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Abstract:

In recent years, the USGS and others (including the PI of this effort) have worked to develop
predictive regional models for ground failure with a focus on landslides and liquefaction. The
models provide probability estimates of ground failure given the shaking from an earthquake
event. The current USGS implementation includes the ground failure models as a product on the
overview page for each earthquake on the USGS Earthquake Hazard Program website. Many of
the existing geospatial ground failure models have been developed using logistic regression. In
this project, we will demonstrate three innovations in model development: 1) Uncertainty
quantification for geospatial liquefaction logistic regression models; 2) Machine learning
algorithms for geospatial liquefaction models; and 3) Machine Learning algorithms to create
landside inventories using post-event imagery. The geospatial liquefaction model as developed by
Zhu et al (2015; 2017) and since expanded by Rashidian and Baise (2020) and Baise et al. (2021)
relies on geospatial proxies for soil density and soil saturation combined with earthquake loading
estimates from USGS ShakeMap to predict the spatial extent of liquefaction after an earthquake.

Significant contributions of the proposed research to USGS Earthquake Hazards Program

The proposed research most directly addresses the following program elements of the External
Research Program Announcement for FY 2022: Element I: as it updates “National and regional
assessments of the expected degree of ground deformation.”, and Element I11: specifically, “with
the goal of improving hazard assessments”. This research is also relevant to the following common
priority topic for all research areas: “Develop approaches to provide earthquake hazard
information needed for risk assessments.” The proposed work is inherently aligned with the
following Priority Topic for Research on Engineering Seismology and Impacts (ESI): “Improve
predictive models of earthquake-triggered ground failures including landslides and liquefaction
that can be characterized and employed at regional/global scales rather than site-specific or
material behavior studies.” And “The ESI panel prioritizes innovative models.” And “the use of
innovations in other fields, including but not limited to remote sensing and/or artificial intelligence
technology.” This proposal is focused on regional/global scale ground failure models that take
advantage of both remote sensing and local data using artificial intelligence methods.

Report:

Overview:
As part of this project, we conducted three independent projects that demonstrated innovative data-
driven methods for geospatial ground failure models.

1. An uncertainty quantification framework for logistic regression based geospatial natural
hazard modeling (using a geospatial liquefaction model (Zhu et al.2017) for demonstration
and implementation.)

2. Regionally informed global geospatial modeling of earthquake-induced soil liquefaction
using a system of voting machine learning classifiers building on an updated liquefaction
inventory presented in Zhan et al. (2023).

3. Pixel-based Classification Method for Earthquake-Induced Landslide Mapping Using
Imagery, Geospatial Data and Temporal Change Information



Each of these projects will be described in brief and is associated with a peer-review publication.

Section 1. Uncertainty quantification framework for logistic regression based geospatial
natural hazard modeling

(The following content has been excerpted from a peer reviewed publication with the same title
and the following authors)
Weiwei Zhan, Laurie G. Baise, Babak Moaveni

Abstract

There is a class of data-driven global natural hazard predictive models that take advantage of
broadly available geospatial proxies. These data-driven geospatial models have been commonly
used for landslides and are becoming more available in recent years for liquefaction. Logistic
regression is the most common method for predicting these ground failure occurrences. These
models do not often include robust quantification of uncertainties although they are widely used
in the pre-disaster planning and post-disaster response around the world. Taking the logistic
regression based global geospatial liquefaction model (GGLM) (Zhu et al., 2017) as an example,
we propose an uncertainty quantification (UQ) framework that consists of characterization of
different sources of uncertainty, model sensitivity analysis, and forward uncertainty propagation.
In this study, we have identified the main sources of uncertainty in such predictive models as
parameter estimation uncertainty, modeling error, and geospatial input uncertainty. A Bayesian
inference algorithm is used to quantify the posterior distribution of model parameters and quantify
model parameter estimation uncertainties which are found to be negligible when a large amount
of data is used in the parameter estimation process. Modeling errors are characterized based on the
observed residuals between model predictions and measurements and by fitting a Gaussian
distribution to the liquefaction probability residuals. The geospatial input uncertainties are
characterized using the literature and expert judgement and propagated into model output. Second,
we investigate the sensitivity of model output to different uncertain inputs and find that the
variance of model output is largely controlled by the geospatial input uncertainties and model
errors. Last, we propose an approximate forward uncertainty propagation method, which provides
comparable results to a Monte Carlo simulation-based method with better computational
efficiency. The proposed UQ framework provides a measure of uncertainty on model predictions
and can be applied to any logistic-regression models and other geospatial modeling problems.

Uncertainty Quantification for GGLM

Geospatial natural hazard models intrinsically involve different types of uncertainties. In this
framework, we identify three types of uncertainty sources: parameter estimation uncertainty,
modeling errors, and geospatial input uncertainty. In this section, we quantify (1) estimation
uncertainty of model parameters through a Bayesian inference framework, (2) modeling error by
fitting a distribution to the observed model prediction residuals, and (3) uncertainty of geospatial
explanatory variables from past studies or engineering judgment.

Bayesian Inference for Quantifying Parameter Estimation Uncertainty



Under the UQ framework, we treat model parameters as random variables and use the Bayes'
theorem to estimate the posterior probability distribution of model parameters.

p(w|D) = B2 o p(D|w)p(w) 1)
where w is the vector of model parameters to be estimated; D is the vector of available data, i.e.,
paired geospatial inputs X and liquefaction observation y; p(w|D) is the posterior distribution of
model parameters; p(D|w) is the likelihood function as shown in Equation (2); p(w) is the prior
probability distribution of the model parameters; and p(D) = [ p(D|w)p(w)dw is the evidence
which is a normalization constant so the probability of the parameters sums to one.

p(DIw) = [TN=1 P (1 — pp)* ™n (2)

In Equation (2), N is the sample size; n is the sample id ranging from 1 to N; p,, = m is the

liquefaction probability for sample n predicted using the logistic function; and y, is the
liquefaction observation for sample n (y,, = 1 for liquefaction and y,, = 0 for nonliquefaction.
As the solution of posterior distribution of model parameters for logistic regression is intractable
(Bishop and Nasrabadi, 2006), we use the Laplace approximation method to estimate p(w|D).
Laplace approximation aims to find a Gaussian approximation to the posterior probability density
defined over a set of continuous variables (Bishop and Nasrabadi, 2006). We assume a Gaussian
distribution for the model parameter prior with the general form as shown in Equation (3).

p(w) = N(w|my, S) 3)

where m and S, are the mean vector and covariance matrix of the model parameters, respectively.
Taking the log of both sides in Equation (1), and substituting Equation (2) for the likelihood
function, and Equation (3) for the prior distribution, we obtain the posterior distribution (Bishop
and Nasrabadi, 2006):
1
Inp (w|D) = — > (w—mg) S5 (W —my)
+ Zﬁ:l{yn In Pn t (1 - Yn) l‘l’l( 1- pn)} + constant (4)

To obtain a Gaussian approximation for the posterior distribution, we first find the maximum-a-
posteriori (MAP) estimate W,,,, as the maximum of Equation 4, which defines the mean of the

posterior distribution. The covariance matrix is then estimated as the inverse of the Hessian
(second derivative) of the negative log likelihood, which takes the form

Sy =—VVinp (W|D) = Sg* + Xn=1 Pn(1 — Pn)XnX7, (5)
The Gaussian approximation to the posterior distribution therefore takes the form
q(w) = N(w|wyap, Sy) (6)

The prior distribution uses zero means for all the model parameters, and standard deviation of 100.
In that way, the prior distribution is flat, which indicates an uninformative prior distribution. The
Laplace approximation is then used to estimate the joint posterior distribution of model parameters.



The pairwise correlations between model parameters are estimated using the Sy by converting the
covariance matrix to correlation matrix.

The mean, standard deviation, and coefficient of variation (COV) of the GGLM model
parameters are summarized in Table 1. The model parameters show small estimation uncertainty,
with the maximum absolute value of COV being 2.6% (for In(precip) and In(wtd)), not exceeding
1.0% for the remaining model parameters. The pairwise correlations between the model
parameters of GGLM are shown in Table 2. Two model parameters (In(Vszo) and In(wtd)) have
strong correlations with intercept, and In(Vsso) also shows a strong negative correlation with
In(wtd). The positive parameter correlation means the model parameter tends to increase with the
increase of another model parameter, and vice versa (Li and VVu, 2013). Statistically, the maximum
likelihood fitting (Equation 2) cannot guarantee unique parameter estimation, due to correlations
among the parameters. The correlation can be explained by the physical background of
liquefaction phenomena. For instance, the site stiffness (Vsso) and water table depth (wtd) can affect
the soil liquefaction susceptibility jointly. In short, the Bayesian inference results suggest the
GGLM tend to have low parameter estimation uncertainty.

Table 1. Parameter estimation uncertainty of the geospatial liquefaction hazard model.

Coefficients Intercept  Winpgv)  Winvs3o)  Wingprecip)  Winw)  Win(wtd)
Mean 6.731 0.279 -1.459 0.167 -0.695 -0.130
Std 0.067 0.003 0.013 0.004 0.004 0.003
COV (%) 1.0 1.0 -0.9 2.6 -0.6 -2.6

Table 2. Correlation matrix for the model parameters of the geospatial liquefaction hazard model.

Correlation | Intercept | Winpav) | Winevs30) | Wingprecip) | Win(dw) | Win(wtd)
Intercept 1.00 -0.02 -0.88 -0.24 0.11 0.70
Winpav) 1.00 -0.14 0.08 0.06 | 0.09
Win(vs30) 1.00 -0.23 -0.14 -0.80
Win(precip) 1.00 -0.01 0.16
Win(dw) 1.00 0.06
Win(wtd) 1.00

Residual Analyses for Quantifying Modeling Error
Modeling Error

Modeling errors are due to imperfections of the simplified statistical models in representing
complex natural hazard phenomena and inherent randomness of geophysical processes. For
geospatial natural hazard models with continuous outputs (i.e., regression models), such as
earthquake ground-motion models (Boore et al., 2014), the modeling errors can be defined as the
differences between the observed and predicted hazard intensities. However, for geospatial models
with categorical target variables (i.e., classification models), the modeling errors are not easily



defined (Liu and Zhang, 2018). Here, we gquantify the modeling errors of GGLM in the space of
liquefaction probability. Specifically, the model residuals of the GGLM are defined as the
differences of empirical and theoretical liquefaction probabilities which are both conditional on
the Z value.

€(Z) = P(Z)empi — P(Z) theo (7)
where € is the liquefaction probability residual which is considered as modeling error; P(Z) ¢mpi
is the empirical (observed) liquefaction probability which is computed as the ratio of the
liquefaction sample size to the total sample size for each Z value bin; and P(Z)¢peo IS the
theoretical (predicted) liquefaction probability.

Global Residual Model

The relationship between the empirical and theoretical liquefaction probabilities is shown in Figure
1. The empirical liquefaction probabilities are represented for different Z bins based on the
corresponding proxies of observed locations, and they match well with the theoretical ones for
sampleswith Z € [—2.2,1.4] (i.e., P(Z)heo € [0.1, 0.8]). Itis noted that the observed liquefaction
probabilities deviate from the predicted liquefaction probabilities at the low and high Z values,
which is likely due to insufficient sample size at these bins for calculating empirical liquefaction
probabilities. We use 150 as the threshold sample size per bin to exclude outlier bins based on the
relationship between liquefaction probability residuals and the sample size per bin (Figure 1b).
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Figure 1. (a) Comparison between empirical (circles) and theoretical (red curve) liquefaction
probabilities. The empty circles indicate bins with sample size less than 150. The histogram shows
the number of liquefaction and non-liquefaction samples. The vertical dashed lines constrain the
data range with sufficient sample size for computing empirical liquefaction probability. (b) The
correlation between liquefaction probability residuals and sample size per bin. The vertical dashed
line indicates sample size for reliable estimation of empirical liquefaction probability.

The liquefaction probability residuals show different patterns at varying Z values. The GGLM
consistently overestimates the liquefaction probability at the very low Z value range (Z< -2.2)
where the empirical liquefaction probabilities are zero except for a few abnormal high values due
to insufficient sample size. At the very high Z values (Z>1.4), the model also tends to have a
smaller number of reliable estimations of empirical liquefaction probability. For the middle Z value
range (Z € [—2.2,1.4]), the liquefaction probability residuals have slightly higher variability for



negative Z values than for positive values but generally follow a Gaussian distribution as shown
in Figure 2b. In this study, we represent the liquefaction probability residuals as a Gaussian
distribution with mean of zero (as the fitting process is unbiased) and standard deviation of 0.06
(2b). Based on the residual analyses, we propose conditional mean and residual models for global
application of the GGLM (Table ) which is basically a truncated Gaussian distribution model. For
locations with Z between -2.2 to +1.4, mean estimate of liquefaction probability is the direct output
of the logistic regression model while modeling error is represented by the fitted Gaussian
distribution in Figure 2b. For locations with Z<-2.2, we recompute the empirical liquefaction
probability as the ratio of the number of the liquefaction samples with Z <-2.2 to the total number
of samples with Z <-2.2, and assign this empirical probability value (i.e., 0.05) as the mean estimate
of liquefaction probability with Z<-2.2. For locations with Z>1.4, we assign the mean estimate of
liquefaction probability as 0.8 using the similar method but removing the samples from several
outlier Z bins. We assume the residual models for the locations with insufficient samples (i.e., Z<-
2.2 and Z>1.4) fit the same Gaussian distribution calibrated using the main part of dataset (2b)
although we do not have enough reliable data to calibrate them. It is noted that our residual analyses
also contribute to cap the predicted liquefaction probability.
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Figure 2. (a) Relationship between the liquefaction probability residuals and the Z value. The
circles with no fill have insufficient samples to estimate empirical liquefaction probability (i.e.,
the sample size is less than 150). (b) Histogram of the liquefaction probability residuals. The red
line is the theoretical probability density function for the Gaussian distribution with mean of zero
and standard deviation of 0.06.

Table 3. Proposed mean and modeling error forms of the considered GGLM after the residual
analyses.

Stage Applicable range P(y=1) €
1 7<-22 0.05 Assumed N(0, 0.06)*
2 2.2<7<1.4 1 N(0, 0.06)
3 Z>14 0.80 Assumed N(0, 0.06)

* N(u,0) denotes the Gaussian distribution where p is the mean and o is the standard deviation.




Section 2. Regionally informed global geospatial modeling of earthquake-induced soil
liquefaction using a system of voting machine learning classifiers.

(The following content has been excerpted from a peer reviewed publication with the same title
and the following authors)
Adel Asadi?, Laurie Gaskins Baise!, Snehamoy Chatterjee?, Weiwei Zhan!?, Alexander Chansky?,

Babak Moaveni!

! Geohazards Research Lab, Department of Civil and Environmental Engineering, School of
Engineering, Tufts University, Medford, MA 02155, USA.

2 Geological and Mining Engineering and Sciences Department, Michigan Technological
University, Houghton, M1 49931, USA.

3 Texas Advanced Computing Center, Civil, Architectural and Environmental Engineering
Department, The University of Texas at Austin, TX 78758, USA.

Abstract:

Data-driven geospatial liquefaction models are useful tools for real-time post-event impact and
regional seismic hazard assessments. Geospatial liquefaction models are based on liquefaction
occurrence inventories, widely available geospatial variables, and earthquake-specific parameters.
This research uses an updated inventory with geospatial data from non-liquefaction and
liquefaction occurrence locations in 53 earthquakes around the world, including categorical and
continuous variables representing proxies for soil saturation, soil density, and earthquake loading.
In this study, the performance of advanced machine learning (ML) algorithms in learning complex
nonlinear patterns in the large dataset to predict liquefaction susceptibility, as an alternative
approach to previously published logistic regression classifiers is evaluated. The proposed
methodology starts with an exploratory data analysis and feature selection scheme on the sampled
data across both the liquefaction and non-liquefaction classes to remove redundant and less
relevant features, run data transformations, and perform statistical analysis to define some
classification thresholds. The class and event imbalance issues are treated in an innovative manner
by under-sampling large events and distributing the datasets over several balanced subsets. Instead
of training a single classifier, a system of voting machine learning classifiers is designed to achieve
higher accuracy and certainty, using different classification techniques to balance the performance,
as not a single classification technique can be considered the best for all earthquake events. The
voting classifiers use different portions of the data, representing global, coastal/non-coastal and
regional information, to optimize the predictive power of the proposed model by taking the
majority votes of six different classifiers. The classifiers include three global classifiers, two
coastal/non-coastal classifiers, and a regional classifier. For each data subset, the ML-based binary
classification model is trained and validated via a K-fold cross-validation approach, and the voting
system is tested based on the leave-one-out approach, excluding individual earthquake events one
at a time for a fair accuracy, reliability, and applicability assessment. The final class assignment is
generated by majority vote of the system of 6 voting classifiers trained by the individual data
subsets. The results of this study are compared with a model developed using logistic regression
to investigate the benefits and limitations of the proposed voting approach.

Methodology



In this research, a novel system of voting machine learning classifiers is proposed as an alternative
to logistic regression based geospatial liquefaction models. The system of voting machine
classifiers allows for the inclusion of multiple global models, coastal and noncoastal models, and
geographic regional models. The dataset is balanced across events by considering a cap for the
number of samples per class. The sampled imbalanced data is distributed into subsets of balanced
training data: 3 global models, 2 coastal models, 2 non-coastal models, and 6 geographic regional
models. The system of classifiers is implemented through both majority voting and soft voting of
the classifiers. The model performance is assessed with a leave-one-out testing approach, which
means that data of individual earthquake events are excluded from the training data in a loop over
all events. The flowchart of the proposed system is presented in Figure 3.

Figure 3. Flowchart of the proposed voting classification approach. Since 6 regions are considered
in the inventory, 6 different regional models will be utilized based on the individual earthquake
being tested.

Exploratory Data Analysis

Different types of exploratory data analysis (EDA) technique are used to evaluate the features in
terms of redundancy and relevance to the binary classification problem in this research. A variety
of univariate (histograms, box plots, bar plots, etc.) and bi-variate (correlation analysis, etc.)
analysis methods were considered to evaluate the parameters’ class separability and their
relationship with each other. Feature transformations were proposed to improve the performance
of several features in distinguishing the classes of liquefaction and non-liquefaction. After the
EDA process, the data of all features (X;), except the categorical variables are normalized via Z-
score method to have a mean of zero and standard deviation of one, as presented via Equation 8,
where [ is the mean, and o is the standard deviation of each variable. Most machine learning
algorithms perform better when variables have a Gaussian distribution (Geyin et al., 2022), all
predictors were transformed and normalized.



7 =— (8)
Data Imbalance

Data imbalance can be problematic, as machine learning algorithms for classification problems are
designed for balanced datasets; otherwise, their predictions will be biased toward the majority
classes, as they were less punished for misclassifying the minority classes during the training and
validation process (Weiss and Provost, 2001). The spatially incomplete nature of the liquefaction
inventory database and the associated class imbalance has a strong influence on the probabilities
of the model (Oommen et al., 2011; Thompson et al., 2016-b; Zhu et al., 2015 & 2017). One
solution to this issue is to under-sample the majority class by random sampling (Fernandez et al.,
2019). The other solution could be to over-sample the minority class using synthetic data
generation techniques. Bozzoni et al. (2020 & 2021) resolved the issue of class imbalance by trying
commonly used synthetic data generation (over-sampling) algorithms, including SMOTE (Chawla
et al. 2002) and ADASYN (He et al., 2008). However, such methods can be uncertain in terms of
losing valuable information in under-sampling and adding noise and unrealistic samples to the data
in over-sampling process. Zhu et al. (2015) chose to use a highly imbalanced dataset (almost 13
non-liquefaction samples per each liquefaction record) because they aimed to develop a probability
estimator that predicts the areal extent of liquefaction and wanted the probability to correlate to
the spatial extent. However, in their later version, Zhu et al. (2017) balanced their database after
performing the non-liquefaction sampling process. Similarly, Baise et al. (2021) used a balanced
sampling strategy, where the more significant liquefaction events are under-sampled so that they
don’t dominate the model. They capped the number of liquefaction and non-liquefaction points
from each earthquake to 2000 and 1000 points, respectively.

In this study used an alternative approach. The dataset is balanced across the events by considering
a cap for the number of samples per class (2085 for non-liquefaction and 2577 for liquefaction).
Then, the resulting dataset which contains ~27 % liquefaction samples are distributed over six
various balanced subsets, including three sets of global data, two sets of coastal/non-coastal data
(depending on the earthquake being tested), and a set of six geographical regional datasets, based
on the regional categorization of the events. Because the method is demonstrated with the leave-
one-out approach to model evaluation, the data of the tested earthquake is not included in any of
the data subsets.

Feature Selection via Machine Learning

After removing a few features (variables) through the EDA process, a feature selection scheme is
implemented to remove any features with zero or near-zero weight in the classification process.
The strategy in this research is to keep explanatory variables as long as they are informative. The
goal of feature selection is to reduce the risk of model over-fitting, to improve accuracy, and reduce
training time. Neighborhood component analysis (NCA) is used in this study as the feature
selection technique. NCA is a machine learning algorithm for metric learning that learns in a
supervised manner for improving the classification accuracy of a stochastic nearest neighbors’ rule
in the transformed space (Goldberger et al. 2005). The algorithm works best to estimate feature
importance for any distance-based supervised models that use pair-wise distances between
observations to predict the response (Guyon and Elisseeff, 2003). NCA feature selection is
performed with regularization to learn feature weights for minimization of an objective function
that measures the average leave-one-out classification loss over the training data (Yang et al.,



2012). The regularization term (A) in NCA’s objective loss function derives the weights of
irrelevant predictors to zero. As the number of observations n increases, the chance of overfitting
decreases, and the required amount of regularization also decreases. A=1/n, where, n is the number
of samples, is an approximately good selection for the regularization parameter. Stochastic
gradient descent algorithm was used as the solver to estimate feature weights.

Classification Modeling

The logistic regression models developed in the studies by Zhu et al. (2015), Zhu et al. (2017), and
Baise et al. (2021), were based on an intentional strategy to develop a simple model that uses
parameters that reflect the underlying physics of the problem and can be used easily and quickly
for future events. In this work, the goal is to increase the predictive accuracy through the use of a
complex machine learning model.

Classification Thresholds

Thresholds have commonly been used in geospatial liquefaction models to prevent overfitting and
to include thresholds related to physical limits to liquefaction occurrence. The GGLM model (Zhu
etal., 2017) used a PGV minimum threshold of 3 cm/s. Rashidian and Baise (2020) modified the
GGLM model by recommending a PGA minimum threshold of 0.1 g as an additional threshold to
better characterize the step-function behavior of the PGA plot. A threshold of 0.1 g for horizontal
peak ground acceleration (PGA) was also used by Bozzoni et al. (2020) to reduce the spatial extent
of liquefaction from prior geospatial liquefaction models, based on experimental data showing that
liquefaction triggering is highly unlikely for PGA values of less than 0.10 g (Green and Bommer
2019). Based on the inventory used herein, liquefaction has occurred in the 2012 M6 Emilia
Earthquake in Italy when PGA < 0.1 g indicating that this threshold may be too high.

The US Geological Survey (USGS) has also implemented a magnitude scaling factor
(MSF) to the PGV term in the GGLM equation to reduce the over-prediction for low-magnitude
earthquakes (M < 6). Rashidian and Baise (2020) have left the decision on using MSF to the
GGLM model users, since they didn’t observe any considerable positive or negative impact in
their comparative analysis for high-magnitude earthquakes where over-prediction is more likely
to happen, although they confirmed that the spatial extent of liquefaction will be moderated for
low-magnitude events when using this factor.

Zhu et al. (2017) also implemented a maximum threshold of 620 m/s for the Vs3o, which
means that any point with a Vs3o value of greater than the threshold is automatically considered as
non-liquefaction. In the current inventory, this Vs30 threshold leads to under-prediction in for the
1993 M7.7 Hokkaido earthquake in Japan. Rashidian and Baise (2020) also recommended the use
of an upper bound for GGLM (Zhu et al., 2017), when annual precipitation of a region exceeds
1700 mm, which was the upper quartile of annual precipitation in their development database of
earthquakes, since overprediction of liquefaction was observed in regions with high precipitation.
The annual precipitation threshold reduced the over-prediction of liquefaction in the 14 affected
earthquake events in their study.

The use of thresholds has also been used in the study by Jena et al. (2022) in their deep
learning model of liquefaction hazard for Australia. They have applied thresholds for different
input variables including magnitude of Mw6. Green and Bommer (2019) concluded that
earthquakes as small as Mw 4.5 can trigger liquefaction in extremely susceptible soil deposits,
based on their field observations and a simple parametric study. However, they have indicated that



for soil profiles which are appropriate for building structures, the minimum Mw 5 can be
considered for liquefaction triggering (Green and Bommer, 2019). In this study, the threshold
value of Mw 5 is considered as the minimum liquefaction triggering earthquake magnitude,
although the lowest magnitude in the inventory, leading to liquefaction occurrence was 5.8 Mw.
In the current version of the GGLM models (GGLM-21-a and GGLM-21-b), Baise et al. (2021)
do not retain the thresholds established by Zhu et al. (2017) and Rashidian and Baise (2020) around
PGA, PGV, precipitation, and Vsso, since only 1.5% of the liquified data points in their inventory
violate those thresholds. In the current study, we use the magnitude judgement-based threshold
and then rely on data-driven thresholds. Data driven thresholds are only used for the features that
are used in the final model, and do not violate the physics-based criteria of liquefaction triggering.
It should be noted that the thresholds are designed to optimize the model performance as a post-
processing step after the classification modeling, and no sample bypasses the classification step.

System of Voting Classifiers

This study proposes a system of voting machine learning classifiers to create liquefaction hazard
maps. There are several benefits in implementing such approach, including 1) Reduction in
sensitivity to under-sampling the dataset for the purpose of balancing, and taking advantage of all
available valuable data, instead of under-sampling the majority class; 2) Reduction in model
errors/uncertainties and inaccurate predictions by taking average of several model predictions,
leading to stabilization of predictions and better generalizability and consistency of hazard
modeling; 3) Benefiting from different type of classifiers, since not a single classifier is the best to
predict all events; 4) Regional and coastal/non-coastal optimization of the classification decision
by including these special classifiers in addition to the global classifiers; and 5) The ability to
generate probability maps in a continuous form (soft voting) rather than 0-1 binary (hard voting)
prediction.

Six different algorithms are used in this study, as shown in the model flowchart via Figure
5. These algorithms are widely used machine learning algorithms for classification purposes. They
include support vector machines (SVM), discriminant analysis, K-nearest neighbor (KNN),
decision trees, Naive Bayes, and logistic regression, which are used as three global, two
coastal/non-coastal, and a regional classifier, respectively. The k-fold cross-validation was used
within the training step for all 6 classifiers to avoid overfitting (Kohavi, 1995). The method divides
the training dataset into k (k=5 in this study) smaller folds with equal number of samples points
for the optimization of parameters. The hyperparameters and the architecture of the proposed
classification algorithms were optimized separately with a grid search approach during the training
process to achieve the best performance. A brief description of the classification algorithms used
in this study are provided in the following sub-sections.

Support Vector Machines

Support vector machines are widely used and reported among the best performing binary
classifiers, although they are also used to solve multi-class problems. The objective of the SVM
algorithm is to find a hyperplane that, to the best degree possible, separates data points of one class
from those of another class with the largest margin between the two classes. Margin means the
maximal width of the slab parallel to the hyperplane that has no interior data points. For linearly
separable problems, the algorithm can find the hyperplane; however, for most practical problems,
the algorithm maximizes the soft margin allowing a small number of misclassifications. Support



vectors refer to a subset of the training observations that identify the location of the separating
hyperplane (Vapnik, 1995; Christianini and Shawe-Taylor, 2000; Hastie et al., 2009). In this study
the efficient linear SVM is used as a classifier for one of the global models in the voting
classification system. In this study, the efficient linear SVM is used as a classifier for one of the
global models in the voting classification system, which is less prone to over-fitting.

Discriminant Analysis

Discriminant analysis is used as one of the supervised classification methods, which assumes that
different classes generate data based on different Gaussian distributions (Fisher, 1936). To train
the classifier, the fitting function estimates the parameters of a Gaussian distribution for each class
and finds the smallest calculated misclassification cost to predict classes of new (unlabeled) data.
The linear discriminant analysis (LDA) used in this research, computes the sample mean of each
class. Then it computes the sample covariance by first subtracting the sample mean of each class
from the observations of that class and taking the empirical covariance matrix of the result (Guo
et al., 2007).

K-Nearest Neighbors

The K-nearest neighbors’ algorithm is a non-parametric, supervised learning classifier, which uses
proximity to make classifications or predictions about the grouping of an individual data point.
Categorizing query points based on their distance to points in a training data set can be a simple
yet effective way of classifying new points. K-nearest neighbor (KNN) classifiers can use various
metrics (Euclidean distance, in this study) to determine the distance between a set of data and
query points, and simply ranks the points by their distance to the query points in order to classify
them as the closest class, assuming that similar points can be found near one another. A class label
is assigned based on a majority vote, meaning the label that is most frequently represented around
a given data point is used (Cover and Hart, 1967). The value of K is optimized to avoid over-fitting
and under-fitting on the global data.

Decision Trees

Decision trees, or supervised non-parametric classification trees, predict responses to data inputs,
by following the decisions in the tree from the root (beginning) node down to a leaf (end) node,
which contains the response (Breiman et al., 1984; Rokach and Maimon, 2008). In tree structures,
which are famous for their simplicity and easy interpretability, leaves represent class labels and
branches represent conjunctions of features that lead to those class labels. Classification trees give
responses that are nominal, such as liquefaction or non-liquefaction. A tree is built by splitting the
source set, constituting the root node of the tree, into subsets which constitute the successor
children. The splitting is based on a set of splitting rules based on classification features (Shalev-
Shwartz and Ben-David, 2014). This process is repeated on each derived subset in a recursive
manner called recursive partitioning. The recursion is completed when the subset at a node has all
the same values of the target variable, or when splitting no longer adds value to the predictions.
The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to
train the tree. Thus, the classifier is assigned to the coastal/non-coastal part of the model, which
can deal with low number of data when the tested event is non-coastal.

Naive Bayes



Naive Bayes is a classification algorithm that applies density estimation to the data. The naive
Bayes classifier is designed based on the naive assumption that predictors are independent of one
another within each class (Hastie et al., 2009). While the class-conditional independence between
predictors is not true in general, research shows that this optimistic assumption works well in
practice. It classifies data in two steps: 1) Using the training data, the method estimates the
parameters of a probability distribution, assuming predictors are conditionally independent given
the class; then, 2) For any unseen test data, the method computes the posterior probability of that
sample belonging to each class. The method then classifies the test data according to the largest
posterior probability (Manning et al., 2008). In this study, normal (Gaussian) predictor conditional
distribution is used in the training function. This assumption of class-conditional independence of
the predictors allows the naive Bayes classifier to estimate the parameters required for accurate
classification while using less training data than many other classifiers. That is the reason that
Naive Bayes classifier is assigned to the coastal/non-coastal part of the model, which can deal with
low number of data when the tested event is non-coastal. This makes it particularly effective for
data sets containing many predictors.

Logistic Regression

Logistic Regression is a supervised machine learning algorithms which is commonly used for
binary class classification problems. Logistic regression was borrowed by machine learning from
the field of statistical models and is currently one of the most well-known and widely used machine
learning algorithms (James et al. 2013). Logistic regression operates using a sigmoidal function
for values ranging between 0 and 1. A logistic regression algorithm takes as its input a feature
vector and outputs a probability, where the feature vector represents an object belonging to the
positive class. Since the logistic regression model is very simple, compared to the other classifiers
used in this study, it is assigned to the regional datasets, as these datasets are expected to have
more common characteristics, compared to global and coastal/non-coastal models.

Model Validation
Leave-One-Out Testing

The validation of the system is done by excluding data from an individual earthquake from the
training process, and independently evaluating the inventory for that event in a leave-one-out
testing approach. This process is done to fairly assess the performance of the model for new unseen
earthquakes. This approach is different than the validation scheme followed by previous studies
(Zhu et al., 2017; Todorovic and Silva, 2022), where they use all or a large portion of samples
from all earthquakes in the training and model development process. This approach leads to a
better understanding of the performance of the system in an unbiased way and provides insights
into system of classifiers.

Figure 4 provides a visual explanation of the model assessment and implementation and
provides an example of how the soft and hard voting systems work with data from an unseen
earthquake event. In this study, hard voting considering the majority votes of the classifiers. If at
least 3 classifiers label a sample with liquefaction (class 1), the point will be classified as
liquefaction. As an alternative, the soft voting can generate probability-based liquefaction maps
that take into account epistemic uncertainty. The soft voting decision is made by taking the average
of the class labels predicted by the classifiers in the voting system. In this research, since multiple
classifiers are used to automatically balance each other’s outputs, the majority hard voting (3+



votes in favor of either class) is considered as the suitable boundary between the two classes and
is similar to the optimal threshold used by Bozzoni et al. (2020) in their logistic regression model
(0.57).

Figure 4. The leave-one-out testing approach used in this study, plus an example of how the final
classification decision is made via hard voting or soft voting procedures. Global classifiers 1, 2
and 3 are SVM, discriminant analysis, and KNN, respectively. Coastal/non-coastal classifiers 1
and 2 are decision trees and Naive Bayes, respectively, and the regional classifier uses logistic
regression.

Accuracy Indices

In order to evaluate accuracy, we use the hard voting with majority voting so that each pixel is
labelled as 1 (liquefaction or positive class), or 0 (non-liquefaction or negative class). The
performance of the model was assessed via ROC (Receiver Operating Characteristics) analysis
and expressed via the Area Under Curve (AUC) parameter. In a ROC curve, the Sensitivity or
True Positive Rate (TPR) is plotted against the Specificity or False Positive Rate (FPR). The TPR
and FPR are calculated via Equations 9 and 10.

Sensitivity = TPR = TPZPFN 9)
Specificity = FPR = ——— (10)

Where, TP (True Positive) is liquefaction predicted as liquefaction, FP (False Positive) is non-
liquefaction predicted as liquefaction, TN (True Negative) is non-liquefaction predicted as non-
liquefaction, FN (False Negative) is liquefaction predicted as non-liquefaction. The AUC ranges
between 0.5 (random classifier) and 1 (100% accurate classifier). These accuracy indices
(Sensitivity, Specificity and AUC) are provided for the models alongside the Prevalence, which



shows the percentage of the specific earthquake dataset belonging to the positive class
(liquefaction). The AUC values are compared with previous works and among the models
presented in this study.

Results and Discussion
Exploratory Data Analysis

In the exploratory data analysis (EDA) step, two main goals were pursued: 1) EDA-based and
knowledge-based feature removal; and 2) Implementation of appropriate feature transformations.
As a result, several features were removed or transformed prior to the machine learning-based
feature selection. Table 4 provides the results of feature removal and the reasons behind the
decisions.

PGA is more frequently used in liquefaction modeling methods (Seed and Idriss, 1971; Zhu et
al., 2015; Bozzoni et al., 2020) because it is proportional to the maximum shear stress induced in
the sediment (Terzaghi et al., 1996). However, PGV has shown a stronger correlation with
liquefaction occurrence than PGA in several studies (Zhu et al., 2017; Baise et al., 2021 & 2023),
implying that soil liquefaction could be more sensitive to the low-frequency components of the
ground motion, and liquefaction is more dependent on input kinetic energy, which is well-
characterized by the PGV (Kotoda et al., 1986; Midorikawa and Wakamatsu, 1988; Liang et al.,
1995; Bardet and Liu, 2009). Additionally, Bardet and Liu (2009) observed nonlinear behavior
between the PGV and empirical probability of liquefaction; As PGV increases, the probability of
liquefaction first rapidly increases and then reaches a plateau when PGV is greater than a threshold
of 10 cm/s. Therefore, PGA was removed from the features based on the previous knowledge in
the published literature, and PGV was retained as the loading feature.

Table 4. EDA-based and knowledge-based feature removal results.

Number | Removed Reasoning

Feature
1 DR2 Repetitive information from alternative source
2 DC2 Repetitive information from alternative source
3 Precipitation o Correlation with Al (redundancy)

o Previous knowledge from literature on over-prediction issues
(Rashidian and Baise, 2020)

4 PGA o Previous knowledge from the literature on the superiority of
PGV in correlating with liquefaction occurrences (Zhu et al.,
2017)
o Correlation with PGV
5 DWB2 Repetitive information from alternative source
6 HWB?2 Repetitive information from alternative source
7 Slope Correlation with TRI (redundancy)
8 Roughness Correlation with TRI (redundancy)
9 Aspect No observable separability of classes in univariate and bi-variate
analysis with other features (irrelevance)
10 Landform High number of classes leading to several categorical dummy

variables in the classification modeling




11 Landcover Binary categorical data, not desirable based on the designed
voting classification method

Feature transformations were applied when the transformation resulted in increased ability to
distinguish the two classes. Table 5 presents the feature transformations implemented in this study.
PGV is well-represented by a lognormal distribution; thus, PGV was transformed by taking the
natural logarithm. The same transformation was applied to the Vs3o values. These transformations
have been used by several previous studies (Zhu et al., 2017; Rashidian and Baise, 2020; Bozzoni
et al., 2020; Baise et al., 2021; Todorovic and Silva, 2022). The distributions of some variables
were skewed (distance to the waterbody and water table depth); thus, they were transformed by
taking the square root of the original values. This transformation was also used by Todorovic and
Silva (2022). TPI and TRI were transformed in the study by Baise et al. (2021) by taking the
square-root of the absolute value. Figure 5 illustrates the benefit of feature transformations on the
TPI variable. Baise et al. (2021) have also used square-root transformation for distance to the
closest waterbody, elevation above the closest waterbody, and elevation.

Table 5. Feature transformation techniques used in this study. “Ln”, “SQRT”, “ABS”, and “x”,
stand for natural logarithm, square root, absolute value, and the original value, respectively.

Number Feature Transformation Technique

1 PGV Ln (x)

2 DL SQRT (x)

3 DWB SQRT (x)

4 HWB SQRT (ABS (x))
5 WTD SQRT (x)

6 HAND SQRT (x)

7 V/S30 Ln (x)

8 TPI SQRT (ABS (x))
9 TRI SQRT (ABS (x))
10 Elevation SQRT (x)




Figure 5. a) Comparative box plots of the original TPl data of the two classes, versus b)
Transformed TPI data (square root of the absolute value), showing the shift in their comparative
means, and better distinguishment between the two classes.

Feature Selection via Machine Learning

Neighborhood component analysis (NCA) feature selection was used to compare the weight of the
features, and to remove the features with zero or near-zero weight. Based on the results provided
in Table 6, all the features showed contribution to the classification; therefore, all remaining 17
variables are retained for the classification models. To improve the certainty of NCA performance,
and because of the stochastic manner of NCA, the datasets were partitioned into 5 subsets, and the
average weight of features on the NCA analysis of the subsets is reported in Table 6, ranked from
high to low. It should be noted that the weights are based on the combined use of the variables, as
NCA does not evaluate features independently, which is one of the reasons for using this algorithm
at this feature selection step. As an example, on the importance of integrated feature selection, Zhu
et al. (2017) reported in interaction assessment (bivariate analysis), that distance to river does not
appear to be a good predictor when it is evaluated alone, but it becomes valuable when combined
with distance to coast.

Table 6. NCA feature selection results.

Rank Feature Weight
1 Al 5.702
2 PGV 5.409
3 Magnitude 5.300
4 DL 4.558
5 DC 4.350
6 DWB 3.413
7 Elevation 3.388




8 V/s30 3.273
9 DR 3.254
10 HWB 2.966
11 HAND 2.961
12 Thickness 2.452
13 TRI 2.386
14 WTD 1.761
15 CTI 1.249
16 TPI 0.936
17 WBE 0.713

Binary Classification Modeling
Data-Driven Classification Thresholds

Based on the basic descriptive statistics of the selected features, presented in Table 7, a few data-
driven thresholds were chosen for post-classification optimization of the results. The selected
thresholds are shown in bold red in the Table 7. These data-driven thresholds, plus the Mw 5
threshold for liquefaction triggering (10 variables in total), results in pre-defined non-liquefaction
labels for 9418 samples out of 247114 total samples (3.8 % of the samples).

Table 7. Descriptive data statistics of the continuous geospatial variables by class.

Variable Class Min Max Mean | Median Mode STD Skew

Vsao Liq.' 137.22 | 900.00 | 23229 | 219.32 | 260.20 78.85 2.93

Non-Lig. | 98.00 900.00 | 460.36 | 434.02 641.30 | 193.00 | 0.48

Elevation Liq.' 0.00 3649.99 11.96 3.82 0.00 3740 | 26.11

Non-Lig. 0.00 413048 | 346.85 | 184.57 0.00 41391 | 1.99

: Lig. 0.00 50.00 44.71 50.00 50.00 1149 | -2.37
Thickness -

Non-Lig. 0.00 50.00 13.52 3.25 1.00 18.06 1.21

TPI Liq._ -49.03 44.57 -0.19 -0.08 0.00 1.73 -3.95

Non-Lig. | -91.50 118.75 0.07 -0.12 0.00 11.73 0.40

TRI Liq._ 0.00 322.23 6.57 4.07 0.00 9.82 7.46

Non-Lig. 0.00 596.15 64.17 40.44 0.00 69.03 1.60

T Liq.' 505.46 | 2731.87 | 1018.14 | 961.09 | 92839 | 219.13 | 1.73

Non-Lig. | 386.38 | 2471.00 | 829.72 | 79758 | 857.00 | 21161 | 1.16

PGV Liq.' 1.01 158.15 45.46 33.79 28.54 28.31 0.96

Non-Lig. 0.04 166.81 21.64 17.26 20.73 17.97 2.02

e Liq.' 5.80 9.10 7.66 7.70 7.70 0.96 0.26

Non-Lig. 4.00 9.10 7.40 7.60 7.90 1.02 -0.53

DC Lig. 0.00 356.15 27.00 12.19 0.00 29.35 1.18

Non-Lig. 0.00 370.99 58.69 28.12 78.00 76.16 1.95

DR Lig. 0.00 128721 | 2532 15.18 0.00 26.30 7.04

Non-Lig. 0.00 1301.71 76.89 32.12 0.00 134.18 | 5.54

DL Lig. 0.00 133.07 10.57 8.70 0.00 8.45 1.19

Non-Ligq. 0.00 142.27 18.11 13.53 0.00 16.53 2.51




DWEB Liq._ 0.00 40.39 4.60 2.56 0.00 4.62 1.27
Non-L.ig. 0.00 109.33 10.03 7.41 0.00 11.37 4.35

WBE Liq.' 0.00 1651.00 8.38 0.80 0.00 45.01 17.49
Non-L.ig. 0.00 2703.00 196.00 25.00 0.00 317.63 2.52

HWB Lig. -1476.11 | 2342.99 3.73 1.93 0.00 16.98 25.62
Non-Lig. | -2800.10 | 3212.48 105.10 51.68 0.00 340.80 -0.87

HAND Liq.' 0.00 1810.75 5.85 4.00 4.00 10.75 61.37
Non-L.ig. 0.00 4138.25 108.08 43.75 2.00 161.71 3.10

WTD Liq._ 0.00 216.13 1.69 0.63 0.00 4.47 9.23
Non-L.ig. 0.00 488.48 31.35 20.19 0.00 36.89 2.35

Al Liq. 0.00 27659.90 | 7978.74 | 6159.70 | 11242.63 | 5595.91 | 0.47
Non-Lig. 0.00 39830.00 | 10264.86 | 10444.00 0.00 6376.04 | 0.42

Voting Classification System

The voting classification system was developed by training individual classifiers and aggregating
them through hard and soft voting. The individual earthquake events were tested via the leave-
one-out approach, and the accuracy results including, overall accuracy, sensitivity, specificity, and
area under the ROC curve (AUC) are provided in Table 8 for all earthquakes in the inventory,
ranked by the validation’s AUC value, except for the non-liquefaction events which come at the
bottom of the table, ranked by their overall accuracy. The prevalence column in Table 6 shows the
percentage of liquefaction points in the inventory for each event. The accuracy of predictions for
the 2003 San Simeon and the 2010 Haiti earthquakes were the best among the earthquakes with
liquefaction observations, followed by the 2010 Tottori. Figure 6 shows the predicted liquefaction
maps for these 3 events.

Table 8. Accuracy statistics of the leave-one-out approach. All values are in percentage (%).

Rank Earthquake Prevalence Overall Specificity | Sensitivity | AUC
Accuracy
1 San Simeon 7.79 96.31 99.11 63.16 98.77
2 Haiti 2.00 83.71 83.38 100.00 97.36
3 Tottori 49.43 91.96 84.63 99.45 96.65
4 Christchurch 95.59 93.22 83.15 93.69 95.99
5 Iapel 0.77 98.93 99.23 60.00 95.64
6 Samara 1.48 86.64 86.56 92.31 95.49
7 Loma Prieta 28.16 82.32 75.79 98.99 94.82
8 Cephalonia 531 96.46 99.53 41.67 94.68
9 Nihonkai 79.22 92.40 80.90 95.41 93.86
10 Kobe 76.11 91.36 67.70 98.78 92.40
11 Kocaeli 1.96 95.24 96.17 48.57 92.17




12 Honduras 2.40 54.90 53.79 100.00 92.14
13 Nisqually 8.45 64.40 61.78 92.86 91.67
14 Hokkaido 29.42 89.41 93.13 80.48 90.96
15 | Nepal (Gorkha) 1.91 93.80 94.81 41.67 90.50
16 Muisne 1.10 85.40 85.32 92.31 89.65
17 Nigata 1964 74.61 88.62 68.80 95.36 89.60
18 Miyagi ken 5.93 65.56 63.52 98.08 89.42
19 Darfield 95.45 91.13 67.03 92.28 88.92
20 Tokachi 3.23 69.35 68.62 91.16 88.88
21 Napa 0.72 56.16 55.84 100.00 88.69
22 Tohoku 89.19 90.72 54.91 95.06 86.86
23 Oklahoma 0.74 92.96 93.25 50.00 86.47
24 Kumamoto 26.09 81.18 84.32 72.31 85.89
25 Nigata 2004 80.00 77.66 85.47 75.70 85.35
26 Chiba 47.37 72.47 5491 91.99 84.84
27 Duzce 0.48 92.82 92.95 66.67 84.80
28 Nigata 2007 27.81 66.47 53.55 100.00 83.19
29 Tecoman 1.05 69.44 69.35 77.78 81.84
30 Puget Sound 1.92 92.31 93.03 55.56 81.62
1949
31 Telire Limon 3.00 59.53 58.35 97.67 81.48
32 Pisco 2.50 97.84 99.83 20.00 80.06
33 Denali 0.83 94.34 95.05 10.00 75.29
34 Achaia 1.06 85.89 86.35 42.86 73.38
35 Meinong 1.99 39.17 37.94 100.00 73.36
36 Emilia 6.74 51.86 48.88 93.10 72.99
37 Baja California 2.52 51.66 50.62 92.00 67.56
38 Puget Sound 3.73 84.14 85.97 37.12 65.18
1965

39 Northridge 2.33 97.67 99.72 11.90 62.42
40 Arequipa 0.74 98.52 99.25 0.00 62.18
41 Maule 0.53 94.21 94.62 16.67 58.58
42 Chi-Chi 2.56 70.27 94.23 0.48 50.00
43 Aquila 1.23 98.77 100.00 0.00 -




44 Iquique 1.25 98.75 100.00 0.00 -
45 Wenchuan 1.38 98.48 99.86 0.00 -
46 VanTab 2.84 97.16 100.00 0.00 -
47 Virginia 0.57 99.43 100.00 0.00 -
1 Chino Hills 0.00 100.00 - - -
1 Hector Mine 0.00 100.00 - - -
1 Piedmont 0.00 100.00 - - -
1 Yountville 0.00 100.00 - - -
5 Central Italy 0.00 99.78 - - -
6 Iwate 0.00 89.43 - - -

Figure 6. a) Predicted liquefaction map of the 2003 San Simeon; b) 2010 Haiti; and c) 2010 Tottori
earthquakes. Red is correctly predicted liquefaction. Green is correctly predicted non-liquefaction.
Yellow is wrongly predicted liquefaction. Blue is wrongly predicted non-liquefaction.

The 2011 Christchurch earthquake has the fourth best accuracy among the liquefaction-observed
earthquakes in the inventory, while the 2010 Darfield event’s accuracy is relatively lower (ranked
19" among the liquefaction-observed events). Figure 7 provides the liquefaction maps for these
two events (Canterbury 2010-11 events in New Zealand). The difference in the predicted maps’
accuracy was also observed in the results of Todorovic and Silva (2022) for their random forest
(decision tree-based) model, but with a more significant difference. An interesting observation
here is that the decision tree classifier (coastal classifier 1) in this study also under-performed
compared to the other 5 classifiers in the voting classification system. The voting system has a
higher accuracy (add accuracy) than all individual 6 classifiers, which demonstrates the integrated
power of the proposed method in providing more accurate predictions. Table 9 shows the accuracy
(AUC) of individual classifiers, in addition to the final voting system for all tested earthquakes.



Figure 7. a) Predicted hazard map of the 2011 Christchurch; and b) 2010 Darfield earthquakes.
Red is correctly predicted liquefaction. Green is correctly predicted non-liquefaction. Yellow is
wrongly predicted liquefaction. Blue is wrongly predicted non-liquefaction.

According to Table 9, the AUC value for the proposed voting system is higher than all individual
classifiers in 88.4 % of the tested earthquakes for which AUC is calculated. For the majority of
other events, it’s very close to the highest AUC among the classifiers. This is evidence of the
benefit of the proposed method, especially compared to the three global classifiers, which represent
statistically optimal global models. Additionally, the spatial extent of liquefaction is moderated,
even in the cases where the voting system shows a relatively lower AUC than the highest
performing individual classifier. A very important observation is that not a single global classifier
can be considered as best-performing for all the events. According to the results provided in Table
9, among the 3 global models, global classifiers 1, 2, and 3, perform the best on 30 %, 35 % and
30 % of the events, respectively, while they perform equally poor on the remaining 5 % of the
events. The voting classification system performs better by taking into account the decisions made
by coastal/non-coastal and regional classifiers in addition to the global models.

Table 9. Comparative accuracy of single classifiers versus the proposed system of voting
classifiers. All values are AUC in percentage (%). The events are listed in alphabetical order.

Earthquake Global 1 | Global 2 | Global 3 | Coastal / | Coastal / | Regional | Proposed
Non- Non- Method
Coastal | Coastal
1 2
Achaia 66.37 75.51 68.44 64.76 51.93 60.23 73.38
Arequipa 50.00 50.00 50.00 53.94 50.00 61.82 62.18
Baja 50.00 68.93 50.00 50.00 59.19 69.34 67.56
California




Cephalonia | 62.27 70.83 54.17 89.80 62.50 86.33 94.68
Chi-Chi 50.00 50.00 50.00 59.18 75.77 50.00 73.95
Chiba 72.86 65.23 77.82 70.06 58.82 69.15 84.84
Christchurch | 88.57 83.26 82.76 62.77 69.90 89.84 95.99
Darfield 78.80 73.72 75.66 57.40 71.54 72.97 88.92
Denali 50.00 50.00 52.67 72.35 67.11 51.46 75.29
Duzce 50.00 70.03 50.00 50.00 75.80 80.05 84.80
Emilia 55.08 58.36 72.75 49.24 55.94 61.60 72.99
Haiti 89.99 90.26 89.51 89.72 93.12 97.82 97.36
Hokkaido 89.20 85.84 72.86 67.68 85.95 77.21 90.96
Honduras 78.88 78.98 86.74 76.52 76.70 78.50 92.14
Ilapel 50.00 88.92 50.00 79.30 50.00 82.53 95.64
Kobe 81.80 82.68 88.06 86.86 80.62 88.59 92.40
Kocaeli 68.40 84.20 54.20 77.71 50.00 85.82 92.17
Kumamoto 83.73 81.77 66.06 74.63 76.02 79.89 85.89
Loma Prieta | 86.59 87.67 93.13 50.00 85.53 87.89 94.82
Maule 58.12 57.18 54.13 55.09 54.54 50.00 58.58
Meinong 69.06 69.15 67.03 66.38 66.67 62.25 73.36
Miyagi ken 79.25 80.10 84.11 82.65 76.38 82.89 89.42
Muisne 70.27 82.79 67.74 89.11 87.71 53.92 89.65
Napa 78.10 79.74 85.58 79.93 74.45 79.93 88.69
Nepal 84.60 59.74 50.00 78.88 69.29 50.00 90.50
(Gorkha)

Nigata 1964 | 81.85 82.29 81.82 82.50 80.53 83.46 89.60
Nigata 2004 | 82.28 80.64 56.77 62.49 80.43 80.87 85.35
Nigata 2007 | 76.09 75.20 78.31 76.19 76.52 77.39 83.19
Nihonkai 87.70 89.32 70.31 85.05 87.19 88.25 93.86
Nisqually 75.93 77.02 87.09 88.04 74.16 63.34 91.67
Northridge 50.00 62.31 50.00 54.79 50.00 56.80 62.42
Oklahoma 71.55 59.79 50.00 58.58 93.84 50.00 86.47
Pisco 50.00 79.32 50.00 74.53 50.00 59.15 80.06
Puget Sound | 77.85 74.23 66.27 62.51 74.82 73.93 81.62
1949

Puget Sound | 61.61 60.31 59.90 59.82 58.88 64.29 65.18
1965

Samara 88.74 82.32 92.85 88.97 89.14 92.10 95.49
San Simeon | 50.00 95.11 55.26 71.24 73.46 97.33 98.77
Tecoman 74.57 80.60 74.22 63.69 72.79 76.57 81.84
Telire Limon | 77.69 76.95 64.97 77.31 77.94 60.00 81.48




Tohoku 72.96 67.93 70.18 69.59 70.21 76.21 86.86
Tokachi 78.15 77.21 85.65 83.21 78.12 83.98 88.88
Tottori 90.67 90.87 94.87 91.99 91.83 94.12 96.65
Wenchuan 50.00 50.00 50.00 52.60 63.79 50.00 65.41

Section 3. Pixel-based Classification Method for Earthquake-Induced Landslide
Mapping Using Imagery, Geospatial Data and Temporal Change Information
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Abstract

A series of earthquakes hit Kumamoto, Japan, over a period of two days in April 2016, which
caused numerous landslides. In this study, high-resolution pre-event and post-event optical
imagery, plus bi-temporal Synthetic Aperture Radar (SAR) data are paired with geospatial data to
train a pixel-based machine learning classification algorithm using logistic regression to identify
landslides occurred because of the Kumamoto earthquakes. The geospatial data used include a
categorical variable (surficial geology), and continuous variables including elevation, slope,
aspect, curvature, annual precipitation, and landslide probability derived by the USGS preferred
geospatial model which incorporates ground shaking in the input parameters. Grayscale index
change and vegetation index change are also calculated from the optical imagery and used as input
variables, in addition to temporal differences in HH and HV amplitudes of SAR data. A detailed
human-drawn landslide occurrence inventory was used as ground-truth for model development
and testing. The selection of optimal features was done using a supervised feature ranking method
based on the Receiver Operating Characteristic (ROC) curve. To weigh the benefit of combining
different types of imagery, temporal change information and geospatial environmental indicators
for landslide mapping after earthquakes, five different combinations of features were tested, and
the results showed that adding data of selected geospatial parameters (landslide probability, slope,
curvature, precipitation, and geology) plus selected change indices (grayscale index change,
vegetation index change, and HV amplitude difference of SAR data) to the imagery (post event
optical) lead to the highest classification accuracy of 86.5% on class-balanced independent testing
data.



Methodology

Given the available data from the Kumamoto Earthquake 2016, a methodology for feature
selection followed by a pixel-based binary classification method is presented in this study. The
feature selection step helps to determine which data inputs help the model to distinguish better
between the two classes (landslide and non-landslide) without overfitting, since one way to reduce
the overfitting is to reduce the dimensionality of the data. Feature analysis can, therefore, help us
understand variable importance in the classification modeling.

In this study, landslide mapping is a binary classification problem, which means that the
goal of developing a model is to predict each pixel as either positive (landslide) or negative (non-
landslide) for landslide mapping. The flowchart of the proposed methodology is shown in Figure
8. In this section, data processing and modeling is presented via subsections starting with the data
normalization as a pre-processing step and ending with model accuracy evaluation and post-
processing steps.

Figure 8. Flowchart of the proposed landslide mapping algorithm.

Data Normalization

After the resampling and stacking of the datasets, all the data layers were normalized as a pre-
processing step. Since the geology variable is originally categorical, but categorical data is not
desirable for the classification method used in this research, the geological categories are sorted
by the percentage of landslide occurrence in the categories within the training data, and the
percentage of landslide pixels is substituted with the category numbers. This leads to a meaningful
set of numbers for the geology variable, where the higher number indicates a higher probability of
landslide occurrences. Then, the geology feature is considered same as other continuous variables,
and the variable is normalized as well.

Both the feature selection and classification models are developed based on the normalized
data of the explanatory variables or data inputs, X, which significantly reduces the impact of data
range on the final landslide prediction model and increases the processing speed with fast
convergence. Using the mean (i) and standard deviation (o) of individual explanatory variables,



data of all variables were normalized using Equation 11 to have a mean of 0 and standard deviation
of 1.

1)

Feature Ranking

Different combinations of features are used in the model validation step based on the feature
ranking results, to perform a comparative analysis and to choose the best performing model based
on the accuracy of the results for each combination.

The implemented algorithm ranks the features in data using an independent evaluation
criterion for binary classification. Assume that Z is a matrix where every row is an observed vector
(Z;), and the number of columns correspond to the original number of features. The criterion for
feature ranking is the area under the empirical receiver operating characteristic (ROC) or the Area
Under the Curve (AUC) (Theodoridis 1999). The receiver operating characteristic (ROC) curve is
a graphical plot that illustrates the diagnostic ability of the binary classification system. It is
generated by plotting the true positive rate for a given classifier against the false positive rate for
various thresholds. For a perfect classifier, AUC = 1. For a classifier that randomly assigns
observations to classes, AUC = 0.5 (Fawcett 2004).

ROC curves and AUC scores also allow us to compare the performance of different
classifiers for the same problem. The ROC curve is produced by calculating and plotting the true
positive rate against the false positive rate for a single classifier at a variety of thresholds between
0 and 1. The optimal threshold leads to the highest AUC and highest classification accuracy. At
the feature ranking step in this research, each variable Z; is tested through various thresholds within
its range (min-max) to calculate TPR and FPR for those thresholds, which are needed to generate
the ROC curve for the feature.

Binary Classification Modeling
In this subsection, different aspects of the classification modeling are explained in detail.
Logistic Regression

The pixel-based binary classification step uses logistic regression algorithm to predict landslide
and non-landslide pixels. Logistic Regression is a supervised machine learning algorithms which
is commonly used for binary class classification problems. Logistic regression was borrowed by
machine learning from the field of statistical models and is currently one of the most well-known
and widely used machine learning algorithms (James et al. 2013). Logistic regression operates
using a sigmoidal function for values ranging between 0 and 1. In the context of image processing,
this could mean identifying whether a given pixel belongs to a particular class.

A logistic regression algorithm takes as its input a feature vector Z; and outputs a
probability, y=P(y=1|z), where the feature vector represents an object belonging to the classy. For
image processing, the feature vector might be just the values of the red, green, and blue (RGB)
channels for each pixel in the image, a one-dimensional array of real numbers formed by flattening
the three-dimensional array of RGB pixel values. A logistic regression model is described by the
logistic (sigmoid) function shown via Equation 12.



1
o(w) = —; (12)
and w contains the weights (coefficients) and the bias (intercept) of the linear equation. To
calculate the coefficients in a way that the error is minimized, a loss error function is defined as
shown via Equation 13, which describes how far the estimates are from actual observations.

S N2
L(j;, y) — @ 23’) (13)

Data Partitioning

To train the classifier, it is recommended to separate data samples into distinct groups for model
development and model testing, to avoid overfitting or underfitting. The difference in accuracies
between the training and test sets can indicate whether a model is overfitting. The model is
overfitting when the difference is large and the accuracy on the training set is very high.
Underfitting, on the other hand, occurs when a model is not sophisticated enough to precisely
capture relationships between predictors and responses, resulting in low accuracy on both training
and test sets.

In this study, a special sampling process is designed to create model development and
testing data. The area of study was split into 10-by-20 grid regions (100 model development and
100 model testing regions). The resulting dataset was significantly unbalanced with only 3.32% of
pixels belonging to the landslide class. Class imbalance can cause overfitting in the classification
algorithm as the model is rewarded by only predicting the majority class. To balance the datasets,
only 10% of landslide points in the model development grid regions were sampled and added to
only 0.4% of non-landslide pixels in those grid regions to form the sampled and balanced model
development dataset.

sased on the sampling strategy, the model development data of the landslide class contains
only 5.67% of the total pixels assigned as landslide pixels in the study area, which means that the
final model has not ever seen 94.33% of ground-truth landslide samples. The reason for the
sampling process is to highlight the fact that no significant amount of data is needed to train the
algorithms. This will also be helpful in a trustworthy validation step by considering most pixels in
the final predicted landslide map of the study area as new independent predictions. In addition,
results of the study by Rashidian et al. (2020) on pixel-based Earthquake-induced liquefaction
modeling showed that although increasing the number of training pixels increases the accuracy
and reliability of the classifier, the improvement will not be meaningful after reaching a specific
number of pixels (2000 pixels recommended in their study).

Figure 9 shows the ground-truth label based on the NIED landslide inventory, and the
regional distinction for sampling model development and testing data, which has been
implemented to avoid model bias. As shown in the Figure, model development data points have
been sampled from blue boxes, whereas the testing points were sampled from the gray boxes. The
testing dataset was also randomly sampled to create a balanced testing dataset consisting of all
landslide pixels plus the same number of pixels from the non-landslide class (3.92% of available
non-landslide pixels in the testing grid regions).



Figure 9. Ground-truth binary landslide label, with distinct model development and testing
regions. Model development regions are shown via light blue, and testing regions are shown via
gray color. Yellow dots are the sampled training data for the landslide class, and blue dots are the
sampled training data for the non-landslide class. Rows and columns as axes titles are indicators
of pixel number (pixel size is 0.5 m). The sample points are schematical, and are not real indicator
of the sampled data, since the points are very small, and needed to be enlarged for visualization.
The number of sampled data is higher that visualized points in this figure.

Model Evaluation

After random sampling of the model development data, the collected samples are divided into two
groups of training and validation. The validation process was implemented by hold-out validation
of 25% of the sampled and balanced model development data to help the training process. The
validation accuracy is reported for each of the evaluated case models. Then, the distinct testing
data samples from testing grid regions are used to test the predictive ability of the classification
model on an independent unseen dataset, and to calculate the accuracy indices explained below.
There are several classification accuracy indices which were used in this study to make
sure the model performs well. The proportion of correctly classified observations per positive class
is referred to as the Sensitivity or True Positive Rate (TPR). Specificity or True Negative Rate
(TNR) is the rate of correct prediction in the negative class. The sensitivity and specificity formulas
are provided via Equations 14 and 15. The proportion of incorrectly classified observations per
true class is referred to as the False Negative Rates (FNR). The Area Under Curve (AUC) curve
depicts the true positive versus false positive rate. The AUC number is a measure of the overall
quality of the classifier. Higher AUC (maximum is 1) values indicate better classification

performance.
TP

TP+FN

Sensitivity = TPR = (14)



g TN
Specificity = TNR = NP (15)

The proportion of correctly classified observations in the positive (landslide) class is referred to as
the Positive Predictive Values (PPV) or precision. A high precision indicates that the model has a
high probability of correctly classifying positive samples. The recall or Negative Predictive Value
(NPV) is proportion of correctly classified observations in the negative (non-landslide) class.
While the recall explains how sensitive the model is to identifying actual positive samples, it also
quantifies the probability of detecting actual positive samples. Because precision and recall assess
different aspects of the model, an index that combines the two is also used. The F1 score is the
harmonic mean of the precision and recall, where an F1 score reaches its best value at 1 and worst
at 0. The precision and recall formulas are provided via Equations 16 and 17.

Precision = PPV = —— (16)
TP+FP

Recall = NPV = —~ (17)
TN+FN

Landslide Map Post-Processing

After generating the final landslide maps, to remove the noise and smooth the maps, two-
dimensional median filtering was performed on the generated maps, which substitutes isolated
pixels with the dominant class around them. Five rounds of smoothing are performed to avoid
pixelated landslide maps, and to smooth the boundaries of the features. The window size selected
for the post-processing step is 21x21 pixels in this study as a moderate size window as a trade-off
to isolate and filter noise pixels while not losing very small-size landslide features. To analyze the
impact of post-processing on the landslide map in terms of accuracy statistics, the generated map
is compared with the ground-truth label, and the map overall accuracies before and after the
smoothing are reported.

Feature Importance Analysis

Feature importance is also assessed by multiplying the coefficients of the logistic regression model
by the standard deviation of the corresponding continuous parameters. Since all variables were
normalized in the pre-processing step, having standard deviation of 1, the coefficients of the
logistic regression model themselves are also the indicators for the feature importance in this study.

Analysis Results

In this section, the results of feature ranking step and the binary classification modeling are
provided. Model validation is performed, and the visualizations are provided plus a discussion of
the methods and outputs.

Feature Selection

In this study, it was decided to keep all RGB color channels of the post-event imagery active in
the training process for the classification models. Feature ranking of the geospatial features and
the temporal change features was performed to evaluate different combinations. The goal of
performing this step is to select high-weight features per the categories of change information and
geospatial information. The supervised feature ranking results via ROC calculation are shown in



Table 10. The weights of features in the landslide and non-landslide classes show that the two
change bands of vegetation difference and grayscale change have the highest impact on the
classification as compared to the other variables. The third high-weight band in the change
information category is HV amplitude difference. Geology, slope, precipitation, curvature, and
landslide probability are the other high-weight geospatial features. The criteria to select the high-
weight features was to have a weight of at least 0.55 in the feature ranking step (Table 10). It
should be noted that having a weight of 0.5 is indicator of a random classifier.

Table 10. Feature ranking results by ROC scores for the continuous variables.

Rank Feature Description Feature Type Weight
1 Grayscale Change Change 0.792
2 Vegetation Change Change 0.791
3 Geology Geospatial 0.783
4 Slope Geospatial 0.669
5 Precipitation Geospatial 0.582
6 Curvature Geospatial 0.580
7 HV Amplitude Difference Change 0.565
8 Landslide Probability Geospatial 0.562
9 Digital Elevation Geospatial 0.542
10 HH Amplitude Difference Change 0.529
11 Aspect Geospatial 0.524

Classification and Model Evaluation

To evaluate how data fusion can aid in the development of landslide inventories from post-event
imagery, different subsets of features were created with increasing complexity to test the
performance of the logistic regression classification algorithm. All models used the post-event
RGB imagery, including Model 1 developed solely via RGB channels. Next, a model that adds the
optimal temporal change indices was tested (Model 2 = RGB + Change). Next, a model that adds
the optimal geospatial features was tested (Model 3 = RGB + Geospatial). Next, a model that adds
both optimal change indices and optimal geospatial features was tested (Model 4 = RGB + Change
+ Geospatial). Then, Model 5 was tested via all available data (14 bands).

Table 11 provides the classification accuracy results of different base models. Based on the
overall classification accuracy of the model applied on the testing data, as shown in the table, the
recommended model is Model 4 which uses RGB, selected change indices (grayscale change,
vegetation change, and HV amplitude difference), plus selected geospatial features (geology,
slope, precipitation, curvature, and landslide probability). The proposed Model 4 outperforms
other models for most of the accuracy indices, especially the overall testing accuracy (86.5%). The
color imagery alone (Model 1 = RGB), proved to have the worst performance among the models,



relatively. Although, it is observed that all models achieved a high level of learning and predictive
performance, with some variations related to the different inputs fed to the algorithm.

Table 11. Classification performance results in different case models. (* is indicator of selected
high-ranked feature)

Overall Classification Area Under Curve Non-Lar_wdsllde Landslide Testing
Case Model Testing
Accuracy % (AUC) Accuracy %
Accuracy %
No. Varlabl_e Channel Validation | Testing | Validation | Testing TNR NPV TPR PPV
Categories Number
1 RGB 3 85.00 82.48 0.92 0.89 82.85 82.04 82.11 82.92
RGB
2 6 86.39 83.90 0.93 0.91 85.08 82.33 82.79 85.47
Change*
RGB
3 G - 8 87.95 86.13 0.94 0.93 87.06 84.99 85.25 87.29
eospatial
RGB
4 Change* 11 88.63 86.50 0.95 0.93 87.99 84.63 85.11 88.38
Geospatial*
5 | All Channels 14 88.64 86.44 0.95 0.93 87.91 84.59 85.06 88.30

Model 4 (the preferred Model), as well as Models 3 and 5, have higher prediction accuracy,
compared to Models 1 and 2, which can be the result of using geospatial parameters, especially
the geology variable, which showed very high weights in the feature ranking step. Among the
Models 3, 4 and 5, the Model 3 has the lowest accuracy, probably because of not exploiting the
change information. Among Models 4 and 5, the preferred Model 4 has the superior performance,
with slightly better accuracy results, compared to Model 5, which can be attributed to optimal
feature selection in Model 4, compared to redundant features in Model 5, leading to overfitting.
The model parameters show small estimation uncertainty based on the standard errors (SE), and
all selected variables are statistically significant based on the t-statistic for a two-sided test with
the null hypothesis that the coefficient is zero, and the near-zero associated p-values of the
hypothesis test.

Figure 10 shows the outputs of Models 1 (Figure 10-a) and 4 (Figure 10-b) to visualize the
impact of adding change and geospatial information to the imagery for classification. Additionally,
the final output of the Model 4 based on the 0.70 probability threshold is provided in the bottom
of the Figure (10-c). The modeled maps include colors red (true positive: correctly mapped
landslides), yellow (false positive: wrongly mapped landslides), and blue (false negative: missing
landslide features, predicted as non-landslide). True negative pixels (correctly predicted non-
landslide) are not visualized.



Figure 01. Comparative maps of the landslides by Models 1 (a), Model 4 (b) and the Model 4 with 70%
probability threshold (c). The maps show post-event imagery with predicted labels. The modeled maps
include colors red (true positive: correctly mapped landslides), yellow (false positive: wrongly mapped
landslides), and blue (false negative: missing landslide features, predicted as non-landslide). Rows and
columns as axes titles are indicators of pixel number (pixel size is 0.5 m).
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