geodata/vs30/global_vs30.grd
https://zenodo.org/records/2784001

Table S2. New Zealand model predictor variable information.

Variable Description Units Spatlzfl Source Access link
Resolution
Compound topographic Compqund topographic index, or top(.)g.raphic wetness index, is the logarithm of the - .
index cumulative upstream catchment area divided by the tangent of the local slope angle. It -- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
is a proxy of the long-term soil moisture availability.
Convergence is a terrain index that highlights the convergent areas as channels and
Convergence divergent areas as ridges. It ranges from —100 for ridges to +100 for sink areas and 0 -- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
for planar or flat areas.
Depth to bedrock Depth to bedrock. cm 250 m Shangguan et al. (2017) https://agupubs.onllnellbéi/i\g(\;\g})%\gzom/do1/fu11/10. 1002/201
Depth to groundwater Depth to groundwater. m 200 m Westerhoff et al. (2018) https://hess.copernicus.org/articles/22/6449/2018/
Distance to coast Distance to coast as an interpolated geottiff to the 0.01-degrees from a 0.04-degree data km ~1100 m (0.01 NASA (2020) https://oceancolor..gsfc.naga.gov/image;/resources/digtfromc
set. degrees) 0ast/GMT intermediate coast distance 01d.zip
Strahler or 1
. Strahler or 2 . . . . . . .
Distance Strahler or 3 Distance to river computed for different Strahler orders (1, 2, 3, 4, 5) using the New m ~100m LINZ (2020) https://data.linz.govt.nz/layer/50327-nz-river-centrelines-
to river Zealand river lines. topo-150k/history/
Strahler or 4
Strahler or 5
Elevation standard deviation is a measure of the amount of elevation variation within a
Flevation standard | dataset computed using a 3 3 moving window, such that values near 0 Indicate no m | ~90m(3arc-sec) | Amatulliet al. (2020) https://www.nature.com/articles/s41597-020-0479-6
eviation variation, (i.e. flat areas), and areas with large values indicate high variation (i.e., very
steep terrain).
Simplified ) . . .
Geologic Names Geologic units classified into simplified units (Simplified Names) by the authors, and https.//data.gns.cr1.nz/gls/rest/serv1ces/NZL_GNS_2SQ K_Ge
unit Type | further simplified into deposit type (Type 1) and Age (Type 2) -- 100 m Heron (2018) ology 2018/NZL_GNS 250K geology FeatureService All
Type 2 ’ Data/FeatureServer
Geomorphon, or geomorphological phonotypes, consists of 10 classes of
Geomorphon geomorphological forms extracted from DEMs. The features include: flat, peak or -- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
summit, ridge, shoulder, spur, slope, hollow, footslope, valley, and pit or depression.
Helghtlil:;\;;:earest Height above nearii;g;i?ﬁg?gg?ﬁzg) tﬁgrgrl:illﬁzsetglgggﬁﬁhy according to the m 1000 m Nobre et al. (2011) https://gee-community-catalog.org/projects/hand/
Entropy is a gray-level co-occurrence matrix (GLCM)-based second-order image
Landform entropy Wfé?;ehrizit;ic{/;{u%uﬁig;g;ti;};erii)sgf;;ggis d(i):‘tgi)xuetlic\)/r?lcl)lf? fagaeféﬁf}fggsnggﬁ;);n -- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840
aggregated window.
Landform Shannon Shannon Index is another landform diversity iqdex based on the proportion of grid . .
index cells covered by the landform types, where a higher value indicates more landform -- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840
types and/or types having more similar proportions within an aggregation window.
Uniformity, also called the angular second moment, is another GLCM-based second-
. . order image texture metric. It quantifies the uniformity of pixel values (i.e., landform . ) .
Landform uniformity S . . . . . - 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840
types) within an aggregation window, for which a higher value indicates a more regular
distribution of landform types within an aggregation window.
Majority is a landform class that covers most grid cells of the aggregation window. In
Major case where more than one class is predominant (same number of pixels), a random -- 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840

selection was permitted to choose only one class.
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https://www.nature.com/articles/s41597-020-0479-6
https://www.nature.com/articles/s41597-020-0479-6
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000686
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016MS000686
https://hess.copernicus.org/articles/22/6449/2018/
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https://data.linz.govt.nz/layer/50327-nz-river-centrelines-topo-150k/history/
https://www.nature.com/articles/s41597-020-0479-6
https://data.gns.cri.nz/gis/rest/services/NZL_GNS_250K_Geology_2018/NZL_GNS_250K_geology_FeatureService_AllData/FeatureServer
https://data.gns.cri.nz/gis/rest/services/NZL_GNS_250K_Geology_2018/NZL_GNS_250K_geology_FeatureService_AllData/FeatureServer
https://data.gns.cri.nz/gis/rest/services/NZL_GNS_250K_Geology_2018/NZL_GNS_250K_geology_FeatureService_AllData/FeatureServer
https://www.nature.com/articles/s41597-020-0479-6
https://gee-community-catalog.org/projects/hand/
https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/sdata201840
https://www.nature.com/articles/sdata201840

Maximum multiscale
deviation

Maximum multiscale deviation is a dimensionless measure of topographic position,
computed as the difference between focal cell elevation and mean elevation divided by
the standard deviation of the surrounding cells. As such, a positive value indicates the
focal cell is above the surrounding mean elevation, and a negative value indicates the
focal cell is below the surrounding mean elevation. The magnitude value indicates the
relative spread of the elevation distribution in its surrounding area, and the deviation
consists of the estimation of spatial patterns using a range of window sizes.

~90 m (3 arc-sec)

Amatulli et al. (2020)

https://www.nature.com/articles/s41597-020-0479-6

Maximum multiscale

Maximum multiscale roughness is computed as the maximum spherical standard
deviation (os) of the sum of 3-dimensional vector components derived to calculate the

degrees

~90 m (3 arc-sec)

Amatulli et al. (2020)

https://www.nature.com/articles/s41597-020-0479-6

roughness vector ruggedness measure, identifying both the magnitude and scale.
Pfafstetter level (basin The ‘Pfafstetter’ coding system has been implemented in the HydroBASINS product
. offering 12 hierarchically nested sub-basin breakdowns globally, of which the last eight -- ~100 m Lehner and Grill (2013) https://www.hydrosheds.org/products/hydrobasins
characterization) . . .
(Level 5 through Level 12) are used as a predictor variable in this model.
Profile curvature Profile curvature describes the rate of change of a slope along a flow line, related to the radians/m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
acceleration of water flow across a surface. 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840
Roughness is computed as the largest absolute difference between a focal cell and its 8 ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
Roughness surrounding cells. It ranges from values at or near 0 in flat areas to larger values in m 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840
mountain areas.
Scale 0 f'the maximui See Maximum multiscale deviation. -- ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
multiscale deviation
Scale_ofthe maximui See Maximum multiscale roughness. degrees ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
multiscale roughness
Soil depth Soil depth classification, where classifications include deep, moderately decp, shallow, -- ~200 m McNeill et al. (2018) https://smap.landcareresearch.co.nz/maps-and-tools/app/
and very shallow.
. . Soil drainage classification, where classifications include very poorly drained, poorly _ . )
Soil drainage drained, imperfectly drained, moderately well drained, and well drained. -- 200 m McNeill et al. (2018) https://smap.landcareresearch.co.nz/maps-and-tools/app/
A soil order classification system consistent with the New Zealand Soil Classification
(NZSC), including Immature Gleys (Recent Gley NZSC Group) and Mature Gleys
. (other Gley NZSC Groups); Immature Pallics (Immature Pallic NZSC Group) and _ . )
Soil order Mature Pallics (other Pallic NZSC Groups); Allophanic Browns (Allophanic NZSC -- 200 m McNeill et al. (2018) https://smap.landcareresearch.co.nz/maps-and-tools/app/
Group) and Non-allophanic Browns (other Brown NZSC Groups). Organic soils
(peats) were excluded.
. . . . . . ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
Tangential curvature Tangential curvature quantifies the rate of change perpendicular to the slope gradient. radians/m 1000 m Amatulli et al. (2018) https.//www.nature.com/articles/sdata201840
Terrain ruggedness index is computed as the mean of the absolute differences in ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
Terrain ruggedness elevation between a focal cell and its 8 surrounding cells. As such, flat areas have a m
index value close to zero, while mountainous areas have large values (e.g., greater than 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840
500 m).
T . . Topographic position index is computed the difference between the elevation of a focal ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
opographic position . .
; cell and the mean of its 8 surrounding cells. Zero values correspond to flat areas, and m . .
index . . o . . 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840
ridges and valleys are described by positive and negative values, respectively.
Topoeraphic slope Topographic slope is the rate of change of elevation in the direction of the water flow o ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
pograp p line. ° 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840
Vector ruggedness Vector ruggedness measure quantifies terrain ruggedness by means of sine and cosine m ~90 m (3 arc-sec) Amatulli et al. (2020) https://www.nature.com/articles/s41597-020-0479-6
measure of the slope within a moving aggregation window. 1000 m Amatulli et al. (2018) https://www.nature.com/articles/sdata201840
Vs30 Average shear wave velocity of uppermost 30m. m/s 100 m Foster et al. (2019) https://journals.sagepub.com/do/full/10.1193/121118EQS28
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Table S3. Performance statistics for the global and New Zealand models in testing and training.

Performance in A

Performance in B

Performance in MI

Performance in PGF

Geyin and Maurer (2020) PGF Model
Model MAE | AAE | SD | MSE | MAE | AAE | SD | MSE | MAE | MSD | AAE | ASD | MAE | MSD | AAE | ASD . . Manifestation
Triggering model Dataset . Bm Om
severity
Global LPI-ML 2.0 24 | 3.7 14 4.0 7.7 | 13.2] 173.0 | 2.2 6.6 4.1 6.2 3% | 15% | 10% | 14% | Idriss and Boulanger (2008) Global All 1.436 | 6.993
mo(ile?s LPLisi-ML | 2.0 26 | 39 15 5.0 9.1 | 148 ] 17.1 2.9 7.1 4.5 6.6 3% | 21% | 13% | 19% | Idriss and Boulanger (2008) Global All 2.264 | 3.116
Training LSN-ML 2.0 3.8 | 6.0 36 13.0 | 16.2 | 203 | 413.8 | 3.1 9.5 5.5 8.7 3% | 13% | 8% | 12% | Idriss and Boulanger (2008) Global All 1.147 | 13.148
New LPI-ML 7.0 8.1 [10.0 | 101 3.0 45 | 83 | 70.0 9.5 163 | 114 | 142 | 5% | 24% | 15% | 23% | Idriss and Boulanger (2008) | New Zealand Minor/All 1.774 | 4.095
Zealand | LPLisg-ML | 7.0 80 | 9.8 | 100 3.0 50 | 9.1 83.6 9.3 163 | 11.5 | 145 | 4% | 25% | 14% | 23% | Idriss and Boulanger (2008) | New Zealand Minor/All 2.16 | 2.394
models LSN-ML 9.0 | 11.2 | 148 | 224 | 21.0 | 259 |31.8]1037.8 | 12.5 | 23.5 | 163 | 214 | 8% | 22% | 14% | 20% | Idriss and Boulanger (2008) | New Zealand Minor/All 1.477 | 14.536
Global LPI-ML 3.0 48 | 7.0 50 5.0 9.2 | 155 239 4.5 113 | 69 | 10.0 | 8% | 22% | 15% | 20% | Idriss and Boulanger (2008) Global All 1.436 | 6.993
mo(zle?s LPlLisg-ML | 3.0 47 | 6.8 | 46 6.0 | 10.6 | 17.1 | 292 4.6 1.1 | 7.0 | 10.0 | 6% | 25% | 17% | 23% | Idriss and Boulanger (2008) Global All 2264 | 3.116
Testing LSN-ML 4.0 6.8 [10.5] 111 18.0 | 21.6 | 26.8 | 718 4.9 167 | 98 | 151 | 7% | 22% | 14% | 20% | Idriss and Boulanger (2008) Global All 1.147 | 13.148
New LPI-ML 7.0 79 197 | 95 3.0 47 1 95 | 917 9.5 159 | 11.3 | 139 | 5% | 24% | 14% | 22% | Idriss and Boulanger (2008) | New Zealand Minor/All 1.774 | 4.095
Zealand | LPLisg-ML | 7.0 81 | 9.9 | 100 3.0 52 104 1074 | 9.8 16.5 | 11.7 | 14.6 | 4% | 25% | 14% | 25% | Idriss and Boulanger (2008) | New Zealand Minor/All 2.16 | 2.394
models LSN-ML 9.0 | 11.1 | 147 219 | 21.0 | 254 |31.6] 1012 | 12.5 | 234 | 16.1 | 21.2 | 8% | 22% | 14% | 20% | Idriss and Boulanger (2008) | New Zealand Minor/All 1.477 | 14.536

*Acronyms: AAE = average (mean) absolute error; ASD = average (mean) standard deviation; LPI = liquefaction potential index; LPI;isy= modified LPI; LSN = liquefaction severity number; MAE = median absolute error; M/ = manifestation

index; MSD = median standard deviation; MSE = mean squared error; PGF = probability of ground failure; SD = standard deviation.
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Table S4. Summary of semivariogram parameters.

Model Nugget Sill Length Scale (km) Alpha Number of lags Major Range (km)

LPI A 0.0 84.3 0.223 0.300 10 1.0

LPIB 0.0 140.0 0.300 0.300 10 1.0

Global LPlish A 0.0 83.6 0.215 0.300 10 1.0
models LPlish B 0.0 174.0 0.300 0.300 10 1.0
LSN A 0.0 238.0 0.230 0.407 10 1.0

LSN B 0.0 665.0 0.050 1.000 10 1.0

LPIA 0.0 97.4 0.118 0.403 10 1.0

N LPIB 0.0 43.6 0.200 0.300 10 1.0
Zealand LPlish A 0.0 95.2 0.112 0.394 10 1.0
models LPlish B 0.0 66.9 0.200 0.300 10 1.0
LSN A 0.0 212.0 0.110 0.301 10 1.0

LSN B 0.0 998.0 0.080 0.205 10 1.0
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