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Abstract: 
In recent years, the USGS and others (including the PI of this effort) have worked to develop 
predictive regional models for ground failure with a focus on landslides and liquefaction. The 
models provide probability estimates of ground failure given the shaking from an earthquake 
event. The current USGS implementation includes the ground failure models as a product on the 
overview page for each earthquake on the USGS Earthquake Hazard Program website. Many of 
the existing geospatial ground failure models have been developed using logistic regression. In 
this project, we will demonstrate three innovations in model development: 1) Uncertainty 
quantification for geospatial liquefaction logistic regression models; 2) Machine learning 
algorithms for geospatial liquefaction models; and 3) Machine Learning algorithms to create 
landside inventories using post-event imagery. The geospatial liquefaction model as developed by 
Zhu et al (2015; 2017) and since expanded by Rashidian and Baise (2020) and Baise et al. (2021) 
relies on geospatial proxies for soil density and soil saturation combined with earthquake loading 
estimates from USGS ShakeMap to predict the spatial extent of liquefaction after an earthquake.  
 
Significant contributions of the proposed research to USGS Earthquake Hazards Program  
The proposed research most directly addresses the following program elements of the External 
Research Program Announcement for FY 2022: Element I: as it updates “National and regional 
assessments of the expected degree of ground deformation.”, and Element III: specifically, “with 
the goal of improving hazard assessments”.  This research is also relevant to the following common 
priority topic for all research areas: “Develop approaches to provide earthquake hazard 
information needed for risk assessments.”  The proposed work is inherently aligned with the 
following Priority Topic for Research on Engineering Seismology and Impacts (ESI): “Improve 
predictive models of earthquake-triggered ground failures including landslides and liquefaction 
that can be characterized and employed at regional/global scales rather than site-specific or 
material behavior studies.” And “The ESI panel prioritizes innovative models.” And “the use of 
innovations in other fields, including but not limited to remote sensing and/or artificial intelligence 
technology.” This proposal is focused on regional/global scale ground failure models that take 
advantage of both remote sensing and local data using artificial intelligence methods. 
 
 
Report: 
 
Overview: 
As part of this project, we conducted three independent projects that demonstrated innovative data-
driven methods for geospatial ground failure models.  

1. An uncertainty quantification framework for logistic regression based geospatial natural 
hazard modeling (using a geospatial liquefaction model (Zhu et al.2017) for demonstration 
and implementation.) 

2. Regionally informed global geospatial modeling of earthquake-induced soil liquefaction 
using a system of voting machine learning classifiers building on an updated liquefaction 
inventory presented in Zhan et al. (2023). 

3. Pixel-based Classification Method for Earthquake-Induced Landslide Mapping Using 
Imagery, Geospatial Data and Temporal Change Information 



 
Each of these projects will be described in brief and is associated with a peer-review publication. 
 
Section 1. Uncertainty quantification framework for logistic regression based geospatial 
natural hazard modeling 
 
(The following content has been excerpted from a peer reviewed publication with the same title 
and the following authors) 

Weiwei Zhan, Laurie G. Baise, Babak Moaveni 

Abstract 
There is a class of data-driven global natural hazard predictive models that take advantage of 
broadly available geospatial proxies. These data-driven geospatial models have been commonly 
used for landslides and are becoming more available in recent years for liquefaction. Logistic 
regression is the most common method for predicting these ground failure occurrences. These 
models do not often include robust quantification of uncertainties although they are widely used 
in the pre-disaster planning and post-disaster response around the world. Taking the logistic 
regression based global geospatial liquefaction model (GGLM) (Zhu et al., 2017) as an example, 
we propose an uncertainty quantification (UQ) framework that consists of characterization of 
different sources of uncertainty, model sensitivity analysis, and forward uncertainty propagation. 
In this study, we have identified the main sources of uncertainty in such predictive models as 
parameter estimation uncertainty, modeling error, and geospatial input uncertainty. A Bayesian 
inference algorithm is used to quantify the posterior distribution of model parameters and quantify 
model parameter estimation uncertainties which are found to be negligible when a large amount 
of data is used in the parameter estimation process. Modeling errors are characterized based on the 
observed residuals between model predictions and measurements and by fitting a Gaussian 
distribution to the liquefaction probability residuals. The geospatial input uncertainties are 
characterized using the literature and expert judgement and propagated into model output. Second, 
we investigate the sensitivity of model output to different uncertain inputs and find that the 
variance of model output is largely controlled by the geospatial input uncertainties and model 
errors. Last, we propose an approximate forward uncertainty propagation method, which provides 
comparable results to a Monte Carlo simulation-based method with better computational 
efficiency. The proposed UQ framework provides a measure of uncertainty on model predictions 
and can be applied to any logistic-regression models and other geospatial modeling problems. 
 

Uncertainty Quantification for GGLM 

Geospatial natural hazard models intrinsically involve different types of uncertainties. In this 
framework, we identify three types of uncertainty sources: parameter estimation uncertainty, 
modeling errors, and geospatial input uncertainty. In this section, we quantify (1) estimation 
uncertainty of model parameters through a Bayesian inference framework, (2) modeling error by 
fitting a distribution to the observed model prediction residuals, and (3) uncertainty of geospatial 
explanatory variables from past studies or engineering judgment.  
 
Bayesian Inference for Quantifying Parameter Estimation Uncertainty 



Under the UQ framework, we treat model parameters as random variables and use the Bayes' 
theorem to estimate the posterior probability distribution of model parameters.  

�(�|�) =
�(�|�)�(�)

�(�)
∝ �(�|�)�(�)                                         (1) 

where � is the vector of model parameters to be estimated; D is the vector of available data, i.e., 
paired geospatial inputs X and liquefaction observation y; �(�|�) is the posterior distribution of 
model parameters; �(�|�) is the likelihood function as shown in Equation (2); �(�) is the prior 
probability distribution of the model parameters; and �(�) = ∫ �(�|�)�(�)�� is the evidence 
which is a normalization constant so the probability of the parameters sums to one.   

�(�|�) = ∏ ��
��(1 − ��)�����

���                                              (2) 

In Equation (2), N is the sample size; n is the sample id ranging from 1 to N;  �� =
1

1+�−�(�)
  is the 

liquefaction probability for sample n predicted using the logistic function; and �� is the 
liquefaction observation for sample n (�� = 1 for liquefaction and �� = 0 for nonliquefaction.  
As the solution of posterior distribution of model parameters for logistic regression is intractable 
(Bishop and Nasrabadi, 2006), we use the Laplace approximation method to estimate �(�|�). 
Laplace approximation aims to find a Gaussian approximation to the posterior probability density 
defined over a set of continuous variables (Bishop and Nasrabadi, 2006). We assume a Gaussian 
distribution for the model parameter prior with the general form as shown in Equation (3). 

�(�) = �(�|��, ��)                             (3) 

where �� and �� are the mean vector and covariance matrix of the model parameters, respectively.  
Taking the log of both sides in Equation (1), and substituting Equation (2) for the likelihood 
function, and Equation (3) for the prior distribution, we obtain the posterior distribution (Bishop 
and Nasrabadi, 2006): 

�� � (�|�) = −
1
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To obtain a Gaussian approximation for the posterior distribution, we first find the maximum-a-

posteriori (MAP) estimate MAPw  as the maximum of Equation 4, which defines the mean of the 

posterior distribution. The covariance matrix is then estimated as the inverse of the Hessian 
(second derivative) of the negative log likelihood, which takes the form 

�� = −�� �� � (�|�) = ��
�� + ∑ ��(1 − ��)����

��
���                         (5) 

The Gaussian approximation to the posterior distribution therefore takes the form 

�(�) = �(�|�MAP, ��)                                                    (6) 

The prior distribution uses zero means for all the model parameters, and standard deviation of 100. 
In that way, the prior distribution is flat, which indicates an uninformative prior distribution. The 
Laplace approximation is then used to estimate the joint posterior distribution of model parameters. 



The pairwise correlations between model parameters are estimated using the �� by converting the 
covariance matrix to correlation matrix. 

The mean, standard deviation, and coefficient of variation (COV) of the GGLM model 
parameters are summarized in Table 1.  The model parameters show small estimation uncertainty, 
with the maximum absolute value of COV being 2.6% (for ln(precip) and ln(wtd)), not exceeding 
1.0% for the remaining model parameters. The pairwise correlations between the model 
parameters of GGLM are shown in Table 2. Two model parameters (ln(VS30) and ln(wtd)) have 
strong correlations with intercept, and ln(VS30) also shows a strong negative correlation with 
ln(wtd). The positive parameter correlation means the model parameter tends to increase with the 
increase of another model parameter, and vice versa (Li and Vu, 2013). Statistically, the maximum 
likelihood fitting (Equation 2) cannot guarantee unique parameter estimation, due to correlations 
among the parameters. The correlation can be explained by the physical background of 
liquefaction phenomena. For instance, the site stiffness (VS30) and water table depth (wtd) can affect 
the soil liquefaction susceptibility jointly. In short, the Bayesian inference results suggest the 
GGLM tend to have low parameter estimation uncertainty.  
 
Table 1. Parameter estimation uncertainty of the geospatial liquefaction hazard model. 

Coefficients Intercept wln(PGV) wln(VS30) wln(precip) wln(dw) wln(wtd) 
Mean 6.731 0.279 -1.459 0.167 -0.695 -0.130 
Std 0.067 0.003 0.013 0.004 0.004 0.003 
COV (%) 1.0 1.0 -0.9 2.6 -0.6 -2.6 

 
Table 2. Correlation matrix for the model parameters of the geospatial liquefaction hazard model. 

Correlation Intercept wln(PGV) wln(VS30) wln(precip) wln(dw) wln(wtd) 
Intercept 1.00 -0.02 -0.88 -0.24 0.11 0.70 

wln(PGV)  1.00 -0.14 0.08 -0.06 0.09 

wln(VS30)   1.00 -0.23 -0.14 -0.80 

wln(precip)    1.00 -0.01 0.16 

wln(dw)     1.00 0.06 

wln(wtd)      1.00 

 

Residual Analyses for Quantifying Modeling Error 

Modeling Error 

Modeling errors are due to imperfections of the simplified statistical models in representing 
complex natural hazard phenomena and inherent randomness of geophysical processes. For 
geospatial natural hazard models with continuous outputs (i.e., regression models), such as 
earthquake ground-motion models (Boore et al., 2014), the modeling errors can be defined as the 
differences between the observed and predicted hazard intensities. However, for geospatial models 
with categorical target variables (i.e., classification models), the modeling errors are not easily 



defined (Liu and Zhang, 2018). Here, we quantify the modeling errors of GGLM in the space of 
liquefaction probability. Specifically, the model residuals of the GGLM are defined as the 
differences of empirical and theoretical liquefaction probabilities which are both conditional on 
the Z value.  

�(�) = �(�)���� − �(�)����                                               (7) 

where � is the liquefaction probability residual which is considered as modeling error; �(�)���� 

is the empirical (observed) liquefaction probability which is computed as the ratio of the 
liquefaction sample size to the total sample size for each Z value bin; and �(�)���� is the 
theoretical (predicted) liquefaction probability.  
 

Global Residual Model 

The relationship between the empirical and theoretical liquefaction probabilities is shown in Figure 
1. The empirical liquefaction probabilities are represented for different Z bins based on the 
corresponding proxies of observed locations, and they match well with the theoretical ones for 
samples with � ∈ [−2.2, 1.4] (i.e., �(�)���� ∈ [0.1, 0.8]). It is noted that the observed liquefaction 
probabilities deviate from the predicted liquefaction probabilities at the low and high Z values, 
which is likely due to insufficient sample size at these bins for calculating empirical liquefaction 
probabilities. We use 150 as the threshold sample size per bin to exclude outlier bins based on the 
relationship between liquefaction probability residuals and the sample size per bin (Figure 1b).   

 
Figure 1. (a) Comparison between empirical (circles) and theoretical (red curve) liquefaction 
probabilities. The empty circles indicate bins with sample size less than 150.  The histogram shows 
the number of liquefaction and non-liquefaction samples. The vertical dashed lines constrain the 
data range with sufficient sample size for computing empirical liquefaction probability. (b) The 
correlation between liquefaction probability residuals and sample size per bin. The vertical dashed 
line indicates sample size for reliable estimation of empirical liquefaction probability. 
 
The liquefaction probability residuals show different patterns at varying Z values. The GGLM 
consistently overestimates the liquefaction probability at the very low Z value range (Z< -2.2) 
where the empirical liquefaction probabilities are zero except for a few abnormal high values due 
to insufficient sample size. At the very high Z values (Z>1.4), the model also tends to have a 
smaller number of reliable estimations of empirical liquefaction probability. For the middle Z value 
range (� ∈ [−2.2, 1.4]), the liquefaction probability residuals have slightly higher variability for 



negative Z values than for positive values but generally follow a Gaussian distribution as shown 
in Figure 2b. In this study, we represent the liquefaction probability residuals as a Gaussian 
distribution with mean of zero (as the fitting process is unbiased) and standard deviation of 0.06 
(2b). Based on the residual analyses, we propose conditional mean and residual models for global 
application of the GGLM (Table ) which is basically a truncated Gaussian distribution model. For 
locations with Z between -2.2 to +1.4, mean estimate of liquefaction probability is the direct output 
of the logistic regression model while modeling error is represented by the fitted Gaussian 
distribution in Figure 2b. For locations with Z<-2.2, we recompute the empirical liquefaction 
probability as the ratio of the number of the liquefaction samples with Z <-2.2 to the total number 
of samples with Z <-2.2, and assign this empirical probability value (i.e., 0.05) as the mean estimate 
of liquefaction probability with Z<-2.2. For locations with Z>1.4, we assign the mean estimate of 
liquefaction probability as 0.8 using the similar method but removing the samples from several 
outlier Z bins. We assume the residual models for the locations with insufficient samples (i.e., Z<-
2.2 and Z>1.4) fit the same Gaussian distribution calibrated using the main part of dataset (2b) 
although we do not have enough reliable data to calibrate them. It is noted that our residual analyses 
also contribute to cap the predicted liquefaction probability. 
 

 
Figure 2. (a) Relationship between the liquefaction probability residuals and the Z value. The 
circles with no fill have insufficient samples to estimate empirical liquefaction probability (i.e., 
the sample size is less than 150). (b) Histogram of the liquefaction probability residuals. The red 
line is the theoretical probability density function for the Gaussian distribution with mean of zero 
and standard deviation of 0.06. 
 
Table 3. Proposed mean and modeling error forms of the considered GGLM after the residual 
analyses. 

Stage Applicable range �(� = 1) � 
1 Z < -2.2  0.05 Assumed N(0, 0.06)* 
2 -2.2≤Z≤1.4  1

1 + ���(�)
 

N(0, 0.06) 

3 Z > 1.4 0.80 Assumed N(0, 0.06) 
* N(µ,σ) denotes the Gaussian distribution where µ is the mean and σ is the standard deviation. 
 
 



Section 2. Regionally informed global geospatial modeling of earthquake-induced soil 
liquefaction using a system of voting machine learning classifiers. 
 
(The following content has been excerpted from a peer reviewed publication with the same title 
and the following authors) 
Adel Asadi1, Laurie Gaskins Baise1, Snehamoy Chatterjee2, Weiwei Zhan1,3, Alexander Chansky1, 

Babak Moaveni1 
1 Geohazards Research Lab, Department of Civil and Environmental Engineering, School of 

Engineering, Tufts University, Medford, MA 02155, USA. 
2 Geological and Mining Engineering and Sciences Department, Michigan Technological 

University, Houghton, MI 49931, USA. 
3 Texas Advanced Computing Center, Civil, Architectural and Environmental Engineering 

Department, The University of Texas at Austin, TX 78758, USA. 

 
Abstract: 

Data-driven geospatial liquefaction models are useful tools for real-time post-event impact and 
regional seismic hazard assessments. Geospatial liquefaction models are based on liquefaction 
occurrence inventories, widely available geospatial variables, and earthquake-specific parameters. 
This research uses an updated inventory with geospatial data from non-liquefaction and 
liquefaction occurrence locations in 53 earthquakes around the world, including categorical and 
continuous variables representing proxies for soil saturation, soil density, and earthquake loading. 
In this study, the performance of advanced machine learning (ML) algorithms in learning complex 
nonlinear patterns in the large dataset to predict liquefaction susceptibility, as an alternative 
approach to previously published logistic regression classifiers is evaluated. The proposed 
methodology starts with an exploratory data analysis and feature selection scheme on the sampled 
data across both the liquefaction and non-liquefaction classes to remove redundant and less 
relevant features, run data transformations, and perform statistical analysis to define some 
classification thresholds. The class and event imbalance issues are treated in an innovative manner 
by under-sampling large events and distributing the datasets over several balanced subsets. Instead 
of training a single classifier, a system of voting machine learning classifiers is designed to achieve 
higher accuracy and certainty, using different classification techniques to balance the performance, 
as not a single classification technique can be considered the best for all earthquake events. The 
voting classifiers use different portions of the data, representing global, coastal/non-coastal and 
regional information, to optimize the predictive power of the proposed model by taking the 
majority votes of six different classifiers. The classifiers include three global classifiers, two 
coastal/non-coastal classifiers, and a regional classifier. For each data subset, the ML-based binary 
classification model is trained and validated via a K-fold cross-validation approach, and the voting 
system is tested based on the leave-one-out approach, excluding individual earthquake events one 
at a time for a fair accuracy, reliability, and applicability assessment. The final class assignment is 
generated by majority vote of the system of 6 voting classifiers trained by the individual data 
subsets. The results of this study are compared with a model developed using logistic regression 
to investigate the benefits and limitations of the proposed voting approach. 
 
Methodology 



In this research, a novel system of voting machine learning classifiers is proposed as an alternative 
to logistic regression based geospatial liquefaction models. The system of voting machine 
classifiers allows for the inclusion of multiple global models, coastal and noncoastal models, and 
geographic regional models. The dataset is balanced across events by considering a cap for the 
number of samples per class. The sampled imbalanced data is distributed into subsets of balanced 
training data: 3 global models, 2 coastal models, 2 non-coastal models, and 6 geographic regional 
models. The system of classifiers is implemented through both majority voting and soft voting of 
the classifiers. The model performance is assessed with a leave-one-out testing approach, which 
means that data of individual earthquake events are excluded from the training data in a loop over 
all events. The flowchart of the proposed system is presented in Figure 3. 

 
Figure 3. Flowchart of the proposed voting classification approach. Since 6 regions are considered 

in the inventory, 6 different regional models will be utilized based on the individual earthquake 

being tested. 

 

Exploratory Data Analysis 

Different types of exploratory data analysis (EDA) technique are used to evaluate the features in 
terms of redundancy and relevance to the binary classification problem in this research. A variety 
of univariate (histograms, box plots, bar plots, etc.) and bi-variate (correlation analysis, etc.) 
analysis methods were considered to evaluate the parameters’ class separability and their 
relationship with each other. Feature transformations were proposed to improve the performance 
of several features in distinguishing the classes of liquefaction and non-liquefaction. After the 
EDA process, the data of all features (��), except the categorical variables are normalized via Z-
score method to have a mean of zero and standard deviation of one, as presented via Equation 8, 
where µ is the mean, and σ is the standard deviation of each variable. Most machine learning 
algorithms perform better when variables have a Gaussian distribution (Geyin et al., 2022), all 
predictors were transformed and normalized. 
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Data Imbalance 

Data imbalance can be problematic, as machine learning algorithms for classification problems are 
designed for balanced datasets; otherwise, their predictions will be biased toward the majority 
classes, as they were less punished for misclassifying the minority classes during the training and 
validation process (Weiss and Provost, 2001). The spatially incomplete nature of the liquefaction 
inventory database and the associated class imbalance has a strong influence on the probabilities 
of the model (Oommen et al., 2011; Thompson et al., 2016-b; Zhu et al., 2015 & 2017). One 
solution to this issue is to under-sample the majority class by random sampling (Fernandez et al., 
2019). The other solution could be to over-sample the minority class using synthetic data 
generation techniques. Bozzoni et al. (2020 & 2021) resolved the issue of class imbalance by trying 
commonly used synthetic data generation (over-sampling) algorithms, including SMOTE (Chawla 
et al. 2002) and ADASYN (He et al., 2008). However, such methods can be uncertain in terms of 
losing valuable information in under-sampling and adding noise and unrealistic samples to the data 
in over-sampling process. Zhu et al. (2015) chose to use a highly imbalanced dataset (almost 13 
non-liquefaction samples per each liquefaction record) because they aimed to develop a probability 
estimator that predicts the areal extent of liquefaction and wanted the probability to correlate to 
the spatial extent. However, in their later version, Zhu et al. (2017) balanced their database after 
performing the non-liquefaction sampling process. Similarly, Baise et al. (2021) used a balanced 
sampling strategy, where the more significant liquefaction events are under-sampled so that they 
don’t dominate the model. They capped the number of liquefaction and non-liquefaction points 
from each earthquake to 2000 and 1000 points, respectively.  
 
In this study used an alternative approach. The dataset is balanced across the events by considering 
a cap for the number of samples per class (2085 for non-liquefaction and 2577 for liquefaction). 
Then, the resulting dataset which contains ~27 % liquefaction samples are distributed over six 
various balanced subsets, including three sets of global data, two sets of coastal/non-coastal data 
(depending on the earthquake being tested), and a set of six geographical regional datasets, based 
on the regional categorization of the events. Because the method is demonstrated with the leave-
one-out approach to model evaluation, the data of the tested earthquake is not included in any of 
the data subsets. 
 
Feature Selection via Machine Learning 

After removing a few features (variables) through the EDA process, a feature selection scheme is 
implemented to remove any features with zero or near-zero weight in the classification process. 
The strategy in this research is to keep explanatory variables as long as they are informative. The 
goal of feature selection is to reduce the risk of model over-fitting, to improve accuracy, and reduce 
training time. Neighborhood component analysis (NCA) is used in this study as the feature 
selection technique. NCA is a machine learning algorithm for metric learning that learns in a 
supervised manner for improving the classification accuracy of a stochastic nearest neighbors’ rule 
in the transformed space (Goldberger et al. 2005). The algorithm works best to estimate feature 
importance for any distance-based supervised models that use pair-wise distances between 
observations to predict the response (Guyon and Elisseeff, 2003). NCA feature selection is 
performed with regularization to learn feature weights for minimization of an objective function 
that measures the average leave-one-out classification loss over the training data (Yang et al., 



2012). The regularization term (λ) in NCA’s objective loss function derives the weights of 
irrelevant predictors to zero. As the number of observations n increases, the chance of overfitting 
decreases, and the required amount of regularization also decreases. λ=1/n, where, n is the number 
of samples, is an approximately good selection for the regularization parameter. Stochastic 
gradient descent algorithm was used as the solver to estimate feature weights. 
 
Classification Modeling 

The logistic regression models developed in the studies by Zhu et al. (2015), Zhu et al. (2017), and 
Baise et al. (2021), were based on an intentional strategy to develop a simple model that uses 
parameters that reflect the underlying physics of the problem and can be used easily and quickly 
for future events. In this work, the goal is to increase the predictive accuracy through the use of a 
complex machine learning model. 
 
Classification Thresholds 

Thresholds have commonly been used in geospatial liquefaction models to prevent overfitting and 
to include thresholds related to physical limits to liquefaction occurrence. The GGLM model (Zhu 
et al., 2017) used a PGV minimum threshold of 3 cm/s. Rashidian and Baise (2020) modified the 
GGLM model by recommending a PGA minimum threshold of 0.1 g as an additional threshold to 
better characterize the step-function behavior of the PGA plot. A threshold of 0.1 g for horizontal 
peak ground acceleration (PGA) was also used by Bozzoni et al. (2020) to reduce the spatial extent 
of liquefaction from prior geospatial liquefaction models, based on experimental data showing that 
liquefaction triggering is highly unlikely for PGA values of less than 0.10 g (Green and Bommer 
2019). Based on the inventory used herein, liquefaction has occurred in the 2012 M6 Emilia 
Earthquake in Italy when PGA < 0.1 g indicating that this threshold may be too high. 

The US Geological Survey (USGS) has also implemented a magnitude scaling factor 
(MSF) to the PGV term in the GGLM equation to reduce the over-prediction for low-magnitude 
earthquakes (M < 6). Rashidian and Baise (2020) have left the decision on using MSF to the 
GGLM model users, since they didn’t observe any considerable positive or negative impact in 
their comparative analysis for high-magnitude earthquakes where over-prediction is more likely 
to happen, although they confirmed that the spatial extent of liquefaction will be moderated for 
low-magnitude events when using this factor. 

Zhu et al. (2017) also implemented a maximum threshold of 620 m/s for the Vs30, which 
means that any point with a Vs30 value of greater than the threshold is automatically considered as 
non-liquefaction. In the current inventory, this Vs30 threshold leads to under-prediction in for the 
1993 M7.7 Hokkaido earthquake in Japan. Rashidian and Baise (2020) also recommended the use 
of an upper bound for GGLM (Zhu et al., 2017), when annual precipitation of a region exceeds 
1700 mm, which was the upper quartile of annual precipitation in their development database of 
earthquakes, since overprediction of liquefaction was observed in regions with high precipitation. 
The annual precipitation threshold reduced the over-prediction of liquefaction in the 14 affected 
earthquake events in their study. 

The use of thresholds has also been used in the study by Jena et al. (2022) in their deep 
learning model of liquefaction hazard for Australia. They have applied thresholds for different 
input variables including magnitude of Mw6. Green and Bommer (2019) concluded that 
earthquakes as small as Mw 4.5 can trigger liquefaction in extremely susceptible soil deposits, 
based on their field observations and a simple parametric study. However, they have indicated that 



for soil profiles which are appropriate for building structures, the minimum Mw 5 can be 
considered for liquefaction triggering (Green and Bommer, 2019). In this study, the threshold 
value of Mw 5 is considered as the minimum liquefaction triggering earthquake magnitude, 
although the lowest magnitude in the inventory, leading to liquefaction occurrence was 5.8 Mw. 

In the current version of the GGLM models (GGLM-21-a and GGLM-21-b), Baise et al. (2021) 
do not retain the thresholds established by Zhu et al. (2017) and Rashidian and Baise (2020) around 
PGA, PGV, precipitation, and Vs30, since only 1.5% of the liquified data points in their inventory 
violate those thresholds. In the current study, we use the magnitude judgement-based threshold 
and then rely on data-driven thresholds. Data driven thresholds are only used for the features that 
are used in the final model, and do not violate the physics-based criteria of liquefaction triggering. 
It should be noted that the thresholds are designed to optimize the model performance as a post-
processing step after the classification modeling, and no sample bypasses the classification step. 

 
System of Voting Classifiers 

This study proposes a system of voting machine learning classifiers to create liquefaction hazard 
maps. There are several benefits in implementing such approach, including 1) Reduction in 
sensitivity to under-sampling the dataset for the purpose of balancing, and taking advantage of all 
available valuable data, instead of under-sampling the majority class; 2) Reduction in model 
errors/uncertainties and inaccurate predictions by taking average of several model predictions, 
leading to stabilization of predictions and better generalizability and consistency of hazard 
modeling; 3) Benefiting from different type of classifiers, since not a single classifier is the best to 
predict all events; 4) Regional and coastal/non-coastal optimization of the classification decision 
by including these special classifiers in addition to the global classifiers; and 5) The ability to 
generate probability maps in a continuous form (soft voting) rather than 0-1 binary (hard voting) 
prediction. 
 Six different algorithms are used in this study, as shown in the model flowchart via Figure 
5. These algorithms are widely used machine learning algorithms for classification purposes. They 
include support vector machines (SVM), discriminant analysis, K-nearest neighbor (KNN), 
decision trees, Naïve Bayes, and logistic regression, which are used as three global, two 
coastal/non-coastal, and a regional classifier, respectively. The k-fold cross-validation was used 
within the training step for all 6 classifiers to avoid overfitting (Kohavi, 1995). The method divides 
the training dataset into k (k=5 in this study) smaller folds with equal number of samples points 
for the optimization of parameters. The hyperparameters and the architecture of the proposed 
classification algorithms were optimized separately with a grid search approach during the training 
process to achieve the best performance. A brief description of the classification algorithms used 
in this study are provided in the following sub-sections. 
 
Support Vector Machines 

Support vector machines are widely used and reported among the best performing binary 
classifiers, although they are also used to solve multi-class problems. The objective of the SVM 
algorithm is to find a hyperplane that, to the best degree possible, separates data points of one class 
from those of another class with the largest margin between the two classes. Margin means the 
maximal width of the slab parallel to the hyperplane that has no interior data points. For linearly 
separable problems, the algorithm can find the hyperplane; however, for most practical problems, 
the algorithm maximizes the soft margin allowing a small number of misclassifications. Support 



vectors refer to a subset of the training observations that identify the location of the separating 
hyperplane (Vapnik, 1995; Christianini and Shawe-Taylor, 2000; Hastie et al., 2009). In this study 
the efficient linear SVM is used as a classifier for one of the global models in the voting 
classification system. In this study, the efficient linear SVM is used as a classifier for one of the 
global models in the voting classification system, which is less prone to over-fitting. 
 
Discriminant Analysis 

Discriminant analysis is used as one of the supervised classification methods, which assumes that 
different classes generate data based on different Gaussian distributions (Fisher, 1936). To train 
the classifier, the fitting function estimates the parameters of a Gaussian distribution for each class 
and finds the smallest calculated misclassification cost to predict classes of new (unlabeled) data. 
The linear discriminant analysis (LDA) used in this research, computes the sample mean of each 
class. Then it computes the sample covariance by first subtracting the sample mean of each class 
from the observations of that class and taking the empirical covariance matrix of the result (Guo 
et al., 2007). 
 
K-Nearest Neighbors 

The K-nearest neighbors’ algorithm is a non-parametric, supervised learning classifier, which uses 
proximity to make classifications or predictions about the grouping of an individual data point. 
Categorizing query points based on their distance to points in a training data set can be a simple 
yet effective way of classifying new points. K-nearest neighbor (KNN) classifiers can use various 
metrics (Euclidean distance, in this study) to determine the distance between a set of data and 
query points, and simply ranks the points by their distance to the query points in order to classify 
them as the closest class, assuming that similar points can be found near one another. A class label 
is assigned based on a majority vote, meaning the label that is most frequently represented around 
a given data point is used (Cover and Hart, 1967). The value of K is optimized to avoid over-fitting 
and under-fitting on the global data. 
 
Decision Trees 

Decision trees, or supervised non-parametric classification trees, predict responses to data inputs, 
by following the decisions in the tree from the root (beginning) node down to a leaf (end) node, 
which contains the response (Breiman et al., 1984; Rokach and Maimon, 2008). In tree structures, 
which are famous for their simplicity and easy interpretability, leaves represent class labels and 
branches represent conjunctions of features that lead to those class labels. Classification trees give 
responses that are nominal, such as liquefaction or non-liquefaction. A tree is built by splitting the 
source set, constituting the root node of the tree, into subsets which constitute the successor 
children. The splitting is based on a set of splitting rules based on classification features (Shalev-
Shwartz and Ben-David, 2014). This process is repeated on each derived subset in a recursive 
manner called recursive partitioning. The recursion is completed when the subset at a node has all 
the same values of the target variable, or when splitting no longer adds value to the predictions. 
The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to 
train the tree. Thus, the classifier is assigned to the coastal/non-coastal part of the model, which 
can deal with low number of data when the tested event is non-coastal. 
 
Naïve Bayes 



Naïve Bayes is a classification algorithm that applies density estimation to the data. The naïve 
Bayes classifier is designed based on the naïve assumption that predictors are independent of one 
another within each class (Hastie et al., 2009). While the class-conditional independence between 
predictors is not true in general, research shows that this optimistic assumption works well in 
practice. It classifies data in two steps: 1) Using the training data, the method estimates the 
parameters of a probability distribution, assuming predictors are conditionally independent given 
the class; then, 2) For any unseen test data, the method computes the posterior probability of that 
sample belonging to each class. The method then classifies the test data according to the largest 
posterior probability (Manning et al., 2008). In this study, normal (Gaussian) predictor conditional 
distribution is used in the training function. This assumption of class-conditional independence of 
the predictors allows the naive Bayes classifier to estimate the parameters required for accurate 
classification while using less training data than many other classifiers. That is the reason that 
Naïve Bayes classifier is assigned to the coastal/non-coastal part of the model, which can deal with 
low number of data when the tested event is non-coastal. This makes it particularly effective for 
data sets containing many predictors. 
 
Logistic Regression 

Logistic Regression is a supervised machine learning algorithms which is commonly used for 
binary class classification problems. Logistic regression was borrowed by machine learning from 
the field of statistical models and is currently one of the most well-known and widely used machine 
learning algorithms (James et al. 2013). Logistic regression operates using a sigmoidal function 
for values ranging between 0 and 1. A logistic regression algorithm takes as its input a feature 
vector and outputs a probability, where the feature vector represents an object belonging to the 
positive class. Since the logistic regression model is very simple, compared to the other classifiers 
used in this study, it is assigned to the regional datasets, as these datasets are expected to have 
more common characteristics, compared to global and coastal/non-coastal models. 
 
Model Validation 

Leave-One-Out Testing 

The validation of the system is done by excluding data from an individual earthquake from the 
training process, and independently evaluating the inventory for that event in a leave-one-out 
testing approach. This process is done to fairly assess the performance of the model for new unseen 
earthquakes. This approach is different than the validation scheme followed by previous studies 
(Zhu et al., 2017; Todorovic and Silva, 2022), where they use all or a large portion of samples 
from all earthquakes in the training and model development process. This approach leads to a 
better understanding of the performance of the system in an unbiased way and provides insights 
into system of classifiers. 

Figure 4 provides a visual explanation of the model assessment and implementation and 
provides an example of how the soft and hard voting systems work with data from an unseen 
earthquake event. In this study, hard voting considering the majority votes of the classifiers. If at 
least 3 classifiers label a sample with liquefaction (class 1), the point will be classified as 
liquefaction. As an alternative, the soft voting can generate probability-based liquefaction maps 
that take into account epistemic uncertainty. The soft voting decision is made by taking the average 
of the class labels predicted by the classifiers in the voting system. In this research, since multiple 
classifiers are used to automatically balance each other’s outputs, the majority hard voting (3+ 



votes in favor of either class) is considered as the suitable boundary between the two classes and 
is similar to the optimal threshold used by Bozzoni et al. (2020) in their logistic regression model 
(0.57). 

 
Figure 4. The leave-one-out testing approach used in this study, plus an example of how the final 
classification decision is made via hard voting or soft voting procedures. Global classifiers 1, 2 
and 3 are SVM, discriminant analysis, and KNN, respectively. Coastal/non-coastal classifiers 1 
and 2 are decision trees and Naïve Bayes, respectively, and the regional classifier uses logistic 
regression. 
 
Accuracy Indices 

In order to evaluate accuracy, we use the hard voting with majority voting so that each pixel is 
labelled as 1 (liquefaction or positive class), or 0 (non-liquefaction or negative class). The 
performance of the model was assessed via ROC (Receiver Operating Characteristics) analysis 
and expressed via the Area Under Curve (AUC) parameter. In a ROC curve, the Sensitivity or 
True Positive Rate (TPR) is plotted against the Specificity or False Positive Rate (FPR). The TPR 
and FPR are calculated via Equations 9 and 10. 

Sensitivity = ��� =  
��

�����
                                                     (9) 

����������� = ��� =  
��

�����
                                                   (10) 

Where, TP (True Positive) is liquefaction predicted as liquefaction, FP (False Positive) is non-
liquefaction predicted as liquefaction, TN (True Negative) is non-liquefaction predicted as non-
liquefaction, FN (False Negative) is liquefaction predicted as non-liquefaction. The AUC ranges 
between 0.5 (random classifier) and 1 (100% accurate classifier). These accuracy indices 
(Sensitivity, Specificity and AUC) are provided for the models alongside the Prevalence, which 



shows the percentage of the specific earthquake dataset belonging to the positive class 
(liquefaction). The AUC values are compared with previous works and among the models 
presented in this study. 
 
Results and Discussion 

Exploratory Data Analysis 

In the exploratory data analysis (EDA) step, two main goals were pursued: 1) EDA-based and 
knowledge-based feature removal; and 2) Implementation of appropriate feature transformations. 
As a result, several features were removed or transformed prior to the machine learning-based 
feature selection. Table 4 provides the results of feature removal and the reasons behind the 
decisions.  

PGA is more frequently used in liquefaction modeling methods (Seed and Idriss, 1971; Zhu et 
al., 2015; Bozzoni et al., 2020) because it is proportional to the maximum shear stress induced in 
the sediment (Terzaghi et al., 1996). However, PGV has shown a stronger correlation with 
liquefaction occurrence than PGA in several studies (Zhu et al., 2017; Baise et al., 2021 & 2023), 
implying that soil liquefaction could be more sensitive to the low-frequency components of the 
ground motion, and liquefaction is more dependent on input kinetic energy, which is well-
characterized by the PGV (Kotoda et al., 1986; Midorikawa and Wakamatsu, 1988; Liang et al., 
1995; Bardet and Liu, 2009). Additionally, Bardet and Liu (2009) observed nonlinear behavior 
between the PGV and empirical probability of liquefaction; As PGV increases, the probability of 
liquefaction first rapidly increases and then reaches a plateau when PGV is greater than a threshold 
of 10 cm/s. Therefore, PGA was removed from the features based on the previous knowledge in 
the published literature, and PGV was retained as the loading feature. 

 
Table 4. EDA-based and knowledge-based feature removal results. 
Number Removed 

Feature 
Reasoning 

1 DR2 Repetitive information from alternative source 
2 DC2 Repetitive information from alternative source 
3 Precipitation o Correlation with AI (redundancy) 

o Previous knowledge from literature on over-prediction issues 
(Rashidian and Baise, 2020) 

4 PGA o Previous knowledge from the literature on the superiority of 
PGV in correlating with liquefaction occurrences (Zhu et al., 
2017) 

o Correlation with PGV 
5 DWB2 Repetitive information from alternative source 
6 HWB2 Repetitive information from alternative source 
7 Slope Correlation with TRI (redundancy) 
8 Roughness Correlation with TRI (redundancy) 
9 Aspect No observable separability of classes in univariate and bi-variate 

analysis with other features (irrelevance) 
10 Landform High number of classes leading to several categorical dummy 

variables in the classification modeling 



11 Landcover Binary categorical data, not desirable based on the designed 
voting classification method 

 
 
Feature transformations were applied when the transformation resulted in increased ability to 
distinguish the two classes. Table 5 presents the feature transformations implemented in this study. 
PGV is well-represented by a lognormal distribution; thus, PGV was transformed by taking the 
natural logarithm. The same transformation was applied to the Vs30 values. These transformations 
have been used by several previous studies (Zhu et al., 2017; Rashidian and Baise, 2020; Bozzoni 
et al., 2020; Baise et al., 2021; Todorovic and Silva, 2022). The distributions of some variables 
were skewed (distance to the waterbody and water table depth); thus, they were transformed by 
taking the square root of the original values. This transformation was also used by Todorovic and 
Silva (2022). TPI and TRI were transformed in the study by Baise et al. (2021) by taking the 
square-root of the absolute value. Figure 5 illustrates the benefit of feature transformations on the 
TPI variable. Baise et al. (2021) have also used square-root transformation for distance to the 
closest waterbody, elevation above the closest waterbody, and elevation. 
 
Table 5. Feature transformation techniques used in this study. “Ln”, “SQRT”, “ABS”, and “x”, 
stand for natural logarithm, square root, absolute value, and the original value, respectively. 

Number Feature Transformation Technique 

1 PGV Ln (x) 
2 DL SQRT (x) 
3 DWB SQRT (x) 
4 HWB SQRT (ABS (x)) 
5 WTD SQRT (x) 
6 HAND SQRT (x) 
7 Vs30 Ln (x) 
8 TPI SQRT (ABS (x)) 
9 TRI SQRT (ABS (x)) 
10 Elevation SQRT (x) 

 



 
Figure 5. a) Comparative box plots of the original TPI data of the two classes, versus b) 
Transformed TPI data (square root of the absolute value), showing the shift in their comparative 
means, and better distinguishment between the two classes. 
 

Feature Selection via Machine Learning 

Neighborhood component analysis (NCA) feature selection was used to compare the weight of the 
features, and to remove the features with zero or near-zero weight. Based on the results provided 
in Table 6, all the features showed contribution to the classification; therefore, all remaining 17 
variables are retained for the classification models. To improve the certainty of NCA performance, 
and because of the stochastic manner of NCA, the datasets were partitioned into 5 subsets, and the 
average weight of features on the NCA analysis of the subsets is reported in Table 6, ranked from 
high to low. It should be noted that the weights are based on the combined use of the variables, as 
NCA does not evaluate features independently, which is one of the reasons for using this algorithm 
at this feature selection step. As an example, on the importance of integrated feature selection, Zhu 
et al. (2017) reported in interaction assessment (bivariate analysis), that distance to river does not 
appear to be a good predictor when it is evaluated alone, but it becomes valuable when combined 
with distance to coast. 
 
Table 6. NCA feature selection results. 

Rank Feature Weight 
1 AI 5.702 
2 PGV 5.409 
3 Magnitude 5.300 
4 DL 4.558 
5 DC 4.350 
6 DWB 3.413 
7 Elevation 3.388 



8 Vs30 3.273 
9 DR 3.254 
10 HWB 2.966 
11 HAND 2.961 
12 Thickness 2.452 
13 TRI 2.386 
14 WTD 1.761 
15 CTI 1.249 
16 TPI 0.936 
17 WBE 0.713 

 
Binary Classification Modeling 

Data-Driven Classification Thresholds 

Based on the basic descriptive statistics of the selected features, presented in Table 7, a few data-
driven thresholds were chosen for post-classification optimization of the results. The selected 
thresholds are shown in bold red in the Table 7. These data-driven thresholds, plus the Mw 5 
threshold for liquefaction triggering (10 variables in total), results in pre-defined non-liquefaction 
labels for 9418 samples out of 247114 total samples (3.8 % of the samples). 
 
Table 7. Descriptive data statistics of the continuous geospatial variables by class. 

Variable Class Min Max Mean Median Mode STD Skew 

Vs30 
Liq. 137.22 900.00 232.29 219.32 260.20 78.85 2.93 

Non-Liq. 98.00 900.00 460.36 434.02 641.30 193.00 0.48 

Elevation 
Liq. 0.00 3649.99 11.96 3.82 0.00 37.40 26.11 

Non-Liq. 0.00 4130.48 346.85 184.57 0.00 413.91 1.99 

Thickness 
Liq. 0.00 50.00 44.71 50.00 50.00 11.49 -2.37 

Non-Liq. 0.00 50.00 13.52 3.25 1.00 18.06 1.21 

TPI 
Liq. -49.03 44.57 -0.19 -0.08 0.00 1.73 -3.95 

Non-Liq. -91.50 118.75 0.07 -0.12 0.00 11.73 0.40 

TRI 
Liq. 0.00 322.23 6.57 4.07 0.00 9.82 7.46 

Non-Liq. 0.00 596.15 64.17 40.44 0.00 69.03 1.60 

CTI 
Liq. 505.46 2731.87 1018.14 961.09 928.39 219.13 1.73 

Non-Liq. 386.38 2471.00 829.72 797.58 857.00 211.61 1.16 

PGV 
Liq. 1.01 158.15 45.46 33.79 28.54 28.31 0.96 

Non-Liq. 0.04 166.81 21.64 17.26 20.73 17.97 2.02 

Magnitude 
Liq. 5.80 9.10 7.66 7.70 7.70 0.96 0.26 

Non-Liq. 4.00 9.10 7.40 7.60 7.90 1.02 -0.53 

DC 
Liq. 0.00 356.15 27.00 12.19 0.00 29.35 1.18 

Non-Liq. 0.00 370.99 58.69 28.12 78.00 76.16 1.95 

DR 
Liq. 0.00 1287.21 25.32 15.18 0.00 26.30 7.04 

Non-Liq. 0.00 1301.71 76.89 32.12 0.00 134.18 5.54 

DL 
Liq. 0.00 133.07 10.57 8.70 0.00 8.45 1.19 

Non-Liq. 0.00 142.27 18.11 13.53 0.00 16.53 2.51 



DWB 
Liq. 0.00 40.39 4.60 2.56 0.00 4.62 1.27 

Non-Liq. 0.00 109.33 10.03 7.41 0.00 11.37 4.35 

WBE 
Liq. 0.00 1651.00 8.38 0.80 0.00 45.01 17.49 

Non-Liq. 0.00 2703.00 196.00 25.00 0.00 317.63 2.52 

HWB 
Liq. -1476.11 2342.99 3.73 1.93 0.00 16.98 25.62 

Non-Liq. -2800.10 3212.48 105.10 51.68 0.00 340.80 -0.87 

HAND 
Liq. 0.00 1810.75 5.85 4.00 4.00 10.75 61.37 

Non-Liq. 0.00 4138.25 108.08 43.75 2.00 161.71 3.10 

WTD 
Liq. 0.00 216.13 1.69 0.63 0.00 4.47 9.23 

Non-Liq. 0.00 488.48 31.35 20.19 0.00 36.89 2.35 

AI 
Liq. 0.00 27659.90 7978.74 6159.70 11242.63 5595.91 0.47 

Non-Liq. 0.00 39830.00 10264.86 10444.00 0.00 6376.04 0.42 

 
Voting Classification System 

The voting classification system was developed by training individual classifiers and aggregating 
them through hard and soft voting. The individual earthquake events were tested via the leave-
one-out approach, and the accuracy results including, overall accuracy, sensitivity, specificity, and 
area under the ROC curve (AUC) are provided in Table 8 for all earthquakes in the inventory, 
ranked by the validation’s AUC value, except for the non-liquefaction events which come at the 
bottom of the table, ranked by their overall accuracy. The prevalence column in Table 6 shows the 
percentage of liquefaction points in the inventory for each event. The accuracy of predictions for 
the 2003 San Simeon and the 2010 Haiti earthquakes were the best among the earthquakes with 
liquefaction observations, followed by the 2010 Tottori. Figure 6 shows the predicted liquefaction 
maps for these 3 events. 
 
Table 8. Accuracy statistics of the leave-one-out approach. All values are in percentage (%). 

Rank Earthquake Prevalence Overall 

Accuracy 

Specificity Sensitivity AUC 

1 San Simeon 7.79 96.31 99.11 63.16 98.77 

2 Haiti 2.00 83.71 83.38 100.00 97.36 

3 Tottori 49.43 91.96 84.63 99.45 96.65 

4 Christchurch 95.59 93.22 83.15 93.69 95.99 

5 Illapel 0.77 98.93 99.23 60.00 95.64 

6 Samara 1.48 86.64 86.56 92.31 95.49 

7 Loma Prieta 28.16 82.32 75.79 98.99 94.82 

8 Cephalonia 5.31 96.46 99.53 41.67 94.68 

9 Nihonkai 79.22 92.40 80.90 95.41 93.86 

10 Kobe 76.11 91.36 67.70 98.78 92.40 

11 Kocaeli 1.96 95.24 96.17 48.57 92.17 



12 Honduras 2.40 54.90 53.79 100.00 92.14 

13 Nisqually 8.45 64.40 61.78 92.86 91.67 

14 Hokkaido 29.42 89.41 93.13 80.48 90.96 

15 Nepal (Gorkha) 1.91 93.80 94.81 41.67 90.50 

16 Muisne 1.10 85.40 85.32 92.31 89.65 

17 Nigata 1964 74.61 88.62 68.80 95.36 89.60 

18 Miyagi ken 5.93 65.56 63.52 98.08 89.42 

19 Darfield 95.45 91.13 67.03 92.28 88.92 

20 Tokachi 3.23 69.35 68.62 91.16 88.88 

21 Napa 0.72 56.16 55.84 100.00 88.69 

22 Tohoku 89.19 90.72 54.91 95.06 86.86 

23 Oklahoma 0.74 92.96 93.25 50.00 86.47 

24 Kumamoto 26.09 81.18 84.32 72.31 85.89 

25 Nigata 2004 80.00 77.66 85.47 75.70 85.35 

26 Chiba 47.37 72.47 54.91 91.99 84.84 

27 Duzce 0.48 92.82 92.95 66.67 84.80 

28 Nigata 2007 27.81 66.47 53.55 100.00 83.19 

29 Tecoman 1.05 69.44 69.35 77.78 81.84 

30 Puget Sound 

1949 

1.92 92.31 93.03 55.56 81.62 

31 Telire Limon 3.00 59.53 58.35 97.67 81.48 

32 Pisco 2.50 97.84 99.83 20.00 80.06 

33 Denali 0.83 94.34 95.05 10.00 75.29 

34 Achaia 1.06 85.89 86.35 42.86 73.38 

35 Meinong 1.99 39.17 37.94 100.00 73.36 

36 Emilia 6.74 51.86 48.88 93.10 72.99 

37 Baja California 2.52 51.66 50.62 92.00 67.56 

38 Puget Sound 

1965 

3.73 84.14 85.97 37.12 65.18 

39 Northridge 2.33 97.67 99.72 11.90 62.42 

40 Arequipa 0.74 98.52 99.25 0.00 62.18 

41 Maule 0.53 94.21 94.62 16.67 58.58 

42 Chi-Chi 2.56 70.27 94.23 0.48 50.00 

43 Aquila 1.23 98.77 100.00 0.00 - 



44 Iquique 1.25 98.75 100.00 0.00 - 

45 Wenchuan 1.38 98.48 99.86 0.00 - 

46 VanTab 2.84 97.16 100.00 0.00 - 

47 Virginia 0.57 99.43 100.00 0.00 - 

1 Chino Hills 0.00 100.00 - - - 

1 Hector Mine 0.00 100.00 - - - 

1 Piedmont 0.00 100.00 - - - 

1 Yountville 0.00 100.00 - - - 

5 Central Italy 0.00 99.78 - - - 

6 Iwate 0.00 89.43 - - - 

 

 
Figure 6. a) Predicted liquefaction map of the 2003 San Simeon; b) 2010 Haiti; and c) 2010 Tottori 

earthquakes. Red is correctly predicted liquefaction. Green is correctly predicted non-liquefaction. 

Yellow is wrongly predicted liquefaction. Blue is wrongly predicted non-liquefaction. 

 
The 2011 Christchurch earthquake has the fourth best accuracy among the liquefaction-observed 
earthquakes in the inventory, while the 2010 Darfield event’s accuracy is relatively lower (ranked 
19th among the liquefaction-observed events). Figure 7 provides the liquefaction maps for these 
two events (Canterbury 2010-11 events in New Zealand). The difference in the predicted maps’ 
accuracy was also observed in the results of Todorovic and Silva (2022) for their random forest 
(decision tree-based) model, but with a more significant difference. An interesting observation 
here is that the decision tree classifier (coastal classifier 1) in this study also under-performed 
compared to the other 5 classifiers in the voting classification system. The voting system has a 
higher accuracy (add accuracy) than all individual 6 classifiers, which demonstrates the integrated 
power of the proposed method in providing more accurate predictions. Table 9 shows the accuracy 
(AUC) of individual classifiers, in addition to the final voting system for all tested earthquakes. 
 



 
Figure 7. a) Predicted hazard map of the 2011 Christchurch; and b) 2010 Darfield earthquakes. 

Red is correctly predicted liquefaction. Green is correctly predicted non-liquefaction. Yellow is 

wrongly predicted liquefaction. Blue is wrongly predicted non-liquefaction. 

 

According to Table 9, the AUC value for the proposed voting system is higher than all individual 
classifiers in 88.4 % of the tested earthquakes for which AUC is calculated. For the majority of 
other events, it’s very close to the highest AUC among the classifiers. This is evidence of the 
benefit of the proposed method, especially compared to the three global classifiers, which represent 
statistically optimal global models. Additionally, the spatial extent of liquefaction is moderated, 
even in the cases where the voting system shows a relatively lower AUC than the highest 
performing individual classifier. A very important observation is that not a single global classifier 
can be considered as best-performing for all the events. According to the results provided in Table 
9, among the 3 global models, global classifiers 1, 2, and 3, perform the best on 30 %, 35 % and 
30 % of the events, respectively, while they perform equally poor on the remaining 5 % of the 
events. The voting classification system performs better by taking into account the decisions made 
by coastal/non-coastal and regional classifiers in addition to the global models. 
 
Table 9. Comparative accuracy of single classifiers versus the proposed system of voting 

classifiers. All values are AUC in percentage (%). The events are listed in alphabetical order. 

Earthquake Global 1 Global 2 Global 3 Coastal / 

Non-

Coastal 

1 

Coastal / 

Non-

Coastal 

2 

Regional Proposed 

Method 

Achaia 66.37 75.51 68.44 64.76 51.93 60.23 73.38 

Arequipa 50.00 50.00 50.00 53.94 50.00 61.82 62.18 

Baja 

California 

50.00 68.93 50.00 50.00 59.19 69.34 67.56 



Cephalonia 62.27 70.83 54.17 89.80 62.50 86.33 94.68 

Chi-Chi 50.00 50.00 50.00 59.18 75.77 50.00 73.95 

Chiba 72.86 65.23 77.82 70.06 58.82 69.15 84.84 

Christchurch 88.57 83.26 82.76 62.77 69.90 89.84 95.99 

Darfield 78.80 73.72 75.66 57.40 71.54 72.97 88.92 

Denali 50.00 50.00 52.67 72.35 67.11 51.46 75.29 

Duzce 50.00 70.03 50.00 50.00 75.80 80.05 84.80 

Emilia 55.08 58.36 72.75 49.24 55.94 61.60 72.99 

Haiti 89.99 90.26 89.51 89.72 93.12 97.82 97.36 

Hokkaido 89.20 85.84 72.86 67.68 85.95 77.21 90.96 

Honduras 78.88 78.98 86.74 76.52 76.70 78.50 92.14 

Illapel 50.00 88.92 50.00 79.30 50.00 82.53 95.64 

Kobe 81.80 82.68 88.06 86.86 80.62 88.59 92.40 

Kocaeli 68.40 84.20 54.20 77.71 50.00 85.82 92.17 

Kumamoto 83.73 81.77 66.06 74.63 76.02 79.89 85.89 

Loma Prieta 86.59 87.67 93.13 50.00 85.53 87.89 94.82 

Maule 58.12 57.18 54.13 55.09 54.54 50.00 58.58 

Meinong 69.06 69.15 67.03 66.38 66.67 62.25 73.36 

Miyagi ken 79.25 80.10 84.11 82.65 76.38 82.89 89.42 

Muisne 70.27 82.79 67.74 89.11 87.71 53.92 89.65 

Napa 78.10 79.74 85.58 79.93 74.45 79.93 88.69 

Nepal 

(Gorkha) 

84.60 59.74 50.00 78.88 69.29 50.00 90.50 

Nigata 1964 81.85 82.29 81.82 82.50 80.53 83.46 89.60 

Nigata 2004 82.28 80.64 56.77 62.49 80.43 80.87 85.35 

Nigata 2007 76.09 75.20 78.31 76.19 76.52 77.39 83.19 

Nihonkai 87.70 89.32 70.31 85.05 87.19 88.25 93.86 

Nisqually 75.93 77.02 87.09 88.04 74.16 63.34 91.67 

Northridge 50.00 62.31 50.00 54.79 50.00 56.80 62.42 

Oklahoma 71.55 59.79 50.00 58.58 93.84 50.00 86.47 

Pisco 50.00 79.32 50.00 74.53 50.00 59.15 80.06 

Puget Sound 

1949 

77.85 74.23 66.27 62.51 74.82 73.93 81.62 

Puget Sound 

1965 

61.61 60.31 59.90 59.82 58.88 64.29 65.18 

Samara 88.74 82.32 92.85 88.97 89.14 92.10 95.49 

San Simeon 50.00 95.11 55.26 71.24 73.46 97.33 98.77 

Tecoman 74.57 80.60 74.22 63.69 72.79 76.57 81.84 

Telire Limon 77.69 76.95 64.97 77.31 77.94 60.00 81.48 



Tohoku 72.96 67.93 70.18 69.59 70.21 76.21 86.86 

Tokachi 78.15 77.21 85.65 83.21 78.12 83.98 88.88 

Tottori 90.67 90.87 94.87 91.99 91.83 94.12 96.65 

Wenchuan 50.00 50.00 50.00 52.60 63.79 50.00 65.41 
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Abstract 

A series of earthquakes hit Kumamoto, Japan, over a period of two days in April 2016, which 
caused numerous landslides. In this study, high-resolution pre-event and post-event optical 
imagery, plus bi-temporal Synthetic Aperture Radar (SAR) data are paired with geospatial data to 
train a pixel-based machine learning classification algorithm using logistic regression to identify 
landslides occurred because of the Kumamoto earthquakes. The geospatial data used include a 
categorical variable (surficial geology), and continuous variables including elevation, slope, 
aspect, curvature, annual precipitation, and landslide probability derived by the USGS preferred 
geospatial model which incorporates ground shaking in the input parameters. Grayscale index 
change and vegetation index change are also calculated from the optical imagery and used as input 
variables, in addition to temporal differences in HH and HV amplitudes of SAR data. A detailed 
human-drawn landslide occurrence inventory was used as ground-truth for model development 
and testing. The selection of optimal features was done using a supervised feature ranking method 
based on the Receiver Operating Characteristic (ROC) curve. To weigh the benefit of combining 
different types of imagery, temporal change information and geospatial environmental indicators 
for landslide mapping after earthquakes, five different combinations of features were tested, and 
the results showed that adding data of selected geospatial parameters (landslide probability, slope, 
curvature, precipitation, and geology) plus selected change indices (grayscale index change, 
vegetation index change, and HV amplitude difference of SAR data) to the imagery (post event 
optical) lead to the highest classification accuracy of 86.5% on class-balanced independent testing 
data. 
 



Methodology 

Given the available data from the Kumamoto Earthquake 2016, a methodology for feature 
selection followed by a pixel-based binary classification method is presented in this study. The 
feature selection step helps to determine which data inputs help the model to distinguish better 
between the two classes (landslide and non-landslide) without overfitting, since one way to reduce 
the overfitting is to reduce the dimensionality of the data. Feature analysis can, therefore, help us 
understand variable importance in the classification modeling. 

In this study, landslide mapping is a binary classification problem, which means that the 
goal of developing a model is to predict each pixel as either positive (landslide) or negative (non-
landslide) for landslide mapping. The flowchart of the proposed methodology is shown in Figure 
8. In this section, data processing and modeling is presented via subsections starting with the data 
normalization as a pre-processing step and ending with model accuracy evaluation and post-
processing steps. 

 

  
Figure 8. Flowchart of the proposed landslide mapping algorithm. 

 

Data Normalization 

After the resampling and stacking of the datasets, all the data layers were normalized as a pre-
processing step. Since the geology variable is originally categorical, but categorical data is not 
desirable for the classification method used in this research, the geological categories are sorted 
by the percentage of landslide occurrence in the categories within the training data, and the 
percentage of landslide pixels is substituted with the category numbers. This leads to a meaningful 
set of numbers for the geology variable, where the higher number indicates a higher probability of 
landslide occurrences. Then, the geology feature is considered same as other continuous variables, 
and the variable is normalized as well. 

Both the feature selection and classification models are developed based on the normalized 
data of the explanatory variables or data inputs, X, which significantly reduces the impact of data 
range on the final landslide prediction model and increases the processing speed with fast 
convergence. Using the mean (µ) and standard deviation (σ) of individual explanatory variables, 



data of all variables were normalized using Equation 11 to have a mean of 0 and standard deviation 
of 1. 
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����

�
                                                                    (11) 

 Feature Ranking 

Different combinations of features are used in the model validation step based on the feature 
ranking results, to perform a comparative analysis and to choose the best performing model based 
on the accuracy of the results for each combination. 
 The implemented algorithm ranks the features in data using an independent evaluation 
criterion for binary classification. Assume that Z is a matrix where every row is an observed vector 
(��), and the number of columns correspond to the original number of features. The criterion for 
feature ranking is the area under the empirical receiver operating characteristic (ROC) or the Area 
Under the Curve (AUC) (Theodoridis 1999). The receiver operating characteristic (ROC) curve is 
a graphical plot that illustrates the diagnostic ability of the binary classification system. It is 
generated by plotting the true positive rate for a given classifier against the false positive rate for 
various thresholds. For a perfect classifier, AUC = 1. For a classifier that randomly assigns 
observations to classes, AUC = 0.5 (Fawcett 2004). 

ROC curves and AUC scores also allow us to compare the performance of different 
classifiers for the same problem. The ROC curve is produced by calculating and plotting the true 
positive rate against the false positive rate for a single classifier at a variety of thresholds between 
0 and 1. The optimal threshold leads to the highest AUC and highest classification accuracy. At 
the feature ranking step in this research, each variable �� is tested through various thresholds within 
its range (min-max) to calculate TPR and FPR for those thresholds, which are needed to generate 
the ROC curve for the feature. 

 

Binary Classification Modeling 

In this subsection, different aspects of the classification modeling are explained in detail. 

Logistic Regression 

The pixel-based binary classification step uses logistic regression algorithm to predict landslide 
and non-landslide pixels. Logistic Regression is a supervised machine learning algorithms which 
is commonly used for binary class classification problems. Logistic regression was borrowed by 
machine learning from the field of statistical models and is currently one of the most well-known 
and widely used machine learning algorithms (James et al. 2013). Logistic regression operates 
using a sigmoidal function for values ranging between 0 and 1. In the context of image processing, 
this could mean identifying whether a given pixel belongs to a particular class. 

A logistic regression algorithm takes as its input a feature vector �� and outputs a 
probability, ��=P(y=1|z), where the feature vector represents an object belonging to the class y. For 
image processing, the feature vector might be just the values of the red, green, and blue (RGB) 
channels for each pixel in the image, a one-dimensional array of real numbers formed by flattening 
the three-dimensional array of RGB pixel values. A logistic regression model is described by the 
logistic (sigmoid) function shown via Equation 12. 
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and w contains the weights (coefficients) and the bias (intercept) of the linear equation. To 
calculate the coefficients in a way that the error is minimized, a loss error function is defined as 
shown via Equation 13, which describes how far the estimates are from actual observations. 
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Data Partitioning 

To train the classifier, it is recommended to separate data samples into distinct groups for model 
development and model testing, to avoid overfitting or underfitting. The difference in accuracies 
between the training and test sets can indicate whether a model is overfitting. The model is 
overfitting when the difference is large and the accuracy on the training set is very high. 
Underfitting, on the other hand, occurs when a model is not sophisticated enough to precisely 
capture relationships between predictors and responses, resulting in low accuracy on both training 
and test sets. 

In this study, a special sampling process is designed to create model development and 
testing data. The area of study was split into 10-by-20 grid regions (100 model development and 
100 model testing regions). The resulting dataset was significantly unbalanced with only 3.32% of 
pixels belonging to the landslide class. Class imbalance can cause overfitting in the classification 
algorithm as the model is rewarded by only predicting the majority class. To balance the datasets, 
only 10% of landslide points in the model development grid regions were sampled and added to 
only 0.4% of non-landslide pixels in those grid regions to form the sampled and balanced model 
development dataset. 

Based on the sampling strategy, the model development data of the landslide class contains 
only 5.67% of the total pixels assigned as landslide pixels in the study area, which means that the 
final model has not ever seen 94.33% of ground-truth landslide samples. The reason for the 
sampling process is to highlight the fact that no significant amount of data is needed to train the 
algorithms. This will also be helpful in a trustworthy validation step by considering most pixels in 
the final predicted landslide map of the study area as new independent predictions. In addition, 
results of the study by Rashidian et al. (2020) on pixel-based Earthquake-induced liquefaction 
modeling showed that although increasing the number of training pixels increases the accuracy 
and reliability of the classifier, the improvement will not be meaningful after reaching a specific 
number of pixels (2000 pixels recommended in their study). 

Figure 9 shows the ground-truth label based on the NIED landslide inventory, and the 
regional distinction for sampling model development and testing data, which has been 
implemented to avoid model bias. As shown in the Figure, model development data points have 
been sampled from blue boxes, whereas the testing points were sampled from the gray boxes. The 
testing dataset was also randomly sampled to create a balanced testing dataset consisting of all 
landslide pixels plus the same number of pixels from the non-landslide class (3.92% of available 
non-landslide pixels in the testing grid regions). 



 

 
Figure 9. Ground-truth binary landslide label, with distinct model development and testing 
regions. Model development regions are shown via light blue, and testing regions are shown via 
gray color. Yellow dots are the sampled training data for the landslide class, and blue dots are the 
sampled training data for the non-landslide class. Rows and columns as axes titles are indicators 
of pixel number (pixel size is 0.5 m). The sample points are schematical, and are not real indicator 
of the sampled data, since the points are very small, and needed to be enlarged for visualization. 
The number of sampled data is higher that visualized points in this figure. 
 

Model Evaluation 

After random sampling of the model development data, the collected samples are divided into two 
groups of training and validation. The validation process was implemented by hold-out validation 
of 25% of the sampled and balanced model development data to help the training process. The 
validation accuracy is reported for each of the evaluated case models. Then, the distinct testing 
data samples from testing grid regions are used to test the predictive ability of the classification 
model on an independent unseen dataset, and to calculate the accuracy indices explained below. 

There are several classification accuracy indices which were used in this study to make 
sure the model performs well. The proportion of correctly classified observations per positive class 
is referred to as the Sensitivity or True Positive Rate (TPR). Specificity or True Negative Rate 
(TNR) is the rate of correct prediction in the negative class. The sensitivity and specificity formulas 
are provided via Equations 14 and 15. The proportion of incorrectly classified observations per 
true class is referred to as the False Negative Rates (FNR). The Area Under Curve (AUC) curve 
depicts the true positive versus false positive rate. The AUC number is a measure of the overall 
quality of the classifier. Higher AUC (maximum is 1) values indicate better classification 
performance. 
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The proportion of correctly classified observations in the positive (landslide) class is referred to as 
the Positive Predictive Values (PPV) or precision. A high precision indicates that the model has a 
high probability of correctly classifying positive samples. The recall or Negative Predictive Value 
(NPV) is proportion of correctly classified observations in the negative (non-landslide) class. 
While the recall explains how sensitive the model is to identifying actual positive samples, it also 
quantifies the probability of detecting actual positive samples. Because precision and recall assess 
different aspects of the model, an index that combines the two is also used. The F1 score is the 
harmonic mean of the precision and recall, where an F1 score reaches its best value at 1 and worst 
at 0. The precision and recall formulas are provided via Equations 16 and 17. 
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Landslide Map Post-Processing 

After generating the final landslide maps, to remove the noise and smooth the maps, two-
dimensional median filtering was performed on the generated maps, which substitutes isolated 
pixels with the dominant class around them. Five rounds of smoothing are performed to avoid 
pixelated landslide maps, and to smooth the boundaries of the features. The window size selected 
for the post-processing step is 21×21 pixels in this study as a moderate size window as a trade-off 
to isolate and filter noise pixels while not losing very small-size landslide features. To analyze the 
impact of post-processing on the landslide map in terms of accuracy statistics, the generated map 
is compared with the ground-truth label, and the map overall accuracies before and after the 
smoothing are reported. 
 

Feature Importance Analysis 

Feature importance is also assessed by multiplying the coefficients of the logistic regression model 
by the standard deviation of the corresponding continuous parameters. Since all variables were 
normalized in the pre-processing step, having standard deviation of 1, the coefficients of the 
logistic regression model themselves are also the indicators for the feature importance in this study. 
 

Analysis Results 

In this section, the results of feature ranking step and the binary classification modeling are 
provided. Model validation is performed, and the visualizations are provided plus a discussion of 
the methods and outputs. 

Feature Selection 

In this study, it was decided to keep all RGB color channels of the post-event imagery active in 
the training process for the classification models. Feature ranking of the geospatial features and 
the temporal change features was performed to evaluate different combinations. The goal of 
performing this step is to select high-weight features per the categories of change information and 
geospatial information. The supervised feature ranking results via ROC calculation are shown in 



Table 10. The weights of features in the landslide and non-landslide classes show that the two 
change bands of vegetation difference and grayscale change have the highest impact on the 
classification as compared to the other variables. The third high-weight band in the change 
information category is HV amplitude difference. Geology, slope, precipitation, curvature, and 
landslide probability are the other high-weight geospatial features. The criteria to select the high-
weight features was to have a weight of at least 0.55 in the feature ranking step (Table 10). It 
should be noted that having a weight of 0.5 is indicator of a random classifier. 
 
Table 10. Feature ranking results by ROC scores for the continuous variables. 

Rank Feature Description Feature Type Weight 

1 Grayscale Change Change 0.792 

2 Vegetation Change Change 0.791 

3 Geology Geospatial 0.783 

4 Slope Geospatial 0.669 

5 Precipitation Geospatial 0.582 

6 Curvature Geospatial 0.580 

7 HV Amplitude Difference Change 0.565 

8 Landslide Probability Geospatial 0.562 

9 Digital Elevation Geospatial 0.542 

10 HH Amplitude Difference Change 0.529 

11 Aspect Geospatial 0.524 

 

Classification and Model Evaluation 

To evaluate how data fusion can aid in the development of landslide inventories from post-event 
imagery, different subsets of features were created with increasing complexity to test the 
performance of the logistic regression classification algorithm. All models used the post-event 
RGB imagery, including Model 1 developed solely via RGB channels. Next, a model that adds the 
optimal temporal change indices was tested (Model 2 = RGB + Change). Next, a model that adds 
the optimal geospatial features was tested (Model 3 = RGB + Geospatial). Next, a model that adds 
both optimal change indices and optimal geospatial features was tested (Model 4 = RGB + Change 
+ Geospatial). Then, Model 5 was tested via all available data (14 bands). 

Table 11 provides the classification accuracy results of different base models. Based on the 
overall classification accuracy of the model applied on the testing data, as shown in the table, the 
recommended model is Model 4 which uses RGB, selected change indices (grayscale change, 
vegetation change, and HV amplitude difference), plus selected geospatial features (geology, 
slope, precipitation, curvature, and landslide probability). The proposed Model 4 outperforms 
other models for most of the accuracy indices, especially the overall testing accuracy (86.5%). The 
color imagery alone (Model 1 = RGB), proved to have the worst performance among the models, 



relatively. Although, it is observed that all models achieved a high level of learning and predictive 
performance, with some variations related to the different inputs fed to the algorithm.  
 
Table 11. Classification performance results in different case models. (* is indicator of selected 
high-ranked feature) 

Case Model 
Overall Classification 

Accuracy % 
Area Under Curve 

(AUC) 

Non-Landslide 
Testing 

Accuracy % 

Landslide Testing 
Accuracy % 

No. 
Variable 

Categories 
Channel 
Number 

Validation Testing Validation Testing TNR NPV TPR PPV 

1 RGB 3 85.00 82.48 0.92 0.89 82.85 82.04 82.11 82.92 

2 
RGB 

Change* 
6 86.39 83.90 0.93 0.91 85.08 82.33 82.79 85.47 

3 
RGB 

Geospatial* 
8 87.95 86.13 0.94 0.93 87.06 84.99 85.25 87.29 

4 
RGB 

Change* 
Geospatial* 

11 88.63 86.50 0.95 0.93 87.99 84.63 85.11 88.38 

5 All Channels 14 88.64 86.44 0.95 0.93 87.91 84.59 85.06 88.30 

Model 4 (the preferred Model), as well as Models 3 and 5, have higher prediction accuracy, 
compared to Models 1 and 2, which can be the result of using geospatial parameters, especially 
the geology variable, which showed very high weights in the feature ranking step. Among the 
Models 3, 4 and 5, the Model 3 has the lowest accuracy, probably because of not exploiting the 
change information. Among Models 4 and 5, the preferred Model 4 has the superior performance, 
with slightly better accuracy results, compared to Model 5, which can be attributed to optimal 
feature selection in Model 4, compared to redundant features in Model 5, leading to overfitting. 
The model parameters show small estimation uncertainty based on the standard errors (SE), and 
all selected variables are statistically significant based on the t-statistic for a two-sided test with 
the null hypothesis that the coefficient is zero, and the near-zero associated p-values of the 
hypothesis test. 

Figure 10 shows the outputs of Models 1 (Figure 10-a) and 4 (Figure 10-b) to visualize the 
impact of adding change and geospatial information to the imagery for classification. Additionally, 
the final output of the Model 4 based on the 0.70 probability threshold is provided in the bottom 
of the Figure (10-c). The modeled maps include colors red (true positive: correctly mapped 
landslides), yellow (false positive: wrongly mapped landslides), and blue (false negative: missing 
landslide features, predicted as non-landslide). True negative pixels (correctly predicted non-
landslide) are not visualized. 



 
Figure 01. Comparative maps of the landslides by Models 1 (a), Model 4 (b) and the Model 4 with 70% 
probability threshold (c). The maps show post-event imagery with predicted labels. The modeled maps 
include colors red (true positive: correctly mapped landslides), yellow (false positive: wrongly mapped 
landslides), and blue (false negative: missing landslide features, predicted as non-landslide). Rows and 
columns as axes titles are indicators of pixel number (pixel size is 0.5 m). 
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Project Data 

Each of the three projects are written up in peer-reviewed journal articles and Section 2 and 3 are 
part of a Ph.D. Dissertation by Adel Asadi published at Tufts. The peer-reviewed journal articles 
are in peer-review and electronic supplements will be provided with the journal article. The 
datasets used were published by others and all model parameters are included in the peer-reviewed 
publications.  
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