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Abstract

This project gathers measured shear wave velocity (Vs) profiles in the Bay region to develop
a parameterized, region-specific near-surface velocity model. Currently, the finest discretization
step size in the detailed velocity model of Northern California is 100 m in the horizontal direc-
tion and 25 m in the vertical direction (Aagaard et al., 2020a), which inevitably constrains the
capabilities of physics-bases earthquake simulations to capture site effects in concert with path
and source effects over a broad range of frequencies concerning earthquake engineering applica-
tions. The proposed model’s formulation is the same as the one proposed by Shi and Asimaki
(2018). However, new scaling relationships are considered to enhance the predictive capability
of the proposed model and its extrapolation capacity; additionally, a robust global regression
analysis based on Monte Carlo Markov chain Bayesian inference is used to constrain the model’s
hyperparameters such that almost zero bias in computed shear wave velocity residuals is guaran-
teed irrespective of depth. The results suggest that the proposed model introduces a finer scale
structure in near-surface layers, potentially improving modeling site effects in three-dimensional
ground motion simulations. It is recommended to use the Vgszp map by Wills et al. (2015) in
computing Vs profiles using the proposed model because they show a better correlation to the
Vs30 of measured profiles in the Bay region. The maximum depths of most measured profiles
were less than 100 m, and only a few had Z;( information. Therefore, the proposed model
should be used cautiously in deeper layers.
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1 Introduction

Three-dimensional (3D) earthquake ground motion simulations have been constrained, until re-
cently, to low frequencies (Olsen et al., 2006; Graves and Pitarka, 2010; Bielak et al., 2010). How-
ever, over the last decade, the continuous growth of high-performance computing systems has made
higher frequency simulations an increasingly realistic target (Taborda and Bielak, 2013, 2014; Bielak
et al., 2016; Rodgers et al., 2018, 2019). This fact has motivated researchers to focus on refining
existing source and geology models to capture source, path and site effects more accurately in
broadband deterministic ground motion simulations (e.g., Shi and Day, 2013; Taborda et al., 2012;
Roten et al., 2014; Seylabi et al., 2019; Savran and Olsen, 2016). A higher resolution shallow
velocity structure, specifically, can significantly affect the amplitude and frequency content of the
simulated ground motions, especially at frequencies concerning earthquake engineering applications,
and can result in localized nonlinear behavior that significantly impacts observed surface motions.
Thus, It is critical to understand better the coupled source, path, and site effects in broadband 3D
earthquake simulations.

Weathered rocks and sedimentary deposits in the shallow crust, and their transition to the stiffer
bedrock, are frequently represented by the optional geotechnical layer (GTL) in community velocity
models accessible through the Unified Community Velocity Model (UCVM) framework (Small
et al., 2017). The model, proposed by Ely et al. (2010), is a geometric function that, given Vg3
measurements, yields the smooth variation of the shear wave velocity profile for the top 350 m
of the crust. Various functions—e.g., linear spline and polynomial interpolation—were evaluated to
represent the smooth shear wave velocity (V) profiles with depth based on criteria such as (a) the
capability to represent a wide range of soil and rock velocity profile types; (b) facilitating a smooth
transition to the crustal velocity model; (¢) an ability to reasonably handle poor spatial correlation
of Vs3p and crustal velocity data; (d) simplicity and minimal parameterization (Ely et al., 2010).
These considerations resulted in the model with cubic and square-root depth dependence extended
to a transition depth of z = 350 m. The shear-wave velocity at the surface is derived from Vg3
by a uniform scaling. The UCVM framework of the Southern California Earthquake Center (Small
et al., 2017) includes a geology-based Vg3yp map of California (Wills and Clahan, 2006) to support
this model. It should be noted that the method can also be applied to regions without direct
measurement of Vgsg by using Vgsp estimates from topographic slope (Wald and Allen, 2007).

More recently, Shi and Asimaki (2018) used nearly a thousand measured velocity profiles with Vgsg
ranging from 150 m/s to 1000 m/s to develop a sedimentary velocity model (SVM) that translates
Vsso and depth to shear wave velocity of 1 km/sec (Z1) into a generic one dimensional (1D)
velocity profile suitable for use in wave propagation based ground motions. They considered four
data sets of Vg measurements for the development of the model: (1) 178 profiles measured by Yong
et al. (2013) (AY), (2) 277 profiles documented in Boore (2003) (DB), (3) 137 profiles collected by
Chris Wills (CW) from the California Geological Survey (personal correspondence, 2016), and (4)
322 profiles measured by LeRoy Crandall (LC) and Associates (personal correspondence, 2016).
The Vg profiles were measured using two families of site characterization techniques: the DB,
CW, and LC profiles were measured using invasive methods (e.g., suspension logging, cross-hole,
and down-hole tests), and the AY profiles were measured using noninvasive methods based on the
inversion of surface-wave dispersion curves. As shown in Figure 1, the Vg profiles in the first three
data sets are concentrated mainly in Los Angeles and San Francisco. It is noted that the last
dataset was proprietary and therefore is not shown in the Figure.

In another study, Marafi et al. (2021) proposed another generic velocity model for the Cascadia



AY: Yong et al. (2013) DB: Boore (2003) CW: C. Wills
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Figure 1: Locations of Vs profile measurements of three of the four datasets: AY (Yong et al.,
2013), DB (Boore, 2003), and CW (Chris Wills). Each dot on the map denotes the location of a
Vs profile measurement (Shi and Asimaki, 2018).

region, modifying the proposed model by Shi and Asimaki (2018). In developing this model, both
Vsso and Z g, as a means to consider deeper velocity structure, were used for model parameteriza-
tion. A set of 218 shear wave velocity profiles from Ahdi et al. (2017) with Z; ¢ value was employed
to develop the generic velocity model (Figure 2).
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Figure 2: Locations of Vs profile measurements with Z; information for the Cascadia region
(Marafi et al., 2021).

This project proposes using available Vg profile measurements in the Bay region to develop a
parameterized, region-specific near-surface velocity model. The current USGS crustal velocity
model comprises a high-resolution model of 290 km by 140 km by 45 km volume for the greater San
Francisco Bay Area, surrounded by a coarser model spanning 650 km by 330 km by 45 km volume.
The finest discretization size in the detailed seismic velocity model is 100 m in the horizontal
direction and 25 m in the vertical direction (Aagaard et al., 2020a), which inevitably limits the
capabilities of physics-based simulations to capture site effects. The proposed model aims to refine
the near-surface velocity structure in the USGS velocity model in the Bay Area. The proposed



model and the future integration in the USGS velocity model will allow researchers to study the
coupling of 3D source, path, and site effects in the Bay area; and to perform validation studies of
deterministic earthquake simulations over a wide range of frequencies.

With this introduction, the remaining sections are organized as follows: Section 2 provides an
overview of the USGS San Francisco velocity model (SFVM); Section 3 summarizes two previous
studies on developing generic velocity models for California and Cascadia regions. Details of the
measured Vg profiles in the Bay region are provided in Section 4, and the considered methods to
develop the near-surface velocity model are discussed in Section 5. Section 6 evaluates the proposed
model compared to measured profiles and SFVM, and concluding remarks are

2 USGS San Francisco velocity model (SFVM)

The USGS SFVM was developed to support 3D earthquake simulations in the Bay region (Aagaard
et al., 2020b; Brocher et al., 2006). The USGS SFVM differs from tomographic models as it takes
a forward approach by developing a 3D structural model of the local geologic units using geologic
mapping, potential field geophysics, and seismicity (Waldhauser and Ellsworth, 2000; Ellsworth
et al., 2000). This method, developed primarily by Brocher (2008), assigns elastic properties to
the units based on rock-specific velocity-depth relationships, which is beneficial in areas like the
California coast where strike-slip faults cause lateral juxtaposition of rocks with different properties.
The SEFVM covers a “detailed domain” that spans 290 km parallel to the San Andreas fault, 140 km
perpendicular to the fault, and 45 km depth, surrounded by a “regional domain” that represents
the geologic structure and elastic properties in a coarser manner (Aagaard et al., 2020b).

The initial version of the SFVM (v.05.0.0) was designed to simulate wave propagation for 1906
(Mw=7.9) San Francisco and 1989 (Mw=6.9) Loma Prieta earthquakes, as well as hypothetical
(Mw=7.9) earthquakes on the San Andreas fault (Aagaard et al., 2008a,b). The model assigns
elastic properties, i.e., compressional wave velocity Vp, shear wave velocity Vs, and density, to
every point in the geologic model based on geologic unit and depth. The Vp-depth relations are
based on measurements from various sources, while the Vs-depth relations were derived from Vp-
Vs relations. The density is derived from the Vp and density relations, while the attenuation
parameters were taken from Olsen et al. (2003).

Subsequent evaluations revealed systematic biases in the synthetic waveforms produced by the
model, which were addressed through updates to the SFVM v.08.3.0 to enhance accuracy and
consistency. Since then, the updated version has been used in various studies to analyze the
interplay between earthquake ruptures and the 3D geologic structure on spatial variability of ground
motions (Hirakawa and Aagaard, 2022). This version updates the Brocher (2008) rules based on
waveform evaluations and comparisons with a travel-time tomography model. The changes include
a decrease in Vp and Vg in some geologic units by a few percent and an increase in Vp and Vg by
ten percent in the La Honda basin. Additionally, Qp and Qs are updated to vary as a function of
Vp and Vg using the relations given in Brocher (2008).

The last version of SFVM is version v.21.1, released recently based on the final modifications
on v.08.03. In this final version, further adjustments have been made to improve the accuracy
of ground-motion predictions in the SF Bay region. These adjustments were made by analyzing
geologic structures and experimenting with synthetic motions to match observed ones (Hirakawa
and Aagaard, 2022).

As discussed before, the SFVM lacks resolution in near-surface layers (Figure 4), and the main



objective of this study is to develop a new near-surface velocity model for the Bay Area using
measured Vg profiles within the region to help increase the accuracy of Vg values in near-surface
layers. In Figure 4, the comparison of SFVM Vg values with depth obtained from two recent versions
and the measured profiles at selected locations (shown in Figure 3) is pictured. The SFVM results
do not necessarily comply with measured profiles. It is desired to develop a generic model to modify
the SFVM model in near-surface layers to ensure better agreement with measured profiles in the
Bay region.
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Figure 3: Selected locations to compare measured Vs profiles to USGS SFVM predictions.

3 Overview of recently developed near-surface velocity models

This section summarizes two recent studies on developing near-surface velocity models for California
and Cascadia region.

3.1 Sedimentary velocity model for California (Shi and Asimaki, 2018)

Shi and Asimaki (2018) used the following analytic expression to fit the model over an ensemble of
average Vs profiles.

Vs(z) = {0 PeeEt o
Vso[l + k(z — 2*)]V/" 2> 2*

In Equation (1), z is depth, z* = 2.5 m, and (Vso, k,n) pairs are functions of Vgsg. In this forward
model, Vgg controls the initial shear wave velocity, k shows the rate-of-change of shear wave velocity
at smaller depths, and n controls the curvature of the Vs profile and the rate-of-change of shear
wave velocity values in higher depths.

To constrain the model parameters, the Vs database discussed in Section 1 is divided into several
bins based on their Vgsp values (Figure 5), and the mean profile in each bin is used to optimize
(Vso, k,n) for each Vggp. Figure 6 shows the trends of the optimized values as a function of Vgso,



0 0
——Measured
20 ——USGS v21.1
10 ---USGSv8.3
£ w £
S <20
o) o)
o 60 a
30
80
100 40
0 500 1000 1500 0 500 1000 1500
Vs (m/s) Vs (m/s)
(b)
0 0
5
50 _ 10
E Eis
S S
o) @20
0 100 o
2 \
1
1
30 1
|
150 35
0 500 1000 1500 0 500 1000 1500

Vs (mls)

(d)

Vs (mls)

()

Depth (m)

0 500 1000 1500
Vs (m/s)

()

Depth (m)
[N) =
o o

w
o

40
0 500 1000 1500

Vs (mls)

(f)

Figure 4: Comparison of Vs profiles obtained using two last versions of SFVM (v.08.03.0 and v.21.1)
with measured ones at locations shown in Figure 3.



which are used to find and fit appropriate functions (Equation (2) to Equation (4)). To avoid
extrapolation-associated errors, this model is recommended for Vgsg less than 1 km/s that can be

queried from the California Vg3p maps (e.g., Thompson et al., 2014; Yong et al., 2013; Wills et al.,
2015).

Viso = p1(Viso) + p2(Vsso) + p3 (2)
k = exp(r1[Vss0)™ + r3) (3)
n = s1 exp(s2Vs30) + 53 exp(s4Vs30) (4)

where p; = —2.1688 - 1074, ps = 0.5182, and p3 = 69.452 for Vg, 71 = —59.67, ro = —0.2722, and
rg = 11.132 for k, and s; = 4.11, s5 = —1.0521 - 1074, s3 = —10.827, and s4 = —7.6187 for n.
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Figure 5: Vgsg bins defined to parameterize (Vsg, k,n) pairs in Equation (1) as a function of Vgsg

in developing the SVM model (the figure is from Shi and Asimaki (2018)).

The goodness of fit of the predicted shear wave velocity profiles (GoFYy) is used to assess the perfor-
mance of the proposed model compared to other existing velocity models for Southern California,
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Figure 6: Variation of Vg, k, and n as a function of Vgzg. Each dot illustrates the result of the
curve-fitting for each subplot of Figure 5. The fitted curve over the general trend is shown in red,
and the error bounds (come from the red dashed line in Figure 5) are represented in gray (the
figure is from Shi and Asimaki (2018)).

including Community Velocity Models (CVMs)-CVM-S4.26.M01 and CVM-H.15.1.0-and the Ely
GTL (Ely et al., 2010). These results are shown in Figure 7, confirming its better performance.
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Figure 7: Goodness of fit comparison of different velocity models in Southern California (the figure
is from Shi and Asimaki (2018)).

3.2 Generic velocity model for Cascadia region (Marafi et al., 2021)

Marafi et al. (2021) consider a similar generic model as follows:

Va(e) = {Vso, 2<25 5)

Vio 4 1000.(k2=25)1n, 2> 25

where k = (%)” is defined such that Vs(Z10) = 1000 m/s. It is expected that by adding
Z1.0 as another parameter, the model represents better-constrained estimates of shear wave velocity
with depth. n and Vgg are optimized to minimize the error between the predicted and measured
profiles using the Nelder-Mead algorithm (Gao and Han, 2012). After minimizing the error for each
profile, Vgo and n are derived and plotted versus Vgsg and Z; ¢ (Figure 8) to define the trends in
Equation (7) and fit their parameters.

Vso = ag + a1(Vsz0)*? (6)
n = bO(ngo)bl (Zl,o)b2 (VS30Z1.0)b3 (7)

10
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versus Vgssg, and (d) optimal n versus Z; o (the figure is from Marafi et al. (2021)).

where ag = —629, a1 = 434, and ay = 0.122 for Vg9 and bg = 0.00912, by = 0.646, by = —0.201,
and b3 = 0.136 for n.

Figure 9 shows the computed residuals as a function of depth, using the proposed models by Shi
and Asimaki (2018) and Marafi et al. (2021) to predict the measured Vg profiles in the Cascadia
region. As shown, the Marafi et al. (2021) model results in less residual and bias, irrespective of
depth, and therefore has better performance to be used within the intended region.
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Figure 9: Vs residual comparisons obtained using the proposed model by (a) Shi and Asimaki
(2018) and (b) Marafi et al. (2021) compared to measured Vs profiles in the Cascadia region (the
figure is from Marafi et al. (2021)).

The main focus of this project is developing a generic near-surface velocity model for the Bay region
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in Northern California. Considering this region’s abundant active faults and complex geologic
structure, developing a velocity model to represent better the near-surface velocity structure is of
great importance. To formulate this velocity model, 211 Vs profiles are used. In Section 4, details
of the gathered measured Vs profiles are elaborated upon.

4 Measured Vs profiles in the Bay region

For this study, five datasets of Vs profile measurements are collected within the Bay Area, including
13 profiles measured by Yong et al. (2013), 92 profiles documented in Boore (2003), 29 profiles
collected by Chris Wills from the California Geological Survey, 3 profiles measured by LeRoy
Crandall and Associates, and 70 profiles derived from VSPDB Vs profile database (Kwak et al.,
2021). This resulted in 211 total profiles at locations shown in Figure 10.
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Figure 10: Locations of the 211 gathered Vs profiles in this study, using five different datasets
discussed in Section 4.

As mentioned, the Boore, Wills, and Crandall profiles are obtained using invasive techniques, such
as suspension logging, cross-hole, and down-hole tests. On the other hand, Yong profiles are derived
using noninvasive methods that involve inverting surface-wave dispersion curves, such as spectral
analysis of surface waves, multichannel analysis of surface waves, and/or refraction microtremor
(ReMi) (Shi and Asimaki, 2018). VSPDB dataset includes a combination of both methods. Previous
studies have indicated that noninvasive shear-wave velocity profiling techniques can produce similar
results to invasive techniques (Boore and Brown, 1998; Boore and Asten, 2008; Brown et al., 2002;
Rix et al., 2002; Stephenson et al., 2005; Bas et al., 2022). Therefore, all five datasets are combined
for further analysis in this study.

Figure 11 shows the distribution of the Vg3p and maximum depth for these profiles. As shown,
about 35% of profiles only reach the depth of 25-30m, and the maximum depth of most profiles is

12



less than 100 m.
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Figure 11: Distributions of (a) Vssp and (b) maximum depth for the gathered measured Vs profiles
in the Bay region.

5 Near-surface velocity model proposals for the Bay region

5.1 General functional form

The functional form of median shear-wave velocity versus depth follows the model of Equation (8)
proposed by Shi and Asimaki (2018); however, using different scaling relationships.

VS[) z S z*
V. = . 8
5(2) {V50(1+k(z—z*))1/" z> 2" (®)

This study proposes a new scaling relationship for Vg that ensures Vgsg of the profiles are honored
in the statistical fit (i.e., the calculated Vgsy of the velocity model will exactly match the input
Vsso value). Additional advantages of this decision are a reduction in the input parameters and a
better extrapolation behavior. To this end, one can derive the formula for Vsg as a function of k,
n, and Vgsg by substituting Equation (8) in Equation (9) for Vgso. That is:

30

30 1 ’
o e d#

(9)

Vszo =

which results in
(1+27.5k)Y" +25k(1 - 1) -1
30k(1— 1) '

Vso = Vs3o (10)

In developing the new model, two approaches with the same forward model are considered. The first
approach derived each profile independently, and the scaling relationships of the model parameters
were estimated as a second step. This approach is similar to the method used by Marafi et al.
(2021). The second approach used global Bayesian inference to parameterize the velocity model
and directly capture the hyper-parameters of the scaling relationships. Next, each approach is
discussed in detail.

13



5.2 Model regression: First approach

The main difference between the current approach with the procedure done by Shi and Asimaki
(2018) is that in their study, profiles with different values of Vgsg are grouped in different bins, the
average profile is calculated in each bin, and the scaling parameters are derived based on fitting the
average profile. However, in the first approach, each profile is used to minimize the error using the
nonlinear least-square method (Equation (11)). Trust-region algorithm (Moré and Sorensen, 1983)
is used in the optimization process. This algorithm helps us minimize errors between each profile’s
predicted and measured shear wave velocity values. That is,

k*, n* = ar%min ||VS,predicted - VS,measuredH2 (11)

n
where Vg neasured 18 the measured Vg array at a different depth, Vs predgicteqd is the computed Vg
array at the same depths as in the measured profile using Equation (8), || || denotes the L2-norm
of the subtended variable, and k* and n* are the optimized k and n parameters for each Vg profile.

It should be noted that profiles with Vgsg less than 100 or greater than 1000 m/s are not used
in model development due to the scarcity of data in those ranges. Additionally, profiles with a
maximum depth of less than 15 are not considered since they are not deep enough for model
development. Overall, among all 211 profiles, 188 profiles are selected for the optimization process.

After regression analysis of each profile, the fitted model parameter values are plotted versus Vgsg
(Figures 12a to 12c). Then, taking the trends of Vgso-k, and Vgso-n into account, two functional
formulations are fitted over them, and the values of hyperparameters are calculated using the trust-
region algorithm (Moré and Sorensen, 1983). The fitted function over each parameter is shown in
Equation (12).
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Figure 12: Variations of optimized (a) k and (b) n values as a function of Vgs; (c) Variation of
computed Vgq using optimized k and n values versus Vgsg. Results are compared to those proposed
by Shi and Asimaki (2018).

kE=mr1(Vszo—12)",
S 12
n = 71 —— + S4 , ( )
1 + 52V530

where r; = 15.11, o = 0.1885, 3 = 2.015, s; = 4.014, s = 6.069 x 1073, s3 = 2.951, and
54 = 9.436 x 1074, and Vig3g is in km/s unit. From Figure 12, it is clear that parameter k does not
show a strong correlation to Vgssg, and it is attempted to use a relatively simple model for fitting.
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To determine the goodness of fit, shear wave velocity residuals are computed as follows, and com-
pared to those from using the SVM model (Shi and Asimaki, 2018).

Residual = In VS,measured —In VS,predicted (13)

Figure 13 shows the resulting residual for all measured profiles as a function of depth. Although
the proposed model results in less residual in shallow depths, both models tend to underpredict
the velocity at deeper layers, losing accuracy, and introducing bias. To solve this bias and have a
better-fitted model for parameter k, it is decided to use a global Bayesian regression model, which
is presented in the next section.
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Figure 13: Residuals in computed Vs values using the first approach and Shi and Asimaki (2018)
study. Equation (13) is used to compute residuals.

5.3 Model regression: Second approach

The second approach used Bayesian global inference to calibrate the parameters. Section A provides
a general overview of Bayesian regression. Before performing Global Bayesian Regression, a shear
wave velocity flatfile, including all profiles’ data, should be gathered suitable for Bayesian regression
analysis in STAN (Carpenter et al., 2017), which is a platform for statistical modeling and high-
performance statistical computation. To prepare this flatfile, the columns below are considered:

e DSID: As we have different datasets, DSID is a number representing the dataset number.

e DSName: It contains the name of the dataset related to each row of data. All profiles in a
specific dataset have the same DSID and DSName.

e VelID: It is a unique number assigned to each profile. Each profile contains several rows of
data; thus, VelID is constant for all rows of that specific profile.

e VelName: Unique name for each profile.

e Vs30: Vg3o shows the time-averaged shear wave velocity in the upper 30 m of each profile.
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e Lat and Lon indicate the profile location in latitude/longitude coordinates.

e Depth, Depth-MPt, and Thk: They describe the depth to the base, depth to the mid-point,
and thickness of each layer.

e Vs: Shear-wave velocity of each layer.

r1 ~ Lognormal(2.71,0.10)

r9 ~ Lognormal(—1.75,0.40)

rs ~ Lognormal(0.65,0.45)

s1 ~ Lognormal(1.40, 0.25)
(—1.80, 0.50)

sg ~ Lognormal(1.05,0.30)

s4 ~ Lognormal(—7.00,0.35)

¢vs ~ Lognormal(—0.30,0.60)

59 ~ Lognormal

The variability of the measured velocity profiles around the median is modeled as follows:
In VS,measur@d(z) =1In VS(Z) + 6VS (15)

where 6Vg is the misfit between the measured velocity profiles and global median model and follows
a normal distribution:

dVs ~ Normal(0, ¢vy) (16)

with ¢y, being the standard deviation of the variability.

Figures 14a and 14b show the regression results for n and & as a function of Vg3, respectively, and
Figure 14c shows the resulting residual versus depth. The global models for n and k are computed
using the median of posterior distributions. These results suggest that the posterior distributions
of estimated parameters still result in significantly more uncertainty in k than n, irrespective of
Vgso values, and the residuals still suffer from a bias increasing with depth.

To determine the possibility of fitting a more informative functional form on &, the second regression
analysis was performed using a random term 6B, to define k = exp(dB,) to capture within-profile
variability and determine its effects on decreasing bias in residuals. Additionally, it is decided to
update the functional form for n to enforce n > 1. This will ensure fitting a convex function to the
measured profiles and therefore avoid unrealistically rapid increases in Vs at deeper layers, which
can become problematic in the future integration of this model with the SFVM. To summarize:

k =exp(0B,),
51 (17)

n=1+4+——.
14 s59Vg39™ %
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Figure 14: Relationship between model parameters (a) n and (b) k with Vgso using first approach’s
scaling relationships in global Bayesian regression analysis; (c) total residual values. In this figure,
dots indicate the residual values of each profile at each depth, and the line depicts the spline, which
is interpolated on residual values.

For this case, the prior distributions are defined as follows.

7 ~ Lognormal(—0.3,0.6)

0B, ~ Normal(0, 7)

s1 ~ Lognormal(1.25,0.5) . (18)
sg ~ Lognormal(1.25,0.5)

s3 ~ Lognormal(0.65,0.4)

Figure 15 shows the variation of n and §B, using the regression results. In these figures, the
global model is obtained using the median of the converged posterior distributions for parameters
s1, S2, s3, and k = 1. Additionally, within-profile residuals are computed using the median of the
estimated parameters. It is clear that the bias can be reduced significantly if one allows k to change
spatially as a random term.

Figure 16 shows the spatial variability of the median and standard deviation for § B, at the locations
of measured profiles. At this stage, no strong spatial correlation is found, and therefore, for the
remaining analysis, it is decided to use Vg3g solely to define a new functional form for £ based on the
trend observed in Figure 15. To this end, using the trust-region algorithm, a sigmoid function is
fitted (Equation (19)) to determine plausible prior distributions for the hyperparameters. Figure 17
shows the fitted model and the 95% confidence interval of each fitted k hyperparameter is used to
define the prior distributions. For parameter n, the prior distributions with approximately high
standard deviation are initially defined in Equation (18). Nonetheless, after defining k as the new
function, the prior distributions of parameter n are modified to have less standard deviation based
on the posteriors of the regression analysis performed on the case with the random term. The prior
distributions of the hyperparameters for the final Bayesian inference are summarized as follows
(Equation (20)).

1

k=exp(—————
p(l + 1r9Vgzg "3

+ 7“4) (19)
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residual, resulting from global Bayesian regression analysis using the second approach’s scaling
relationship for n and the spatially variable random term for k£ (Equation (17)). Dots in (c)
indicate the residual values of each profile at each depth, and the line depicts the spline, which is
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Figure 16: Spatial variability of d B, in terms of its (a) median and (b) standard deviation values
derived for each profile.
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Figure 17: Fitted function over d B,-Vg3¢ using the trust-region algorithm.

(11 ~ Lognormal(1.1,0.2)

ro ~ Lognormal(—8.3,0.5)

r3 ~ Lognormal(2.15,0.1)

s1 ~ Lognormal(1.92,0.3)

sg ~ Lognormal(—2.7,0.15)

(
(
(
r4 ~ Lognormal(0.9,0.1)
(
(
(

| 53 ~ Lognormal(1.4,0.1)

Profiles with Vgso > 100 m/s are used to run the Bayesian regression since it resulted in the
slightest bias in computed residuals. In this Bayesian regression analysis using MCMC, six chains
are considered to confirm model convergence. The posterior distributions of the hyperparameters
for all six chains are shown in Figure 18. Table 1 lists the results of Bayesian regression where the
quantiles are obtained using all six chains. It is worth mentioning that Vssg values in Equations (17)
and (19) must be in km/s unit.

Table 1: Statistics of converged hyperparameter using the global Bayesian regression analysis in

the second approach.

1 2 r3 T4 S1 52 S3
5™ Percentile 2.741 1.56e=* | 8.512 2.356 6.391 0.057 3.784
25" Percentile 3.141 1.95¢~* | 8.758 2.404 6.900 0.066 3.915
50" Percentile (Median) || 3.423 2.27¢74 | 8.932 2.435 7.274 0.072 4.005
75" Percentile 3.715 2.64e7* | 9.111 2.467 7.659 0.078 4.097
95" Percentile 4.115 3.26e74 | 9.365 2.512 8.246 0.089 4.227
Mean 3.426 2.32¢~* | 8.936 2.435 7.291 0.072 4.006
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Figure 18: Converged posterior distributions of hyper-parameters for the considered scaling rela-
tionships n and k in the second approach: (a) ri, (b) ro, (c) 73, (d) 74, (e) s1, (f) s2, and (g)

S3.

Figures 19a and 19b shows the variation of n and k as a function of Vg3g using the Bayesian
regression results. Figure 19¢, on the other hand, shows the variation of Vgg using Equation (10).
In all cases, the results of Shi and Asimaki (2018) study are plotted for comparison. It should be
noted that, by design, the proposed model shows better extrapolation capacity, which has important
implications for its use as a generic model for the Bay region and its future integration into SFVM.
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Figure 19: Relationship between model parameters (a) n, (b) k, and (c) Vg with Vg3 obtained by
performing global Bayesian regression analysis using the prior distributions (Equation (20)) defined

in the second approach.
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Figure 20 shows the computed residuals using the second approach and its comparison to those
from the first approach. As expected, the second approach resulted in smaller residual values and
less bias, especially at deeper layers.
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Figure 20: Residual comparison of two proposed models, referred to as first approach and second
approach shown in (a) logarithmic (Residual = In Vi pmeqsured — I Vs predicted) (b) linear (Residual =
VS,measured - VS,predicted) scales.

5.4 Modeling of Velocity Variability

In forward applications, the variability of the velocity profile around the median model is obtained
by randomly sampling 6Vg to create synthetic realizations:

Vs realiz(2) = Vs(2) exp(dVs) (21)

For the along-depth correlation, the Toro (1995) model is recommended. A region-specific along-
depth correlation model will be developed as part of the next phase of this project.

6 Model evaluation in the Bay region

In this section, the results of global Bayesian regression (i.e., the second approach) are used to
predict shear wave velocity at different locations within the Bay region and compare them to
measured profiles and those queried from the latest version of the USGS SFVM. Vgsgq is the only
required parameter to compute Vs using the proposed model, and the Vgsg map by Wills et al.
(2015), a geology and topography-based map, is deemed suitable for this purpose. The Vgsg of
measured profiles are used to determine how well they correlated with Wills et al. (2015) (i.e., Wills
Vsso) and with USGS Vssg, obtained using the USGS SFVM Vs profiles queried at the locations of
measured Vs profiles. As shown in Figures 21a and 21b, Wills Vg3 correlates significantly better
and, therefore, will be used to compute Vg3g at all considered locations for the proposed model’s
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evaluation. Additionally, locations of measured profiles with Z; ¢ information are used to compute
SFVM Z g, and the results are shown in Figure 21c, showing poor correlation.
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Figure 21: Correlations of (a) USGS SFVM (v.21.1) Vgso values and (b) Wills Vsgp values versus
the Vgso values of the measured Vs profiles; (c) correlation of Z; ¢ for the measured Vs profiles and
USGS SFVM (v.21.1).

Figure 22 compares Vs profiles computed using the proposed model and USGS SFVM to measured
profiles at six locations shown in Figure 3. Both measured Vg3g and Wills Vg3 are used to compute
the Vs profiles for the proposed model. Also, two configurations are considered for updating the
USGS profiles using the proposed model, including up to Z1 9 and entirely. Overall, the results of
the proposed model agree well with the measured profiles, and using Wills Vg3¢ provides similar
profiles at these locations.

Next, two cross-sections shown in Figure 23 are considered to examine how the proposed model may
modify the USGS SFVM up to Z g. Figures 24 and 25 shows the background USGS Vs along each
cross-section and their modifications using the proposed model. The proposed model adds more
resolution to near-surface layers in both cross-sections. Additionally, they generally result in stiffer
profiles in deeper layers. Future studies will focus on determining the appropriate maximum depth
for which the proposed model could be used reliably. Lastly, Figures 26 and 27 show the spatial
variation of Vs over the Bay region at two depths of 1m and 10m. Considering the course resolution
of the USGS SFVM, the Vs contours are the same at both depths, while using the proposed model
modifies the USGS model resulting in different velocity values at these two depths.
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Figure 22: Comparison of measured Vs profiles to those predicted by the USGS SFVM, and the
proposed model of the second approach. The measured profile and USGS SFVM profile are shown
in red and black, respectively. Model Vg30M denotes using the measured Vg3g to compute Vs; Model
Vs30W denotes using the Wills Vgsg to compute Vs. Model Vg3oM and Model Vg3oW profiles modify
the USGS profiles up to Z;1 9. Model (w/o USGS) Vs3oM denotes using measured Vgsp to compute
Vs over the whole depth.
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Figure 23: Locations of the two cross sections considered to develop 2D velocity structure using
the proposed model and USGS SFVM.
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Figure 24: Comparison of 2D shear wave velocity structures for Section 1.
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Figure 25: Comparison of 2D shear wave velocity structures for Section 2.

25



384°N

1773 W 1772.0°W TZ27°W TZI.8°W 17T 172.8°W 172.8°W T77°W TZI.8"W 717

80 145 211 277 342 408 474 540 605 671 737 802 868 934 1000 80 145 211 277 342 408 474 540 605 671 737 802 868 934 1000
Vs Value Vs Value

(a) (b)

Figure 26: Vs map in the Bay region at z = 1 m using (a) the proposed model and (b) USGS
SFVM.

12Z8°W 22.0°W I2°W IZI8°W IZ2IF 1228°W 2Z8W I22°W 1ZI8°W IZI.%

80 145 211 277 342 408 474 540 605 671 737 802 868 934 1000 80 145 211 277 342 408 474 540 605 671 737 802 868 934 1000
Vs Value Vs Value

(a) (b)

Figure 27: Vs map in the Bay region at z = 10 m using (a) the proposed model and (b) USGS
SFVM.
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7 Concluding remarks

This study presents a region-specific near-surface velocity model for the Bay Area region in Northern
California. To this end, 211 profiles were gathered from different datasets, and two approaches were
employed, referred to as the first and second approaches, to fit the profiles. In both approaches,
the functional form (forward model) in Equation (8) proposed by Shi and Asimaki (2018) is used.
Each approach aims at optimizing the hyperparameters related to the model parameters, k and n.

The first approach derived each profile independently, and the scaling relationships for k and n were
estimated as a second step. This approach is similar to the method used by Marafi et al. (2021).
The second approach used global Bayesian inference to determine the velocity model and directly
capture the hyper-parameters of the scaling relationships. It is noted that the global Bayesian
inference resulted in better constraining the hyper-parameters of k and n relationships and in less
bias in the computed residuals.

The finalized proposed near-surface model is summarized as follows:

Vs 2<25
Vs(z) =4 y (22)
Vso(1+ k(z—2.5)Y/" 2>2
in which
1
k=exp(———— +714),
p(l + T2V530_T3 4)
1+ 59Vg307 %3 (23)
(14 27.5k)Y/™ +2.5k(1 — 1) -1
Vso = V. n .
S0 S30 SOk(l — %)

The unit of z is in m, Vg is in km/s and Vg(z) and Vgg are in m/s. Hyper-parameters s; to s3
and r1 to r4 are repeated for convenience in the table below.

! 2 T3 T4 51 52 83
5t Percentile 2.741 1.56e=* | 8.512 2.356 6.391 0.057 3.784
25" Percentile 3.141 1.95¢=4 | 8.758 2.404 6.900 0.066 3.915
50" Percentile (Median) || 3.423 2.27¢* | 8.932 2.435 7.274 0.072 4.005
75" Percentile 3.715 2.64e~% | 9.111 2.467 7.659 0.078 4.097
95t Percentile 4.115 3.26e~* | 9.365 2.512 8.246 0.089 4.227
Mean 3.426 2.32¢~% | 8.936 2.435 7.291 0.072 4.006

A new relationship for Vgq is considered that ensures the calculated Vg3g of the velocity model
matches the input Vg3p value and helps reduce the number of hyperparameters needed to be fitted.
Additionally, the scaling relationships for £ and n are designed to ensure well-posed extrapolation
behavior for small and large Vg3 values, and n is set to remain greater than one to avoid significantly
large predictions at deep layers.

It is recommended to use the Vg3p map by Wills et al. (2015) in computing Vs profiles using the
proposed model because it shows better correlation to the Vggy of measured profiles in the Bay
region. The maximum depths of most measured profiles were less than 100 m, and only a few
profiles had Z; o information. Therefore, the proposed model should be used cautiously in deeper
layers. Future studies will determine the best strategy for integrating the proposed near-surface
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model with the USGS SFVM. Additionally, future work will examine the proposed model further
by performing 1D site response analysis and 3D ground motion simulations within the region.
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A Bayesian Regression Overview

Bayesian regression provides the framework to combine our prior assumptions about the range of
the model parameters with the evidence in the available data to come up with an updated range
on the distribution of the model parameters using Bayes’s rule:

_ L(97 thp)p(ea thp)

p(0, 9hyp|1'a y) = (v, 7) (24)

where p(6,0,p) is the prior distribution describing the uncertainty of the model parameters ¢
(e.g., V50, k, and n) and model hyperparameters 6, (e.g., s1, s2, s3) before observing the data.
L(0,0h,y) is the likelihood function that quantifies the evidence in the data for how plausible the
different values of 6 and 0, are. p(60,Onyp|y, ) is the posterior distribution that combines our
prior assumptions with the influence of the data.

However, to improve the computational efficiency, p(y, ) is removed as it does not affect the shape
of the distribution. In this case, the posterior is represented as:

p(07 ehyp‘xa ?J) X L(97 thp)p(97 thp) (25)

The information for defining the prior distributions may come from different sources, including
prior fittings (i.e., approach 1) or previous studies such as Shi and Asimaki (2018). When less prior
information is available, meaning that there is less confidence in the range of parameters before
looking at the data, wider prior distributions are used, which assigns more weight to the likelihood
function to determine the posterior distributions

Due to the high computational cost of analytically calculating Equation (24), multiple numerical
methods have been employed for expressing p(6, Onyp|2,y). The most commonly used method
is Markov-Chain Monte Carlo (MCMC) which draws samples from the posterior distribution to
compute various statistics p(6, Onyp|,y). Additional information on MCMC and its implementation
on the statistical software STAN (Carpenter et al., 2017) is provided in the remainder of this section.

Bayesian Inference using MCMC

Bayesian inference performed by MCMC is based on sampling from the posterior distribution. If
a set of N random parameters arrays (zy) is derived from a probability density function (pdf) of
q(z), the expectation of each function, f(x), can be estimated using:

(f(@) = / f@ha(e)ds ~ 5% f). (26)

Given a set of posterior samples, the posterior mean of the parameters, T is derived using the
function f(x) = z, and the variance of the parameters is obtained with f(z) = (z — Z)2.

The two main families of MCMC samplers used in Bayesian analysis are Gibbs and Metropolis
algorithms. Given the simplicity in the execution of the Metropolis algorithm, it is more common,
but in problems with a high number of parameters, it is not as efficient as the Gibbs sampler.
A more promising MCMC implementation based on the Metropolis sampler is the Hamiltonian
method, which is based on analogy and physical systems. It was first developed to simulate a
system of particles, each of which is associated with a position and momentum. In this technique,
each parameter, r;, has momentum, p;, which participates in the construction of a Hamiltonian as
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a combination of both the potential energy term, ¢ = —log(q(x)), and the kinetic energy term,

2
21;3 -. This technique aims to draw random samples from the new pdf proportional to exp(—H).
This method is employed in the software STAN, and more detailed information can be found at:

Brooks et al. (2011); Hanson (2001).

H=g¢(z)+ 3N, L ; (27)

=1 2ml

where H is Hamiltonian, N is the number of particles.
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