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Abstract

Seismically-induced landslides (SIL) have caused severe damage to infrastructure and numerous fa-
talities after recent earthquakes. Thus, proper planning and hazard mitigation in the U.S. require an
adequate evaluation of the potential for SIL and the associated consequences. This evaluation often
involves the estimation of the associated seismically-induced slope displacements (D), which are used
as a performance index to assess the impacts caused by SIL. Several robust models (i.e., models devel-
oped with a large number of recordings and for different slope conditions) for estimating D have been
proposed for shallow crustal tectonic settings. However, the authors are aware of only one robust model
for subduction tectonic settings, such as the U.S. Pacific Northwest (i.e., the Bray et al. (2018) model),
which has been developed for subduction interface earthquakes. Hence, developing more models for
subduction interface tectonic settings is warranted. Moreover, models for subduction intraslab tectonic
settings are also lacking. This study uses machine learning (ML) based procedures such as ridge regres-
sion, random forest, partial least square regression, gradient boosting decision tree, and neural networks
combined with ML-based feature selection techniques to develop a set of new models to evaluate the
seismic performance of slope systems in the context of seismically-induced landslides. In addition, tra-
ditional models (i.e., models based on fixed polynomial forms) are also developed. We use intensity
measures from the robust NGA-Sub ground motion database, which has ground motion information
from subduction type earthquakes (including both interface and intraslab tectonic settings).

Using the previously referred ML-based procedures, we identify efficient features to estimate seis-
mically induced slope displacements in subduction tectonic settings, including intensity measures (IMs)
and properties of the sliding mass. In particular, we find that the yield coefficient (ky), the fundamen-
tal period of the sliding mass (Ts - taken as zero for shallow landslides that often dominate regional
assessments), the earthquake magnitude (M), the degraded spectral acceleration at 1.3 Ts, Sa(1.3Ts)
(which becomes the peak ground acceleration, PGA, for shallow landslides) and the peak ground ve-
locity (PGV ) are efficient features for estimating D. Our findings on efficient features suggest value
in implementing/refining capabilities for a rapid assessment of PGV and spectral accelerations using
USGS tools (e.g., ShakeMap, Ground Failure) in subduction tectonic settings such as the U.S. Pacific
Northwest. These implementations, which could be performed in future efforts, would be helpful in the
rapid assessment of the damage potential of seismically-induced landslides.

The performance of the developed machine learning-based models is assessed considering their pre-
diction capabilities in test sets, trends, and case histories (when there is available information). Our
assessments suggest that the following models have a good performance: ridge regression, random for-
est, gradient boosting decision tree, support vector regression, and residual neural network models. In
contrast, the principal component regression and partial least square models have inferior performance.
Moreover, the recommended machine learning-based models also show better statistical performance
than their traditional counterparts.

The developed models are used in preliminary performance-based probabilistic implementations,
which produce D hazard curves (i.e., curves that relate different D thresholds with their annual rate
of exceedance), considering the treatment of epistemic uncertainties. Specifically, we consider a typical
logic tree approach with Monte Carlo simulation where different models are assigned with weights and a
recent novel procedure that uses the polynomial chaos theory, which proves to be more computationally
efficient.

Finally, we illustrate the use of the developed models considering (1) pseudo-probabilistic based
assessments of D in the U.S Pacific Northwest; (2) performance-based probabilistic assessments of D
in the U.S. Pacific Northwest considering the contribution of subduction interface and intraslab seismic
sources; (3) the treatment of epistemic uncertainties considering logic trees and the polynomial chaos
framework; and (4) a regional-based assessment of seismically-induced landslides in the Alaska region.
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1 Introduction

Seismically-induced landslides (SIL) have caused severe damage to our infrastructures as well as the loss of nu-
merous lives after recent earthquakes. Notable SIL events in previous earthquakes include those during the 1964
Alaska (USA), 1989 Loma Prieta (USA), 1994 Northridge (USA), 1999 Chi-Chi (Taiwan), 2004 Nigata (Japan), 2008
Wenchuan (China), 2015 Gorkha (Nepal), and the 2016 Kaikoura (New Zealand) earthquakes. According to Marano
et al. (2009), 5% of fatalities related to earthquake-induced damage are associated with SIL, situating SIL as the
third-largest contributor to fatalities. There are numerous examples of the devastating damage that SIL can cause.
For example, in the 1964 Alaska earthquake, SIL led to more than half of the earthquake-induced damage, responsible
for an estimated 56% of the total cost of damage. In Japan, more than half of all deaths in large (M > 6.9) earth-
quakes between 1964 and 1980 were caused by seismic landslides (Kobayashi, 1981). SIL have also caused significant
disruptions to lifelines, impeding emergency response efforts (Bird and Bommer, 2004). More recently, SIL triggered
during the 2008 Wenchuan, and the 2015 Gorkha earthquakes caused around 20,120 fatalities (Collins and Jibson,
2015), and the 2016 Kaikoura earthquake generated more than 10,000 landslides over a total area of about 10,000
km2 (Massey et al., 2018). Figure 1 shows examples of SIL-Induced damage in previous earthquakes. SIL events in
future scenarios similar to those in previous earthquakes have the potential to cause dramatic impacts in areas of
the U.S. affected by earthquakes. Thus, proper planning for hazard mitigation requires a proper evaluation of the
potential for seismic landslides and the associated consequences.

Figure 1: Examples of damage caused by seismically-induced landslides (SIL) after recent earthquakes.
Left: April 2016 Kumamoto earthquake; Right: January 2001 El Salvador earthquake.

The evaluation of the potential for SIL-induced damage often involves an estimation of the associated seismically-
induced displacements (D), which is the focus of this study. D is often used as a performance-index to assess the
damage potential of SILs (Wang and Rathje, 2015; Jibson and Tanyaş, 2020; Rathje and Saygili, 2008; Tsai and
Chien, 2016; Hsieh and Lee, 2011; Jibson, 2007). D is commonly estimated using semi-empirical models, which
take as inputs slope properties (e.g., the yield coefficient - ky, the fundamental period of the sliding mass - Ts),
earthquake characteristics (e.g., earthquake magnitude - M), and ground motion intensity measures (IMs) and
provide D estimates (median estimates and standard deviation).

There are several existing D models developed in previous studies, but most of them have been focused on shallow
crustal tectonic settings. For example, Bray and Travasarou (2007) used a ground motion database of 688 recordings
to develop D models that are applicable to rigid (i.e., a slope with a Ts value that is nearly zero) and flexible slopes
(i.e., a slope with a Ts value greater than zero). Saygili and Rathje (2008) used a larger ground motion database (i.e.,
2000 ground motion recordings) to develop D models for rigid slopes; Rathje and Antonakos (2011) then extended
the models from Saygili and Rathje (2008) to flexible slopes. Later, Bray and Macedo (2019) updated the model
developed by Bray and Travasarou (2007) using a more comprehensive database with 6711 ground motion recordings
(i.e., the NGA-West2 Database (Bozorgnia et al., 2014)). More recently, Wang et al. (2020), Cho (2020a), and
Macedo et al. (2021) have also proposed additional D models for shallow crustal tectonic settings. Of note, in most
cases, D models with Ts equal to zero, associated with shallow landslides have been used for the regional-based
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assessment of SIL, as commonly shallow landslides dominate in a regional context (Wang and Rathje, 2015; Jibson
and Tanyaş, 2020; Rathje and Saygili, 2008; Tsai and Chien, 2016; Hsieh and Lee, 2011; Jibson, 2007). This implies
that the sliding mass is assumed rigid. For example, Wang and Rathje (2015) and Rathje (2014), used the Saygili
and Rathje (2008), Bray and Travasarou (2007), Jibson (2007), and Rathje and Saygili (2009) models formulated
for rigid slopes to calculate regional-based D values to assess the potential for SIL in Alaska. They found that
incorporating epistemic uncertainty of D models can increase the area of high seismic landslide hazard by a factor
of 2 to 3 as compared to analyses without any epistemic uncertainty.

In contrast to the availability of D models for shallow crustal tectonic settings, D models for subduction tectonic
settings are scarce. To our knowledge, the model proposed by Bray et al. (2018) is the only robust (i.e., developed
with a large number of ground motions and applicable to both rigid and flexible slopes) D model developed for
subduction interface tectonic settings, and we are not aware of D models developed for subduction intraslab tectonic
settings. However, subduction intraslab seismic sources can be of significant importance for the seismic design of
slope systems in some regions like the Cascadia subduction zone in the Pacific Northwest of the United States. To
illustrate this, Figure 2 shows the results of a probabilistic seismic hazard assessment (PSHA) for a site located
in Bellingham, Washington, USA, where there is a contribution from shallow crustal and subduction type seismic
sources. The PSHA was conducted for Sa (spectral acceleration) at 0.2 s using the USGS unified hazard tool (Frankel
et al., 2000). Figure 2 (b) shows that the intraslab seismicity dominates the hazard at this location. This is associated
with the tectonic setting at the selected location, where the intraslab seismic source is ”beneath” the Bellingham site
at relatively shorter distances than interface seismic sources. Thus, formulating D models for subduction intraslab
tectonic settings is warranted. Moreover, given the scarcity of D models in subduction interface tectonic settings,
more models for this tectonic setting are also warranted to better account for epistemic uncertainties.

(a) (b)

Figure 2: (a) Evaluation site in Bellingham, Washington for probabilistic seismic hazard analysis (b)
Sa(0.2s) hazard curves deaggregated by tectonic settings from USGS unified hazard tool.

Although several semi-empirical D models are available in engineering practice (most of them for shallow crustal
tectonic settings, as previously discussed), they have often been formulated under traditional statistical approaches.
For example, in terms of the selection of efficient features (i.e., slope properties and IMs) that can explain the trends
in D, most of the existing models use features that have been selected based on a fixed functional form where different
features are tested until getting a standard deviation that is considered acceptable (i.e., low). Another limitation
results from the uncertainty in the functional forms of D models. Most of the existing D models have been formulated
by assuming fixed parametric forms (usually second- or third-order polynomials), which may limit their capacity to
capture more complex relationships between the input features and D. With the current momentum in machine
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learning (ML), aided by the steady increase in computational power, the application of ML-based procedures in the
formulation of D models is promising and desired, which is also the case for earthquake engineering and seismology
in general (e.g., Xie et al. (2020), Kong et al. (2019)). Our study contributes to that direction. ML procedures
enable the selection of important features in a robust and systematic manner. They can also be used to formulate
parametric and non-parametric D models that can provide a balance between model interpretability and predictive
performance (Friedman et al., 2001). In this context, recent efforts have been oriented to develop ML-based models to
estimate D. For example, Wang et al. (2020) used the extreme gradient boosting (i.e., XGboost, Chen and Guestrin
(2016)) algorithm to develop a semi-empirical D model, which was shown to be superior to traditional counterparts
by providing a lower standard deviation. More recently, Cho et al. (2022) developed multi-layer perceptron networks
that improved the estimation of D, when compared against the Saygili and Rathje (2008) D model. Most of these
previous studies have focused on a single selected ML procedure. An exception is the Macedo et al. (2021) study
that assessed the performance of 19 different ML procedures for developing D models for shallow crustal tectonic
settings. They found that D models based on random forest, second-order polynomials, and kernel regression were
efficient and outperformed traditional D models. To our knowledge, all previous efforts for formulating D models
using ML-based procedures have been focused on shallow crustal tectonic settings, and we are unaware of previous
efforts to develop ML-based D models for subduction type tectonic zones, which is the focus of this study.

This report is organized as follows, after a brief introduction in Section 1; Section 2 describes the ground motion
database used in this study and the generation of D realizations; Section 3 describes the development of D models
using traditional statistical methods. Section 4 describes the selection of features that explain D using ML-based
techniques and the development of ML-basedD models. Section 5 presents a performance evaluation of the formulated
models. Section 6 describes the treatment of epistemic uncertainty in performance-based procedures. Section 7
discusses the implementation of the developed models. Section 8 presents examples of using the developed models
in performance-based assessments, including site-specific and regional assessments. Finally, Section 9 presents the
conclusions of this study.

2 Ground motion database and generation of D realizations

This study uses the NGA-sub ground motion database (Bozorgnia and Stewart, 2020; Kishida et al., 2018) developed
by the Pacific Earthquake Engineering Research (PEER) center to generate D realizations that are later used to de-
velop D models. The entire NGA-Sub database consists of 71343 three-component recordings from 1883 earthquakes
between 1937 and 2016 from subduction zones around the globe. The selection criteria in Kuehn et al. (2020) are
used to select a subset from this database, including (1) earthquakes with magnitudes greater than 4.0 are selected;
(2) recordings with Rrup(rupture distance) ≤ 800 km and Rrup ≤ Rmax are selected (Rmax is the maximum distance
for each event to avoid biasing by non-triggered recordings, Contreras et al. (2020)); (3) recordings with unrealistic
IMs (e.g., PGA (peak ground acceleration) > 10g according to Kuehn et al. (2020)) are excluded; and (4) recordings
with time histories from multiple events, or non-free-field stations are removed. More details on the selection criteria
can be found in Kuehn et al. (2020). The selected subset contains 6240 two-component ground motion recordings
from 174 interface earthquakes with magnitudes from 4 to 9 and 8299 two-component ground motion recordings from
intraslab earthquakes with magnitudes from 4 to 7.8. The distribution of earthquake magnitude (M) and rupture
distance (Rrup) for the interface and intraslab earthquake recordings used in this study is shown in Figure 3.
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(a) (b)

Figure 3: Magnitude and distance distribution for the ground motion recordings used in this study for (a)
interface and (b) intraslab earthquakes.

We use the selected subset of the NGA-sub ground motions and the fully coupled, nonlinear, and deformable stick-
slip sliding model from Rathje and Bray (2000) and modified by Macedo et al. (2017) to generate D realizations.
This model has also been used in previous studies to generate D realizations that are then used to develop D models
(Bray and Travasarou, 2007; Bray et al., 2018; Bray and Travasarou, 2007). The model requires as inputs ky, Ts, the
unit weight of the sliding mass, the shear modulus curves and material damping curves of the sliding mass, and an
acceleration time history. The unit weight of the sliding mass is set to 19 kN/m3, and the shear modulus reduction
and material damping curves are set according to the values in Darendeli (2001) for 1 atm and PI = 15. The fully
coupled stick-slip sliding model has yield coefficients (ky) ranging from 0.01 to 0.8 (i.e., 0.01, 0.02, 0.035, 0.05, 0.075,
0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, and 0.8), and initial fundamental period (Ts) ranging from 0 to 2 s (i.e., 0.0, 0.05,
0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.4, and 2.0 s). The overburden stress-corrected shear wave velocity (Vs1) is set to 270 m/s
for the baseline sliding block, and the sliding block’s shear wave velocity profile follows the relationship that shear
wave velocity (Vs) is proportional to the fourth root of the vertical effective stress. The sliding block height (H) is
increased until the specified value of Ts is obtained. For nonzero Ts values, H is varied between 3 and 100 m, and Vs1

is varied between 200 and 450 m/s. As a result, the cases considered represent a wide range of natural earth slopes,
earth dams, and solid-waste landfills. Once the properties for each model realization are defined, each ground motion
recording in the selected subset (considering the two horizontal components) is applied to the base of the model to
generate D realizations. The estimated D values are averaged over the two horizontal components of the ground
motion. The opposite polarity of the components is then applied to compute an average seismic displacement for
the other side of the recording. Finally, for each ground motion recording, the D value is estimated as the maximum
average D values for each polarity. The procedures used to generate D realizations in this study are consistent
with those used by Bray et al. (2018). The final database used for developing semi-empirical D models contains
1,510,093 and 1,855,516 displacements for interface and intraslab earthquakes. Figures 4 and 5 show the trends of
D realizations against ky, Ts, M , Rrup, PGV , and Sa(1.3Ts) for interface and intraslab earthquakes, respectively.
Although the variability in D is significant, the trends of D against the slope properties, earthquake characteristics,
and ground motion IMs are still noticeable. In general, D decreases as ky increases or Rrup increases, and D tends
to increase with the increase of M , PGV , and Sa(1.3Ts), for both interface and intraslab earthquakes.
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(a)
(b)

(c)

Figure 4: Trends of displacement (cm) against a subset of candidate features for interface earthquakes.
The D contours represent the mean lnD values in selected bins.

(a) (b) (c)

Figure 5: Trends of displacement (cm) against a subset of candidate features for intraslab earthquakes.
The D contours represent the mean lnD values in selected bins.

The database used in this study for interface tectonic settings is over six times greater than that utilized by Bray
et al. (2018)), referred to hereinafter as BMT18. We found it instructive to assess the performance of the BMT18
against the generated displacements in our database. This assessment is presented in Figure 6, which shows the
BMT18 model residuals (i.e., Ln(Dobserved) − Ln(Destimated)). One can observe only a few instances where the
residuals are slightly different from zero. This highlights the robustness of the BMT18 model for interface tectonic
settings despite being developed with a much smaller (and independent) database than the one considered in this
study.
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Figure 6: Residuals between the D realizations obtained for interface earthquakes and estimated values
from the BMT18 model.

Even though the BMT18 model is robust, updated D models that reduce the small biases of the BMT18 for some
scenarios (e.g., large Sa(1.3Ts), and large PGV ) are formulated by using the more extensive seismic displacement
database developed in this study. In addition, considering that engineers often use the BMT18 model (formulated
for subduction interface) in subduction intraslab tectonic settings, Figure 7 shows the residuals of the BMT18 model
when applied to our subduction intraslab database. In this case, there are significant trends in slope properties and
ground motion IMs, which motivates the development of new D models for intraslab tectonic settings.
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Figure 7: Residuals between the D realizations obtained for intraslab earthquakes and estimated values
from the BMT18 model.

3 Development of traditional D models

3.1 Estimation of the probability of negligible D

In this study, we define as negligible (i.e., zero) the D values smaller than 0.5 cm, as small D values are of little
interest and can be considered negligible for all practical purposes. This definition is consistent with that used in
previous studies (e.g., Bray et al. (2018)). In addition, we use the framework of Bray and Travasarou (2007) and
model D as a mixed random variable according to Equation 1. This framework has also been considered for the
development of D models in previous studies (e.g., Bray and Macedo (2019), Bray et al. (2018)).

fD(d) = P̄ δ(d− 0.5) + (1− P̄ )f̄D(d) (1)

In Equation 1, fD(d) is the probability density function (PDF) of D, δ(d− 0.5) is the Dirac delta function that gives
a value of 1 when D = 0.5 and 0 otherwise, P̄ is the probability of a negligible D (i.e., D < 0.5), and f̄D(d) is the
PDF of D for D > 0.5. fD(d) has a finite probability mass to account for negligible D values and has a PDF for
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D > 0.5 that models the distribution of non-negligible D values.

Consistent with the mixed random variable characterization of D, we first develop a model for estimating the
probability of negligible displacements (i.e., P (D = 0)). Such a model is expected to depend on the slope’s strength
and stiffness and the seismic demand (Bray et al., 2018), which can be represented by ky, Ts, and an IM (Sa(1.3Ts)
was the considered IM after inspecting different degraded Sa options). Under these considerations, we use a logistic
regression (Hosmer Jr et al., 2013) to develop a model that estimates P (D = 0) as a function of ky, Ts, and Sa(1.3Ts).
The functional form of the predictive models is shown in Equation 2.

ln
P (D = 0)

1− P (D = 0)
= c1 + c2 ln ky + c3(ln ky)

2 + c4Ts ln ky + c5Ts + c6 lnSa(1.3Ts) (2)

where c1 to c6 are coefficients, which are shown in Table 1. Figures 8 and 9 compare the P (D = 0) developed in
this study against the P (D = 0) model in Bray et al. (2018) and P (D = 0) values estimated directly from the data
considering subduction interface and intraslab tectonic settings, respectively. Of note, the P (D = 0) model from
Bray et al. (2018) is not strictly applicable to subduction intraslab settings, but it is used here for reference. Figures
8 and 9 show how P (D = 0) increases with the increase of ky, and decreases with the increase of Sa(1.3Ts). In
addition, when Ts increases, P (D = 0) decreases initially, and then starts to increase as Ts keeps increasing. This is
because the sliding mass approaches a resonance condition when Ts increases from zero, leading to a lower P (D = 0);
then, as Ts keeps increasing, the sliding mass deviates from a resonance condition and P (D = 0) increases again.
The trends aforementioned for P (D = 0) are consistent with the previous findings in Bray et al. (2018), Bray and
Travasarou (2007), and Bray and Macedo (2019). In general, both the BMT18 model and the model developed in
this study are consistent. However, the model developed in this study fits better the P (D = 0) derived directly from
the data, especially in terms of Ts variations.

(a) (b) (c)

Figure 8: Comparison of the probability of negligible D estimated from the models developed in this study
and by Bray et al. (2018) with the D realizations for the interface database
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(a) (b) (c)

Figure 9: Comparison of the probability of negligible D estimated from the models developed in this study
and by Bray et al. (2018) with the D realizations for the intraslab database

Table 1: Estimated coefficients in Equation 2 for interface and intraslab earthquakes

coefficient interface intraslab

c1 3.46 for Ts < 0.6; 3.57 for Ts ≥ 0.6 5.22 for Ts < 0.6; 2.92 for Ts ≥ 0.6
c2 5.05 for Ts < 0.6; 9.39 for Ts ≥ 0.6 6.55 for Ts < 0.6; 14.72 for Ts ≥ 0.6
c3 0.15 for Ts < 0.6; 0.55 for Ts ≥ 0.6 0.43 for Ts < 0.6; 2.24 for Ts ≥ 0.6
c4 1.41 for Ts < 0.6; 1.64 for Ts ≥ 0.6 4.73 for Ts < 0.6; 5.45 for Ts ≥ 0.6
c5 -1.08 for Ts < 0.6; 5.37 for Ts ≥ 0.6 -0.87 for Ts < 0.6; 14.82 for Ts ≥ 0.6
c6 -5.13 for Ts < 0.6; -7.00 for Ts ≥ 0.6 -6.50 for Ts < 0.6; -8.47 for Ts ≥ 0.6

3.2 Predictive models for estimating non-negligible D

Now we develop a model estimating nonzero D values. Towards this end, we use a functional form that is similar to
that used by Bray et al. (2018):

lnD = a0 + a1 ln ky + a2(ln ky)
2 + a3 ln ky lnSa(1.3Ts) + a4 lnSa(1.3Ts)

+a5(lnSa(1.5Ts))
2 + a6Ts + a7(Ts)

2 + a8M + a9 lnPGV + ϵ
(3)

in which a0 to a9 are model coefficients and ϵ is a Gaussian random variable with zero mean and standard deviation
of σ. Sa(1.3Ts) is selected as it leads to the lowest standard deviation compared to other Sa, and PGV is added to
the functional form as we observed residuals for large PGV values when excluding this term. A truncated regression
(Greene, 1981) using the principle of maximum likelihood is used to evaluate the coefficients in Equation 3. Table 2
presents the estimated model coefficients. The values of the coefficients a0, a6, a7, and a9 are modeled as dependent
on the values of Ts and PGV based on residual analyses. It can be observed that most of the coefficients in the D
models for subduction interface and intraslab earthquake zones show differences, highlighting the different scaling of
D across these different tectonic settings. In addition, the standard deviation of the intraslab D model is smaller
than that of the interface model, and both models have a standard deviation that is lower than that of the BMT18
model (i.e., 0.73 in ln units). In the case of the interface models, the decrease of the standard deviation is partially
attributed to the use of an additional IM, i.e., PGV . Figures 10 and 11 show the residuals of Equation 3 (i.e., the
difference between lnD in the data and lnD predicted by Equation 3) in terms of parameters of interest for both
interface and intraslab tectonic settings. The residuals show negligible bias and no significant trends, highlighting
the appropriateness of the developed D models.
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Table 2: Estimated coefficients in Equation 3 for interface and intraslab earthquakes

coefficient interface intraslab

a0 -5.62 for Ts < 0.1; -6.20 for Ts ≥ 0.1 -5.91 for Ts < 0.1; -6.34 for Ts ≥ 0.1
a1 -3.26 -2.36
a2 -0.36 -0.22
a3 0.48 0.26
a4 2.62 1.97
a5 -0.12 -0.02
a6 -5.25 for Ts < 0.1; 2.06 for Ts ≥ 0.1 -3.89 for Ts < 0.1; 2.31 for Ts ≥ 0.1
a7 0 for Ts < 0.1; -0.73 for Ts ≥ 0.1 0 for Ts < 0.1; -0.90 for Ts ≥ 0.1
a8 0.19 0.38
a9 0.62 for PGV < 10; 0.73 for PGV ≥ 10 0.68 for PGV < 30; 0.72 for PGV ≥ 30
σ 0.65 0.53

Figure 10: Residuals of the semi-empirical D model for interface earthquakes against ky, Sa(1.3Ts), M ,
Ts, and PGV
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Figure 11: Residuals of the semi-empirical D model for intraslab earthquakes against ky, Sa(1.3Ts), M ,
Ts, and PGV .

3.3 Model Trends

The trends of the developed D models are compared with the BMT18 model trends in Figure 12 considering only
the interface tectonic settings as the BMT18 model is not applicable to intraslab settings. Figure 13 also shows
general trends for the intraslab model developed in this study. The earthquake characteristics and site conditions
considered in these plots are M = 9, Rrup = 35 km, ZTOR = 30 km (depth to the top of the earthquake rupture),
and Vs30 = 760 m/s for interface earthquakes, and M = 8, Rrup = 100 km, ZTOR = 100 km, and Vs30 = 760 m/s for
intraslab earthquakes. Sa(1.3Ts) is estimated using the ground motion model (GMM) developed by Abrahamson et al.
(2018) and PGV is estimated using the conditional GMMs developed by Liu and Macedo (2021) for subduction zone
earthquakes. For Figures 12(c), 12(d), 13(c), and 13(d), Rrup is adjusted such that Sa(1.3Ts) and PGV estimated
from the GMMs are consistent with the values indicated in these figures. The trends of the models developed in
this study are indicated by the solid curves, while the dashed curves represent the trends of the BMT18 model. The
general trends in subduction interface tectonic settings are: D increases initially with Ts, reaches a maximum value,
and then decreases as Ts keeps increasing; D decreases when ky increases, as expected; and D increases with the
increase of Sa(1.3Ts), PGV , and M . The trends between the subduction interface D model developed in this study
and the BMT18 models are generally consistent, but there are also some differences. For example, for Ts > 0.5 s and
M = 9, the BMT18 model produces lower D estimates. In addition, when Sa(1.3Ts) is large (e.g., Sa(1.3Ts) = 1.4
g), the BMT18 model produces lower estimates of D, while for M = 9 and Ts = 0.1, it generates higher D estimates.
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(a) (b)

(c) (d)

Figure 12: Comparison of the model developed in this study (solid curves) against the BMT18 model
(dashed curves) considering interface tectonic settings and variations in ky, Ts, Sa(1.3Ts), PGV , and M .

The general trends for D in terms of ky, Ts, M , and S(1.3Ts) discussed before for subduction interface settings also
apply for subduction intraslab settings (i.e., Figure 13). However, the D estimates from the D model are significantly
different from those from the BMT18 model if the same inputs were used (not shown in Figure 13 to avoid confusion).
These differences result from the fact that the BMT18 model was developed based on the ground motion recordings
from interface earthquakes. This observation has a practical implication as engineers often assume that the BMT18
model is also applicable in subduction intraslab tectonic settings. However, as discussed in this section, this is not the
case (see also the residuals in Figure 7). Hence, we recommend using the subduction intraslab D model developed
in this study in subduction intraslab tectonic settings.
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(a) (b)

(c) (d)

Figure 13: Trends of the model developed in this study considering intraslab tectonic settings and variations
in ky, Ts, Sa(1.3Ts), PGV , and M .

4 Development of ML-based D models

In this section, we develop several D models using ML approaches, including ridge regression, principal component
regression, partial least square regression, random forest, gradient boosting decision tree, support vector regression,
and residual neural network. We consider 23 candidate features from slope properties, earthquake parameters, and
ground motion IMs for the estimation of D, which are presented in Table 3.

17



Table 3: Features considered in this study for the development of semi-empirical D models*

Feature Definition

ky Slope’s yield coefficient
Ts Initial fundamental period of the sliding mass (s)
M Earthquake moment magnitude
Rrup Closest distance from the station to the

earthquake rupture (km)
Vs30 Time-averaged shear-wave velocity in the top 30

m of soil (m/s)
Tm Mean period of a ground motion
Ia Arias intensity (m/s)
D595 Significant duration (s) of the ground motion
CAV Cumulative absolute velocity (m/s)
PGA Peak ground acceleration (g)
PGV Peak ground velocity (cm/s)
Sa(nTs) Spectral acceleration (g) at a degraded period

equal to nTs (n = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8, 2.0, 2.5, and 3.0)

*As illustrated in subsequent sections, all the features are used in forward stepwise regression. Only boldfaced features are

used in LASSO and random forest.

We follow the conventional approach in ML to pre-process the database described in Section 2 before the development
of D models. We transform the D values and some of the features (i.e., ky, Rrup, Vs30, and ground motion IMs) into
natural log space and standardize all features to have 0 means and unit standard deviations to facilitate the use of
feature selection and regression algorithms. Then we split the database into a training-validation set and a test set.
The training-validation set (which contains 85% of the entire database) is used to train the parameters of a given
model, whereas the test set (15% of the data) is used to evaluate the model’s performance. The training-validation set
is further split into ten cross-validation folds for hyperparameter optimization. More details on the cross-validation
are provided in the section “Hyperparameter Optimization and Cross-Validation”.

4.1 Feature selection

We use the forward stepwise regression (FSR, Friedman et al. (2001)), least absolute shrinkage and selection operator
(LASSO, Tibshirani (1996)), and random forest (Breiman (2001)) algorithms to select the efficient features from the
23 candidate features listed in Table 3. The selection of features is performed in two steps: first, all features are
inspected using FSR, and then a subset is considered for LASSO and random forest, as discussed subsequently. The
performance of the feature selection algorithms is evaluated using the mean squared error (MSE) obtained using 10-
fold cross-validation on the training-validation set. A brief introduction to these algorithms and the feature selection
results is presented in the subsequent sections.

4.1.1 Forward Stepwise Regression

FSR is a greedy search algorithm that is commonly used for feature selection. This algorithm starts with a model
of zero features and includes one of the remaining features at each step according to some predefined criteria. The
feature whose inclusion yields the largest statistically significant improvement to explain D is added to the model.
This process is repeated until none of the remaining features improves the explanation ofD to a statistically significant
extent. Compared to exhaustive search algorithms with optimal solutions that are computationally intractable (often
discussed in terms of the non-deterministic polynomial-time hardness, NP-hard, see details in Hochba (1997)), FSR
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generates a suboptimal solution that is more computationally efficient. Note that the standard FSR algorithm keeps
adding a feature to the feature subset obtained from previous steps. To increase the flexibility of the feature selection
process, we use a modified floating FSR algorithm, in which features can also be removed if the removal improves
the fit, allowing a more robust selection of features (Raschka, 2018). Figure 14 shows the results obtained using the
FSR algorithm. The prediction accuracy is represented by the negative MSE averaged over ten cross-validation folds.
Interestingly, for both interface and intraslab tectonic settings, the prediction accuracy increases with the addition
of features but soon reaches a threshold of -0.14 after approximately five features. This threshold corresponds to
potential data “noises” (e.g., outliers, randomness, etc.) and nonlinearity in the database. Using the results in Figure
14 from FSR, we select five features since the improvement of the prediction accuracy is not significant for additional
features. These features are PGV , ky, Ts, Sa(1Ts), and M for interface earthquakes, and ky, PGV , Sa(1.3Ts),
Sa(1Ts), Ts for intraslab earthquakes.

(a) (b)

Figure 14: Prediction accuracy as a function of number of features in the FSR algorithm for (a) interface
and (b) intraslab tectonic settings

4.1.2 LASSO

LASSO is a linear regression algorithm with an applied penalty on its coefficients to learn a model with sparse features.
Because LASSO prefers solutions with fewer non-zero coefficients, it can reduce the number of features used in a
regression model. Mathematically, LASSO is a modification of the standard linear model with L1 regularization on
the objective function as shown in Equation 4.

min
1

2n
||Xθ − y||22 + α||θ||1 (4)

where n is the total number of data, X is an n by d matrix with d features, y is an n-dimensional column vector
of the response variable (i.e., D), θ is a d-dimensional row vector of coefficients, and α is a hyper-parameter, which
controls the magnitude of the coefficients. ||θ||1 indicates the ℓ1 norm of vector θ and the term α||θ||1 is called the L1
regularization. LASSO adjusts the value of α to produce the most parsimonious model (model with least features),
constrained by minimizing the residual sum of squares. Increasing α leads to a sparser model with fewer coefficients
as some coefficients become zero and are eliminated from the model. In this study, α is optimized through a grid
search method and the value corresponding to the minimum mean squared error (MSE) averaged across all folds in
a 10-fold cross validation is selected. As discussed before, a subset of features (highlighted in Table 3 are used in
LASSO as several of them are correlated (see the discussion in Section - Discussion on selected features). Figure
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15 shows the top 10 features with the largest absolute values of the coefficients selected by LASSO for the interface
and intraslab databases. Because the input features are standardized, their coefficients represent their importance
in LASSO. The five features with the highest importance in the interface database are ky, Sa(1.3Ts), PGV , Sa(1Ts)
and Ts, whereas in the case of the intraslab database these features are ky, Sa(1Ts), PGV , Sa(1.3Ts) and Ts.

(a) (b)

Figure 15: Importance of the top 10 candidate features estimated using the LASSO algorithm for (a)
interface and (b) intraslab earthquakes

4.1.3 Random Forest

Random forest randomly splits the data and feature space into several subsets to generate multiple decision trees
that reduce the overall variance and return the average results of the constructed trees. In this algorithm, the
importance of each feature can be represented by the decrease in the impurity of the split in each tree. Since the
random forest algorithm contains several hyperparameters, we use a cross-validated randomized search method to
find the combination of hyperparameters that give the minimum MSE averaged over all cross-validation folds (see
section ”Hyperparameter Optimization and Cross-Validation” for details on randomized search). More details on
random forest are provided in Breiman (2001) and later sections.

Similar to LASSO, a subset of features is also considered in random forest for feature selection. Figure 16 shows the
top 10 features with the highest importance selected by random forest for interface and intraslab databases. The
highest five features are PGV , ky, Sa(1Ts), Sa(1.3Ts), and Ts, and ky, PGV , Sa(1Ts), Sa(1.3Ts) and Ts for interface
and intraslab tectonic settings, respectively.
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(a) (b)

Figure 16: Importance of the top 10 candidate features estimated using the random forest algorithm for
(a) interface and (b) intraslab earthquakes

The five most important features selected by the three algorithms to explain D are generally consistent. For both
interface and intraslab earthquakes, ky, PGV , Sa(1.3Ts), Sa(1Ts), and T are selected by LASSO and random forest,
and FSR also selects M as an important feature. Thus there are six potential features to be considered; however,
as previously discussed, FSR indicates that there is not a significant increase in performance after five features.
Considering that Sa(1.3Ts) and Sa(1Ts) are highly correlated (Macedo and Liu, 2021), it is more efficient to include
only one of them as the IMs are expected to carry similar information to explain D. Thus, we keep Sa(1.3Ts) instead
of Sa(1Ts) and also consider M . Sa(1.3Ts) is kept as it is expected to better represent the likely degradation of the
initial fundamental period due to soil nonlinearity (Bray and Macedo, 2019). Thus, the final set of selected features
is ky, Ts, M , Sa(1.3Ts), and PGV . In terms of prediction accuracy, the selection of these five features has basically
the same performance as the features selected directly by the three ML-based methods discussed in this section.

4.2 Discussion on selected features

As previously mentioned, in the case of LASSO and random forest, we do not use features that carry similar
information to avoid multicollinearity, which follows the same philosophy used in previous studies (e.g., Saygili and
Rathje (2008)). In particular, Ia, CAV , and Tm are not considered. Ia is excluded because it is highly correlated
with PGA and because duration (D595) is already in the subset. Another motivation for excluding Ia is that its
predictability is inferior compared to other IMs (Bray and Macedo (2017)) as its standard deviation in ln units is
in the order of 1. CAV is not considered for the same reasons (i.e., high correlation with PGA and the inclusion
of D595); in addition, as discussed in Macedo et al. (2020a) and Liu and Macedo (2021), CAV is a high frequency
parameter, similar to PGA. Lastly, Tm is not considered as PGV and spectral acceleration IMs, which also provide
information on frequency content (Saygili and Rathje, 2008; Bray and Travasarou, 2007), are already considered.
Of note, Tm has been used in some previous studies but mainly in the context of modifying rigid-based models to
incorporate the flexibility of a sliding mass in the context of uncoupled assessments (e.g., Rathje and Antonakos
(2011), Tsai and Chien (2016)). The models developed in this study are based on coupled analyses.
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The final selected features are spectral acceleration at a degraded period (i.e., Sa(1.3Ts)), PGV , M and slope
properties (ky and Ts). As discussed by Bray and Travasarou (2007), a spectral acceleration at a degraded period
does directly capture the important ground motion characteristics of intensity and frequency content in relation to
the fundamental period of the potential sliding mass, and it indirectly partially captures the influence of duration
in that it tends to increase as earthquake magnitude (i.e., duration) increases. In addition, M and PGV bring
additional information on frequency content and duration. It is also worth highlighting that IMs based on spectral
accelerations and PGV have the advantage that there are available robust ground-motion models (GMMs) for their
estimation in subduction zones. For instance, the NGA-Sub project (Bozorgnia et al. (2021)) has developed a suite
of models for spectral accelerations and PGV that can facilitate performance-based applications. Lastly, the selected
IMs are amenable to be implemented in performance-based engineering assessments using vector PSHA (e.g., Liu
et al. (2021)).

4.3 ML-based models for estimating non-negligible D

In this section, we propose seven different ML-based predictive D models. The ML-based procedures discussed
in this section are selected based on their popularity in the ML community (Bonaccorso, 2018) and also based
on the recommendations by Macedo et al. (2021). The five features selected in the previous section are used as
inputs to the considered ML-based procedures, which are described in the following sections. Specifically, the ML
procedures include ridge regression, principal component regression, partial least square regression, random forest,
gradient boosting decision trees (GBDT), support vector regression (SVR), and residual neural network (ResNet). It
is essential to highlight here that some of these procedures (i.e., principal component regression, partial least square
regression, GBDT, and random forest) have been used before in shallow crustal tectonic settings (Wang et al., 2020;
Macedo et al., 2021). In contrast, we are not aware of previous efforts using ridge regression or SVR to develop D
models. In addition, the ResNet model used in this study is highly customized and tailored (e.g., residual mapping,
batch normalization), as discussed subsequently.

4.3.1 Hyperparameter Optimization and Cross Validation

The ML procedures used in this study contain one or more hyperparameters that need to be tuned. To facilitate
a robust and consistent process for optimizing hyperparameters, we use two methods - grid search and randomized
search - that aid in the optimization. In the grid search method, grids of different hyperparameter values are
created, and the performance of each grid point is evaluated. This method is applied to ML procedures that are
computationally efficient and contain few hyperparameters (e.g., ridge regression, principal component regression,
partial least square regression, and support vector regression). In the case of ML procedures that use a large number
of hyperparameters or are computationally expensive, we adopt the randomized search method. Like the grid
search, the randomized search also creates grids of different hyperparameters values. However, instead of evaluating
the performance of all the grid points, only the performance of a fixed number of uniformly sampled grid points
is evaluated. In addition, we use 10-fold cross-validation to assess the performance of different hyperparameters.
Specifically, the training-validation set is first split into ten folds with similar amounts of data. Then for each set of
hyperparameters, the ML model is trained on nine folds of the data and validated on the remaining fold to calculate
the MSE. This process is repeated 10 times such that the model is tested on each fold, and the MSE averaged over
all folds is used as the performance indicator. The hyperparameter values corresponding to the lowest averaged MSE
are selected for the ML model. Details of hyperparameter settings for specific algorithms are summarized in each
subsequent section and in Table 4.

4.3.2 Ridge Regression with Polynomial Feature Expansion

Most previous studies have extensively used polynomial models as the functional forms that develop semi-empirical
D models. However, the selection of polynomial terms has typically been based on semi-manual procedures and
residual analyses, which are, to some extent, qualitative. As opposed to manually selecting polynomial terms, in
this study, we keep all second-order polynomial terms for a D model (i.e., constant, interaction, squared terms,
etc.) and use the ridge regression technique to reduce the risk of overfitting. We first transform the five features
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into 20 polynomial features to form a linear model, then we standardize each feature and apply the ridge penalty
(L2-regularization) to solve the regression coefficients. The ridge regression is quite similar to LASSO and uses the
objective function in Equation 5.

min
1

2n
||Xθ − y||22 + α||θ||2 (5)

where ||θ||2 indicates the ℓ2 norm of vector θ and the term α||θ||2 is called the L2 regularization. It can be observed
from Equation 5 that the only difference between LASSO and ridge regression is the regularization term (α||θ||2). In
LASSO, the ℓ1 norm of θ is used while the ℓ2 norm is used in the ridge regression. The α term in the ridge regression
is known as the complexity parameter, and it controls the amount of shrinkage in the coefficients. When α increases,
the coefficients shrink and the resulting model is less prone to overfitting even when some features are correlated
(e.g., PGV and Sa(1.3Ts)).

We developed two D models using the ridge regression technique: one with five selected input features and another
with four features (i.e., excluding PGV ). Both models have polynomial functional forms and hence can be used to
represent traditional D models using one or two IMs. We optimized the hyperparameter α using the grid search
method previously discussed. For this purpose, a grid of α values ranging from 10−8 to 1 with a 10−1 increment was
considered. The best α value estimated from 10-fold cross-validation for interface and intraslab tectonic settings is
presented in Table 4.

4.3.3 Principal Component Regression

Principal component regression (PCR, Jolliffe (1982)) is a method used to model a response variable when the
number of input variables is large and/or when those variables are highly correlated. PCR performs dimensionality
reduction on the data using the principal component analysis (PCA). Specifically, principal components are first
constructed by projecting the input and response variables into a new space. Then, linear regression is performed
between those principal components and the response variable. PCR contains a hyperparameter that determines the
number of principal components used in PCA. We apply the grid search method to optimize the number of principal
components. A grid of values (i.e., 1, 2, 3, 4, and 5, since the maximum number of features is five) is considered,
and the results indicate that four components are optimal for both the interface and intraslab databases.

4.3.4 Partial Least Square Regression

Partial least square regression (PLSR) (Geladi and Kowalski, 1986) is a method like PCR, which also performs
dimensionality reduction on the data using PCA. Similarly, PLSR also uses linear regression to model the relationship
between the principal components constructed using PCA and the response variable. We apply the grid search
method with values of 1, 2, 3, 4, and 5 to optimize the number of principal components to be used. The optimized
number of components is 3 and 2 for the interface and intraslab databases, respectively. It can be seen that PLSR
requires a smaller number of principal components than PCR. This difference between PLSR and PCR originates
from the methodologies for constructing principal components. PCR explores options for the appropriate principal
components that reflect the variability in the input variables; however, PLSR constructs the components to explain
the variations in both the input and the response variables. Since PLSR takes into account the variability in the
response variable, it often leads to a more parsimonious model with fewer components (e.g., Geladi and Kowalski
(1986)).

4.3.5 Random Forest

Random forest is an ensemble learning method that combines the prediction of multiple estimators (decision trees)
to decrease the variance of the resulting model without increasing its bias. The random forest algorithm utilizes a
modified bootstrap aggregating algorithm to generate multiple tree learners. For each tree learner, a subset of the
data is randomly sampled with replacement (bootstrapping) for training, then at each split of the tree, a subset of the
features is randomly selected. Finally, the prediction results are averaged over all tree learners (aggregating). This
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process is schematically illustrated in Figure 18 for our data. Because the data and features are randomly sampled,
the tree learners are uncorrelated, and the random forest algorithm is less sensitive to the noise in the training set.

Figure 17

Figure 18: Schematic illustration of the random forest algorithm with 100 trees. The training data is
firstly sampled 100 times with replacement; then for each sample data, a subset of features are randomly
sampled (bootstrapping); next, 100 decision trees are built for the 100 data samples independently; finally
the predictions of D values from the 100 trees are averaged (aggregating).

The random forest algorithm contains a dozen of hyperparameters to tune. In practice, only three of them are
considered crucial to the performance of random forest (Probst et al., 2019), namely, the number of trees, the
maximum depth of each tree, and the maximum number of features to consider when splitting a node (more detailed
definitions on these hyperparameters are available in Probst et al. (2019)). We create a grid with the number of trees
ranging from 50 to 400 with interval increments of 10; the maximum depth ranging from 20 to 100 with interval
increments of 5 (we also included the option of unlimited depth); and the maximum number of features ranging
from 1 to 5 with an interval increment of 1. Under these considerations, we applied the randomized search method
previously described with 100 samples, finding that the best combination of hyperparameters for the subduction
interface and intraslab tectonic settings were 320 and 350 trees, maximum depths of 65 and 50, and a maximum
number of features of 2 and 3, respectively.

4.3.6 Gradient Boosting Decision Trees

Gradient boosting decision trees (GBDT, Friedman (2001)) is another ensemble learning method that is similar to
a random forest. The significant difference between GBDT and random forest is the training procedure of the trees.
GBDT combines multiple weak tree learners into a single strong learner in an iterative manner. The GBDT model
starts with a weak tree learner. A new tree learner is added at each iteration using the residual between the previous
learner and the observed response variable. The algorithm terminates when reaching a prescribed maximum number
of iterations or when the loss function (see Chen and Guestrin (2016)) does not decrease significantly. Finally, the
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predictions are summed up by all tree learners.

We use the randomized search method to optimize the hyperparameters in the GBDT method. The considered
hyperparameters are the maximum depth of each tree, the boosting learning rate, the subsample ratio, the subsample
ratio of columns when constructing each tree, the subsample ratio of columns for each level, and the number of trees
(for more details on the definition of these hyperparameters, refer to Chen and Guestrin (2016); Friedman (2001)).
The corresponding optimal values for these parameters are 35, 0.1, 0.6, 0.6, 0.7, and 650; and 30, 0.1, 0.7, 0.6, 0.6,
and 700 for interface and intraslab tectonic settings, respectively.

4.3.7 Support Vector Regression with Kernel Approximation

The support vector regression (SVR, Smola and Schölkopf (2004)) is an extension of the support vector machine
method (Cortes and Vapnik, 1995) often used in classification problems. In SVR, a hyperplane is fitted to the data
after defining an acceptable error threshold. In contrast to other conventional regression algorithms that use the
MSE as the loss function, SVR’s objective is to minimize the model coefficients. At the same time, the error term
is imposed as a minimization constraint (Smola and Schölkopf, 2004). The optimization problem solved by SVR is
shown in Equations 6 and 7.

min
1

2
||θ||22 + C

n∑
i

|ξi| (6)

subject to |yi − θxi| ≤ ϵ+ |ξi| for i = 1 : n (7)

where θ is a d-dimensional vector with d being the total number of features, n is the total number of observations
in the data, yi is the i-th observation of the response variable, and xi is a vector that contains the features that
go along with the i-th observation. ϵ is a hyperparameter that controls the maximum error margin between the
observed response variable and the fitted hyperplane. ξi is the slack variable for the i-th observation that represents
its deviation from the error margin. C is a regularization hyperparameter representing the tolerance for observations
outside the error margin ϵ. The input features for SVR are often transformed into a high-dimensional space through
a kernel trick (Amari and Wu, 1999) or reproducing the kernel Hilbert space (Wahba et al., 1999). However, a kernel
trick (especially for a nonlinear kernel) is not scalable for a large database like the one used in this study. Hence,
we use the Nystroem method (Williams and Seeger, 2001), which is a general method for low-rank approximations
of kernels, with a linear kernel SVR to approximate the nonlinear kernel SVR. The Nystroem method uses a subset
of the large training data as the basis to approximate a kernel mapping from the basis onto the original large
training data (more details are in Williams and Seeger (2001)). Hence, the computational cost of SVR is affected
by the size of the subset, which is much smaller than the original training data. The Nystroem approximation uses
three hyperparameters: the kernel, gamma (kernel-specific parameter), and the target dimension of the transformed
features. After an extensive examination of different combinations of hyperparameter values, we find the 2nd-order
polynomial kernel with a gamma (which is related to the radius of the influence of a single training data point) of
0.2 and 300-dimensional transformed features are efficient for both interface and intraslab tectonic settings. The
hyperparameters ϵ and C are optimized using the grid search method. We consider a grid of ϵ ranging from 0 to 1
with a 0.1 interval and a grid of C ranging from 0.1 to 10 with a 0.2 interval. The optimal values of ϵ and C found by
the grid search method are 0.4 and 0.7; and 0.3 and 0.7 for the interface and intraslab tectonic settings, respectively.

4.3.8 Residual Neural Network

Artificial neural networks have been extensively used in classification problems with unstructured databases in
computer vision and natural language processing (LeCun et al., 1995, 2015; He et al., 2016; Mikolov et al., 2010).
However, the application of neural networks in regression problems is less frequent than in classification problems.
We are only aware of the study by Cho et al. (2022) that examined the use of neural networks (by using a multi-layer
perceptron) for estimating D. In this study, we use the fully connected (FC) residual neural network (ResNet, He
et al. (2016)) to develop regression models for estimating D, and we also discuss differences with the Cho et al. (2022)
study. The proposed architecture of the neural network used in this study is shown in Figure 19.
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(a) (b)

Figure 19: Illustration of the architectures of the residual neural network (‘X5’ and ‘X6’ in (a) indicate
that block is duplicated by 5 and 6 times, respectively).

In contrast to a vanilla FC neural network such as the multi-layer perceptron (e.g., Cho et al. (2022)), we introduce
several modifications to the neural network to improve its prediction performance. The ResNet contains one input
layer, 31 hidden layers, and one output layer, as shown in Figure 19(a). The input layer represents the five features
previously selected, the output layer is an FC layer that combines the output from the hidden layers and outputs
a scalar (i.e., D values), and the hidden layers contain 31 FC blocks. Figure 19(b) illustrates the architecture of
an FC block with 1000 neurons. This block consists of an FC layer, a batch normalization (BN) layer (Ioffe and
Szegedy, 2015), a skip connection or shortcut, and an activation function. The FC layer has 1000 neurons, and
each neuron combines the output from the previous layer with its weight parameters and generates a scalar; hence,
the output of this FC layer is a 1000-dimensional vector. Then the BN layer normalizes (re-center and re-scale)
the 1000-dimensional vector before it goes through the activation function. The activation function is used to add
nonlinearity to the neural network. As its name suggests, the skip connection is used to skip the FC and BN layers
such that the FC block can learn the residual mapping. To illustrate this point, suppose we denote the input as x,
the function represented by the FC and BN layers as F (·), and the hypothesis that needs to be learned from the FC
block as H(·). A FC block without a skip connection aims to find F (·) that is as close as possible to H(·) (loosely
speaking H(x) = F (x)). In contrast, the skip connection directly feeds the input x into the activation function and
the FC block learns an F (·) that satisfies H(x) = F (x) + x. Hence, F (x) = H(x) − x, and the FC and BN layers
in an FC block learn from the residuals between H(x) and x, which is denominated as the residual neural network
(ResNet) that we are using. If the input x has a different dimension than the output of the FC layer (e.g., the first
block has an input dimension of 5 and an output dimension of 1000), a linear projection can be used to match the
dimensions according to:

H(x) = F (x) +Wsx (8)

where Ws is a matrix that acts as a dimension reduction agent to match the dimension of x with F (x).

To complete the ResNet architecture, we examine different layouts and choices for the activation function using our
database. We divide the training-validation set into a training set (80% of the data) and a validation set (20% of the
data) and evaluate the performance of different ResNet architectures based on the MSE on the validation set. We
find that: (1) a deep neural network performs better than a shallow neural network (e.g., one based on perceptrons);
(2) adding the skip connection helps to stabilize the training process; (3) the use of BN layers significantly improves
the performance; (4) the use of BN layers before the activation layer has better predictive performance than the
option of adding BN layers after the activation in estimating D, (5) the use of dropouts (randomly drop some of the
neurons to prevent the co-adaptation of neurons) results in a degradation of the network performance possibly due
to the probabilistic nature of dropouts, (6) after examining different activation functions (sigmoid, tanh, rectified
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linear unit - ReLU, and leaky ReLU), we found that ReLU has the best performance.

The most significant differences between the neural network developed in this study and that developed in Cho et al.
(2022), which is the only previous study we are aware of using neural networks for estimating D, are three-fold. First,
our neural network is deep. In contrast to perceptrons with few layers, our neural network contains 33 layers with 6.7
million parameters. By including more layers, the neural network can learn features at various levels of abstraction
and can approximate more complicated nonlinear functions, enhancing its generalization ability (LeCun et al., 2015;
Bishop, 2006). In contrast, a neural network with few layers requires much more (exponentially larger) neurons in each
layer to achieve similar performance as compared with a deep neural network, which is computationally inefficient.
Second, we include a batch normalization layer before each activation function. This mitigates the internal covariate
shift often observed in feed-forward neural networks (e.g., Ioffe and Szegedy (2015)), which occurs when the output
of the previous layer is used as the input of the next layer. Hence, when the weight parameters of a previous layer
are updated, the distribution of their output is also changed, affecting the output distribution of subsequent layers
and making the training process unstable and slow. Batch normalization helps mitigate these issues, stabilizing and
accelerating the training process of a neural network. In addition, batch normalization makes the neural network
less sensitive to the learning rates and initialization of weights, thus, simplifying the hyperparameter tuning process.

Lastly, we include skip connections in each layer. It has been well recognized that the training process becomes
much more difficult when the number of layers is large in a neural network due to the vanishing gradient problem
(Hochreiter, 1998), in which the update of weight parameters is significantly slower due to very small gradients (i.e.,
partial derivatives of the loss function against weight parameters). Very deep neural networks such as the ResNet
network used in this study could show a non-decreasing training error if skip connections are not considered. Skip
connections enable the neural network layers to learn identity mapping (i.e., skip some layers) and mitigate the
vanishing gradient problem.

The previous study by Cho (2020b) pointed out that the performance of neural networks was insensitive to the
number of layers. To investigate this observation, we have considered deep and single-layer networks with the same
number of neurons (100+, 1000+, and 10000+) but excluding skip connections and batch normalization (similar to
the networks used by Cho (2020b)). The performance (MSE on the validation set) we observed was not as robust
as the ResNet model. In addition, we did not observe a significant difference in the performance for the deep and
shallow networks, which is consistent with the findings in Cho et al. (2022) where neither skip connections nor batch
normalization were considered. The comparable performance of deep and shallow networks observed by Cho (2020b)
may result from potential challenges in the training process caused by the internal covariate shift and vanishing
gradient problem. It is worth emphasizing again the value of the batch normalization and skip connections used in
this study to improve the performance of deep networks.

We use the grid search method to optimize the hyperparameters of the ResNet model. Because the training of
ResNet is computationally expensive, instead of performing 10-fold cross-validation, we split the training-validation
set into a training set and validation set. We train the ResNet on the training set and evaluate the performance
of the hyperparameters based on the MSE on the validation set. The considered grids of hyperparameters include
a learning rate (the tuning parameter in the optimization algorithm that determines the step size at each iteration
while moving towards minimizing the loss function) ranging from 10−1 to 10−6 with a 10−1 interval, a batch size
in [30, 300, 500, 1000, 5000, 10000, 30000], and different optimizers (e.g., stochastic gradient descent, Adam, and RM-
SProp, see LeCun et al. (2015) for more details). We found that a batch size of 1000 and the Adam optimizer with
a learning rate of 0.01 yield the best performance (lowest MSE on the validation set) for interface and intraslab
earthquakes. To facilitate the training process at larger epochs (one epoch is when the entire training data is passed
forward and backward through the neural network once), the learning rate is decayed by 10% every 100 epochs.
Rather than training the ResNet for a fixed number of epochs, we apply an early stopping criterion of 100 epochs,
in which the ResNet terminates training if its performance is not significantly improved over the last 100 epochs.
Under these considerations, the training of ResNet terminates at 1210 epochs and 1510 epochs in the interface and
intraslab databases, respectively.

4.4 Overfitting Prevention

Overfitting usually occurs when a model contains more adjustable parameters than an optimal model. (Bishop,
2006). It is nontrivial to directly compare the complexity of a model with the optimal model, as the latter is not
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known a-priori. However, some measures can be taken to prevent overfitting. We adopt three major strategies
during the training of the proposed ML models to minimize the risk of overfitting: regularization, hyperparameter
optimization, and early stopping. As discussed in previous sections, for the ridge regression and SVR models,
we apply regularization to control the complexity of the derived models. The regularization parameters in these
models are optimized based on the values that yield minimal cross-validation error. For the principal component and
partial least square regression, we select the best number of principal components based on their best performance
in cross-validation. In terms of the random forest and GBDT models, we reduce their potential for overfitting by
tuning hyperparameters, e.g., number of trees, maximum tree depth, etc. These hyperparameters affect the model
complexity and are optimized to the values producing minimal cross-validation error. In addition, we also allow the
option of automatically pruning some trees to reduce the model complexity further. Lastly, for the ResNet model,
we apply early stopping criteria (see Section - Residual Neural Network) to prevent the overtraining of the neural
network. We have also examined the dropout approach to reduce the number of neurons, which seemed unnecessary
(see Section - Residual Neural Network). As a final check of overfitting, we have monitored the training and validation
error of the models during cross-validation and their test errors. Table 4 summarizes the settings of hyperparameters
considered for each ML-based D model.

Table 4: Considered range and optimal values of the hyperparameters for different ML-based D models
developed in this study

Model Hyperparameter range
(interface and intraslab)

Optimized hyperparameters

Ridge Regression α = {10−8, 10−7, . . . , 10−1} 10−6 for both interface and in-
traslab

Ridge Regression
with one IM (Sa(1.3Ts)) α = {10−8, 10−7, . . . , 10−1} 10−6 (interface) and 10−5 (in-

traslab)

PCR number of components = {1, 2, 3, 4, 5} 4 (interface) and 4 (intraslab)

PLSR number of components = {1, 2, 3, 4, 5} 3 (interface) and 2 (intraslab)

Random Forest number of trees = {50, 60, 70, . . . , 400},
maximum depth =
{20, 25, 30, . . . , 100,∞},
maximum number of features =
{1, 2, 3, 4, 5}

number of trees: 320 (inter-
face) and 350 (intraslab),
maximum depth: 65 (inter-
face) and 50 (intraslab),
number of features: 2 (inter-
face) and 3 (intraslab)

GBDT maximum depth = {5, 10, . . . , 50},
learning rate = {10−5, 10−4, . . . , 100},
subsample ratio = {0.1, 0.2, . . . , 1},
subsample ratio for column (each level) =
{0.1, 0.2, . . . , 1},
subsample ratio for column (each tree) =
{0.1, 0.2, . . . , 1},
number of trees = {100, 150, . . . , 800}

maximum depth = 35 and 30,
learning rate = 0.1 and 0.1,
subsample ratio = 0.6 and 0.7,
subsample ratio for column
(each level) = 0.6 and 0.6,
subsample ratio for column
(each tree) = 0.7 and 0.6,
number of trees = 650 and 700,
for interface and intraslab, re-
spectively

SVR ϵ = {0, 0.1, 0.2, . . . 1},
C = {0.1, 0.3, 0.5, . . . , 10}

ϵ = 0.4 (interface),
ϵ = 0.3 (intraslab),
C = 0.7 (interface and in-
traslab)

ResNet learning rate = {10−6, 10−5, . . . , 10−1},
batch size =
{30, 300, 500, 1000, 5000, 30000}

learning rate = 0.01 and batch
size = 1000 for both interface
and intraslab

28



5 Performance of ML-based D models

In this section, we investigate the residuals, predictive performance, computational cost, trends, and case history
validation performance of the different ML-based and traditional models previously developed. Figure 20 shows the
residuals (in ln units) of the GBDT model against ky, M , Ts, Sa(1.3Ts), and PGV for the interface database. Figure
21 shows similar residual plots of the GBDT model for the intraslab database. It can be observed that there are
no trends in the residuals. Similar residual plots for the traditional D models were already presented in section 2
(Figures 10 and 11). Additional residuals plots for other ML models are shown in Appendix A.

Figure 20: Residuals (ln units) of the GBDT models against ky, M , Ts, Sa(1.3Ts), and PGV for the
interface database (The error bars show the mean values ± one standard deviation of the residuals in each
bin).
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Figure 21: Residuals (ln units) of the GBDT models against ky, M , Ts, Sa(1.3Ts), and PGV for the
intraslab database (The error bars show the mean values ± one standard deviation of the residuals in each
bin).

The predictive performance of the different ML and traditional models implemented in the previous sections is
represented by their root mean squared error (RMSE) on the test set. The RMSE can be calculated as:

RMSE =

√∑n
i=1(yi − fi)2

n
(9)

where n is the total number of data in the test set, fi is the D value for the ith data point predicted by the D models,
and yi is the actual D value for the ith data point. Table 5 presents the comparison of the predictive performance
of the derived ML models. The ridge regression models (with one or two IMs, as discussed in Section 4) are used to
represent generic traditional D models as they have polynomial functional forms. Compared to the ridge regression
models, most of the other developed ML-based models are able to capture better the complex relationship between
D, the slope properties, and IMs, showing a better predictive performance on test tests (i.e., lower RMSE values,
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see Table 5); hence, they outperform the expected performance of traditional models. The RMSE values of the
BMT18 model and the traditional models developed in this study (denoted as ML22) are also included in Table 5 as
a reference. BMT18’s RMSE is somewhat larger than the ridge regression model using two IMs. This is attributed
to the fact that the BMT18 model used only one IM and was developed using a different database. However, the
performance of the BMT18 model is comparable to the ridge regression model using one IM. The RMSE difference
between the BMT18 and the ridge regression model with two IMs is also comparable to the reduction observed in
other D models that use one or two IMs (e.g., Saygili and Rathje (2008)). However, other ML-based models offer
a further reduction in the RMSE. The GBDT model exhibits the best performance for both interface and intraslab
databases by showing the lowest RMSE. This is consistent with previous findings that highlight the good performance
of the GBDT model in different problems with structured data, showing a high prediction accuracy (Bishop, 2006;
Wang et al., 2020).

The performance of ResNet and random forest is similar, with random forest performing better on the interface
database and ResNet performing better on the intraslab database. This is consistent with the no free lunch theorem,
which states that there is no single best model for all databases (problems) in ML. One interesting fact to be noted
is that although the ResNet model contains a larger number of parameters (we do not observe overfitting of ResNet
during training and validation), its performance is inferior to that of GBDT for the problem discussed in this study.
There are several potential reasons to explain this observation. First, the number of input features for ResNet is
relatively small. Neural networks are most effective for problems with unstructured data (e.g., images, signals, etc.)
that contain a large number of features. Hence, the structured database with a relatively small number of features
used in this study may not fully exploit the performance of ResNet. This observation would also apply to the previous
study by Cho et al. (2022) for shallow crustal tectonic settings. In contrast, Jha et al. (2019) showed that ResNet was
better than other ML models in material discovery problems where 200+ features are used. Second, the performance
of neural networks scales with the number of data; hence, the size of the database used in this study may not be
large enough compared to other deep learning problems with millions or even billions of observations. One potential
solution is to use a smaller neural network with fewer layers and parameters; however, we observed degradation in
the predictive performance compared to a deeper neural network. A larger database could be used in future studies
to inspect the performance of the neural network used in this study. Lastly, the number of training epochs (i.e.,
training time) may also affect the performance of the ResNet network. Without much dependence on the learning
rate, the performance of the ResNet model increases rapidly in the first few hundred epochs but soon slows down in
the following epochs. In our study, the training process is terminated when the decrease in validation RMSE is less
than 1% in the last 100 epochs. With more computational resources (the specifications of the computer we used are
described shortly), much larger training epochs could be investigated in future studies to evaluate if the performance
of the ResNet model is improved.

In terms of the SVR model, it achieves intermediate performance among the considered models by using the Nystroem
kernel approximation. We also tested the performance of a vanilla linear SVR without any approximation, being
inferior to the derived SVR model, confirming the kernel approximation’s effectiveness. However, it is essential to
highlight that the kernel approximation represents a compromise between computational efficiency and prediction
accuracy as the direct application of SVR with nonlinear kernels is computationally intractable in most modern
computers. Also, note that the Nystroem approximation is one of the few kernel approximation methods currently
available, and there is active ongoing research on kernel approximations for SVR. Thus, the performance of SVR
could be further improved when more sophisticated kernel approximation methods are available in the future.

Although both PCR and PLSR perform linear regression on dimension-reduced data, the performance of the PLSR
model is significantly better than the PCR model, despite using fewer principal components. The performance of the
PCR is even slightly worse than the traditional ML22 model. This is because the PLSR model constructs principal
components that capture the variation of both the input features and the response variable. In contrast, the PCR
model constructs four components that only capture the variation of the five input features. In addition, the four
components constructed by PCR are unable to capture all the information contained in the original five features.

Lastly, the standard deviation of D estimates is an input for performance-based implementations (e.g., Liu et al.
(2021), Macedo et al. (2020b)). Traditionally, this standard deviation is estimated as the standard deviation of the
model residuals in the training data. However, this estimation could be biased and not reflect the uncertainty of
the prediction of future unseen data (Wang et al., 2020). Hence, in this study, we follow the recommendations in
Wang et al. (2020) and use the standard deviation of the model residuals in the test set, which are expected to better
represent the uncertainty of D in prediction problems. In this context, it can be seen from Equation 9 that the
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RMSE value of a model is mathematically equivalent to the standard deviation of its residuals. Hence, the RMSE
values in Table 5 are recommended as the standard deviations of the ML models for their use in performance-based
slope displacement assessments.

Table 5: Predictive performance (model standard deviations) and training cost of different D models
developed in this study and previous studies

Model RMSE (interface) Training time
(interface)

RMSE (intraslab) Training time
(intraslab)

Ridge Regression 0.587 20 s 0.510 19.2 s
Ridge Regression
with one IM

0.741 19 s 0.655 18 s

PCR 0.778 2.3 s 0.636 2.2 s
PLSR 0.564 6.3 s 0.412 5.7 s
Random Forest 0.367 7501 s 0.310 6701 s
GBDT 0.280 4012 s 0.249 3919 s
SVR 0.516 9313 s 0.448 10113 s
ResNet 0.373 213102 s 0.299 197121 s
ML22 0.698 1.2 s 0.584 1.1 s
BMT18 0.730 - - -

In addition to evaluating the performance of the ML-based models using the RMSE on the test sets, it is also
informative to compare the training and prediction cost for each model. The training time (including hyperparameter
optimization) of each model is presented in Table 5. The models developed in this study are trained on a machine
with a 10-core CPU (i.e., Intel Core i9-10900K) and 64 GB RAM, except for the ResNet model, which is trained on
the Tesla P100 GPU with 12 GB memory. The prediction time on the test set is negligible for all models, and it is
not reported. In general, more complex models have a longer training time. For example, the ResNet model, which
has the larger number of parameters, has the longest training time. The model with the best performance (i.e.,
GBDT) has an intermediate training time among all the models. Considering the trade-off between training time
and predictive performance, the random forest, GBDT, PLSR, and SVR models can be considered for estimating D.

In the following, we illustrate typical trends for the GBDT model considering both subduction interface (Figure 22)
and intraslab (Figure 23) earthquakes. Similar figures considering the other ML-based models previously discussed
are shown in Appendix B and trends for the traditional models were presented in Figures 12, and 13. The earthquake
characteristics and site conditions considered for generating the trends are: ZTOR (depth to the top of the rupture
model) = 30 (interface) and 60 (intraslab) km, Vs30 = 760 m/s, and Rrup = 30 km. The Sa(1.3Ts) value is estimated
using the BC Hydro ground motion model (GMM) (Abrahamson et al., 2018) and the PGV value is estimated
using the conditional PGV GMM developed by Liu and Macedo (2022). For Figures 22(c)(d) and 23(c)(d), we
adjust the Rrup values such that Sa(1.3Ts) estimated from the BC Hydro GMM is consistent with the values shown
in the figures. Because the tree-based models (i.e., GBDT and random forest) provide discrete D estimates given
continuous input features, we use the Savitzky-Golay filter (Press and Teukolsky, 1990) to smooth the D trends, as
the motivation is to show general trends. In general, all the ML-based models derived in this study show similar
trends: (1) D increases with Ts and then decreases when Ts keeps increasing (2) D decreases with the increase of
ky (3) D increases with the increase of M or Sa(1.3Ts), when other features are fixed. These observations are also
consistent with previous studies (e.g., Bray et al. (2018)).

Finally, we evaluate the performance of the developed models against the case histories compiled in Bray et al.
(2018) for subduction interface tectonic settings. We also searched for case histories after recent subduction intraslab
tectonic settings. However, we did not find cases in the public domain with the information required (i.e., ground
motion information, material properties, and observed performance) to assess the proposed models.Table 6 presents
the details of the case histories, which are associated with the observed seismic performance of different slope systems
that were affected by subduction interface earthquakes. We have used the mean absolute error (MAE) to evaluate
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the performance of the ML and traditional models on the case histories, which is calculated as:

MAE =

∑Nch

i=1 |Di −D′
i|

Nch
(10)

where Nch is the total number of case histories (i.e., 12 for interface). Di and D′
i (both in units of cm) are the

observed and predicted slope displacement for an ML model, respectively.

(a) (b)

(c) (d)

Figure 22: Trends for the variations of ky, Ts, Sa(1.3Ts), and M for GBDT for interface earthquakes

We use the same GMMs used in evaluating the model trends to estimate PGV and Sa(1.3Ts), required for estimating
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D. Table 7 presents the MAEs for the different ML and traditional models considered in this study when they are
evaluated against case histories. Figures 24 and 25 show the comparison of predicted D values from the ML and
traditional models with observed D values in the case histories from interface earthquakes (the bars in Figures 24
and 25 correspond to 95% confidence intervals). All the ML models have MAE values that vary between 23 and 31.
The GBDT, random forest, Resnet, SVR, and ridge regression models predict a good seismic performance (small
D) when the observed performance is good, and they also predict potential damage (large D) when the observed D
values are large. The ML22 model shows a comparable MAE compared with most of the aforementioned ML models,
but as discussed before, the statistical performance of most ML models is superior. Lastly, the PCR and PLSR
models have quite large MAE values associated with poor performance for most case histories with small observed
D values.

(a) (b)

(c) (d)

Figure 23: Trends for the variations of ky, Ts, Sa(1.3Ts), and M for GBDT for intraslab earthquakes
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Table 6: Characteristics of the case histories of observed slope displacements (Dobs) affected by subduction
interface earthquakes. PP = 2007 Peru/Pisco; PM = 2001 Peru/Moquegua; EM = 2016 Ecuador/Muisne;
CM = 2010 Chile/Maule; JT = Japan/Tohoku; S3, S4, and S5 are from Elgamal et al. (1990)

Slope system Earthquake ky Ts M Vs30 Rrup Sa(1.3Ts) PGV Dobs

Coastline Slope Peru PP 0.1 0.6 8 760 37 0.308 25.201 6
Yuracmayo Dam PP 0.27 0.45 8 400 125 0.158 9.539 0
La Villita dam S3 0.2 0.6 7.4 360 80 0.227 14.023 1
La Villita dam S4 0.2 0.6 7.2 360 23 0.402 30.528 1.4
La Villita dam S5 0.2 0.6 8 360 40 0.482 33.824 4
Torata dam PM 0.13 0.65 8.4 760 100 0.269 18.841 5
Esperanza dam EM 0.24 0.4 7.8 400 45 0.510 24.62 0
Tutuven dam EM 0.39 0.15 8 400 40 0.802 28.518 0
Nishigo dam JT 0.26 0.15 9 350 90 1.514 25.315 40
Shitoki dam JT 0.29 0.4 9 760 52 0.483 27.605 0
Surikamigawa dam JT 0.3 0.68 9 500 90 0.257 21.235 0
Coihueco dam CM 0.1 0.25 8.8 400 65 1.463 31.543 350

Table 7: Predictive performance of different ML and traditional D models in case histories from interface
earthquakes

Model MAE (interface)

Ridge Regression 24.52
Ridge Regression with one IM 22.11
PCR 30.34
PLSR 29.01
Random Forest 23.47
GBDT 24.23
SVR 23.91
ResNet 23.46
ML22 24.88
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(a) (b)

(c) (d)

(e)

Figure 24: Performance of the ML models on interface case histories (see Table 6 for the case histories
details). Note that zero Dobs values are shown as 0.5 cm for plotting on log scale.
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(a) (b)

(c) (d)

Figure 25: Performance of the ML models on interface case histories (see Table 6 for the case histories
details). Note that zero Dobs values are shown as 0.5 cm for plotting on log scale.

We have ranked the performance of ML models according to three criteria: their errors on the test set (RMSE), the
case histories (MAE, when case histories are available), and their D trends. The models with the best performance
are assigned with scores of 2 while those with the worst performance are assigned with scores of 0. Intermediate
models receive an intermediate score. Tables 8 and 9 present the final ranking of all the ML models for interface
and intraslab tectonic settings, respectively. Based on the ranking, in terms of the developed ML-based models in
this study, we recommend the ridge regression, random forest, GBDT, SVR, and ResNet models for their use in
performance-based slope displacement procedures.
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Table 8: Rating ML models according to their performance for interface tectonic settings

Model Trends Test Error Case Histories Cumulative

Ridge Regression 2 1 1 4
Ridge Regression
with one IM

2 0 1 3

PCR 2 0 0 2
PLSR 2 1 0 3
Random Forest 1 2 2 5
GBDT 1 2 2 5
SVR 2 1 1 4
ResNet 0 2 2 4

Table 9: Rating ML models according to their performance for intraslab tectonic settings

Model Trends Test Error cumulative

Ridge Regression 2 1 3
Ridge Regression with
one IM

2 0 2

PCR 2 0 2
PLSR 2 0 2
Random Forest 1 2 3
GBDT 1 2 3
SVR 2 1 3
ResNet 0 2 2

6 Treatment of epistemic uncertainties

In this section, we first discuss the performance-based probabilistic assessments of D, which requires a performance-
based implementation of D models. The outcome of a performance-based probabilistic assessment is a displacement
hazard curve (DHC), which relates different D thresholds with their annual rate of exceedance. An important
aspect of estimating DHC is the assessment of epistemic uncertainties. Epistemic uncertainties are related to the
scientific uncertainties in modeling a process due to limited data and knowledge. Hence, in estimating D, the
epistemic uncertainty results from the uncertainties in the functional forms of alternative D models as well as
the uncertainties in the slope characteristics (e.g., ky and Ts). After discussing the details of performance-based
probabilistic assessments, we describe the traditional approach used to capture epistemic uncertainties in the D
estimation using a logic tree approach. Then we introduce an alternative, albeit more efficient approach that utilizes
polynomial chaos expansion. The procedures discussed in this section are later illustrated in Section 8, where different
examples are presented.

6.1 Performance-based probabilistic assessment

In the performance-based probabilistic assessment of D, first, a PSHA is performed to estimate the hazard curves
of the IM of interest. Then the entire IM hazard curve obtained from a PSHA is convolved with a D model, and
the result is a D hazard curve that relates different D thresholds and their annual rate of exceedance. Using a D
hazard curve, D can be directly estimated for the hazard design level (or return period) of interest; thus, the D
hazard level is known. The performance-based assessment of D is consistent with performance-based earthquake
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engineering concepts and should be preferred in practice (e.g., Macedo et al. (2020b); Rathje and Saygili (2008); Liu
et al. (2021)),

In this subsection, we illustrate the use of the developedD models in this study for the performance-based probabilistic
assessment of slope systems affected by subduction zone earthquakes. As previously discussed, in a performance-
based probabilistic assessment, a D hazard curve (i.e., a curve that relates different D thresholds to their annual
rate of exceedance) is estimated through the convolution of the IM (or IMs) hazard and a D model according to
Equation 11 (Macedo et al., 2020b).

λD(z) =

nky∑
i=1

nTs∑
j=1

∫ Mmax

Mmin

∫
IM

wiwjP (D > z|IM,M, kiy, T
j
s )f(M |IM)∆λ(IM)d(IM)d(M) (11)

where IM is a vector of ground motion IMs (e.g., PGV and Sa(1.3Ts) in the case of the models developed in
this study), and λD(z) is the mean annual rate of D exceeding the threshold z. ∆λ(IM) is the joint annual rate
of occurrence of IM and P (M |IM) is the conditional probability of M given IM, which can be estimated using
standard vector PSHA and magnitude deaggregation, respectively. nky and nTs are the number of different ky and
Ts values considered for the slope system to account for the uncertainty in the slope properties. kiy and T j

s are
the i-th and j-th realizations of ky and Ts for a given slope with weighting factors wi and wj , correspondingly.
P (D > z|IM,M, kiy, T

j
s ) is the conditional probability of D exceeding z given the values of IM, M , kiy, and T j

s ,
which can be estimated according to Equation 1 as:

P (D > z) = (1− P (D = 0|IM,M, kiy, T
j
s ))P (D > z|D > 0)

= (1− P (D = 0|IM,M, kiy, T
j
s ))(1− P (D ≤ z|D > 0))

= (1− P (D = 0|IM,M, kiy, T
j
s ))

(
1− Φ

(
ln z − lnµ(IM,M, kiy, T

j
s )

σ

)) (12)

where Φ is the cumulative distribution function of the standard normal distribution and µ(IM,M, kiy, T
j
s ) and σ are

the median value and standard deviation of D which can be estimated using the developed D models given IM,
M , Ts, and ky. P (D = 0) can be estimated using Equation 2, the developed ML-based classification models, or
previously developed models (e.g., Bray and Macedo (2019) in the case of shallow crustal tectonic settings. Equation
11 can be applied separately to different tectonic settings. For instance, when considering the subduction interface,
subduction intraslab, and shallow crustal tectonic settings, three different annual rate of exceedance curves can be
evaluated for each tectonic setting (i.e. λinterface

D , λintraslab
D , and λcrustal

D ), which can then be combined to estimate
the total annual rate of exceedance λtotal

D as per Equation 13. Importantly, when this is performed, adequate D
models should be applied to each tectonic setting to evaluate Equation 11 (please refer to Macedo et al. (2020b) for
more details).

λtotal
D = λinterface

D + λintraslab
D + λcrustal

D (13)

In performance-based engineering, it is important to identify the earthquake scenarios of most interest that control
the D hazard curves, which can be done by deaggregating the D hazard curves. Considering a combination of nM
earthquake magnitude, nR site-to-source distances, and nϵ epsilon values (i.e., the number of standard deviations
above the median IM), we can obtain a total number of ground motion scenarios nScen = nMnRnϵ. In addition, if
we consider nx levels of IM and ny levels of D; then, the IM hazard can be stored in a matrix λ(IMT ) of nScen
by nx. For a fixed D level, ky, and Ts values, we can evaluate Equation 11 for each ground motion scenario and
IM level, resulting in a matrix PSλD, that contains the partial annual rate of exceedance sorted by scenarios and
IM values. The D hazard contribution from all IM levels can be computed by summing up all columns of PSλD,
resulting in a vector SλD = [Sλ1

D, · · · , SλnScen
D ]. This vector can be used as a proxy to perform the deaggregation

of the D hazard curves as follows (please refer to Macedo et al. (2020b) for additional details):

DeaggDj = Sλi
Dj

/

nScen∑
p=1

Sλp
Dj for j = 1 : ny (14)

whre DeaggDj contains the earthquake scenarios deaggegrated for the jth D level.
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6.2 Epistemic uncertainty treatment using a logic tree approach

In a logic tree approach, the epistemic uncertainties associated with D models can be represented as the branches in a
logic tree. Each branch corresponds to an alternative D model with a weighting factor. For example, one can use the
five ML models (i.e., ridge regression, random forest, GBDT, SVR, and ResNet) recommended in the previous section
with equal weights of 0.18 and a weight of 0.10 for the traditional model to capture the epistemic uncertainties of D
models for subduction zone earthquakes (i.e., interface or intraslab earthquake zones separately). Of note, the same
weight for the ML models is considered here as their performance (evaluated in the previous section) was similar,
and a higher weight is considered for the ML models as they performed better than their traditional counterparts.
In this way, a logic tree with six branches can be constructed, and each branch will yield a D hazard curve (DHC)
generated by the five ML D models and the traditional D model. Similarly, to capture the epistemic uncertainties
in ky and Ts, one can sample nky ky values and nTs Ts values from lognormal distributions and create nky ∗ nTs

branches in a logic tree to represent each combination of ky and Ts, following the recommendations in Macedo et al.
(2018). Moreover the ky, Ts, and D logic trees could also be combined with logic trees for the IMs as discussed in
detail in Macedo et al. (2020b).

Although the logic tree approach is straightforward to implement, there are some potential issues and limitations
regarding this approach. Firstly, the epistemic uncertainties represented by the D model branches may not capture
the full range of the alternative D models. For example, the epistemic uncertainties captured by the six previously
mentioned D model branches only reflect the range of alternative models expanded by the five ML models and the
traditional model developed in this study. As a result, more ML models in the future could improve the estimation
of the range/epistemic uncertainties of D models. Secondly, the logic tree approach can become computationally
inefficient when the number of branches is large, especially when many realizations of the IM of interest, ky and Ts

are considered.

6.3 Epistemic uncertainty treatment using Polynomial chaos

As an alternative to the logic tree approach, we also consider the polynomial chaos expansion (PCE) method to
capture the epistemic uncertainties in the estimation of DHCs. The general principle behind the PCE theory is that
a random function can be expressed as a linear combination of a family of orthogonal polynomials in which each
polynomial is a function of random variables, and the coefficients in the expansion are deterministic. In the context of
DHC estimation, if we consider each D model as a sample from a common continuous distribution of D models, and
assume that the epistemic uncertainty associated with the median D values from alternative D models is a normal
distribution, the range of DHCs resulting from different D models can be represented using PCE. To illustrate the
calculations involved in PCE, we consider the ridge regression model with 1 IM - Sa(1.3Ts) (see Section 4 for more

details). Then, assuming the median D estimate (ln d̂) is normally distributed with a mean µEU (Sa(1.3Ts), ky, Ts)
and a standard deviation σEU (Sa(1.3Ts), ky, Ts), the probability of exceedance in Equation 12 can be calculated as:

P (D > z|Sa(1.3Ts), ky, Ts, η) = 1− Φ

(
ln z − (lnµEU (Sa(1.3Ts), ky, Ts) + ησEU (Sa(1.3Ts), ky, Ts))

σ

)
η =

ln d̂− µEU (Sa(1.3Ts), ky, Ts)

σEU (Sa(1.3Ts), ky, Ts)

(15)

in which µEU (Sa(1.3Ts), ky, Ts) and σEU (Sa(1.3Ts), ky, Ts) can be estimated by considering the mean and standard

deviation of ln d̂ given a fixed Sa(1.3Ts) and different values of ky and Ts (see Macedo et al. (2020c); Lacour and

Abrahamson (2019) for more details). Since ln d̂ is normally distributed, P (D > z|Sa(1.3Ts), ky, Ts, η) can be
expressed as a combination of Hermite polynomials using PCE as follows:

P (D > z|Sa(1.3Ts), ky, Ts, η) =

P∑
l=0

yl(z, Sa(1.3Ts))Ψl(η) (16)

where yl(z, Sa(1.3Ts)) represents the deterministic coefficients in the expansion, Ψl(η) is the Hermite polynomial,
which is a function of the standard normal variable η, and P is the number of Hermite polynomials. Usually P = 4
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is able to achieve a good approximation of P (D > z|Sa(1.3Ts), ky, Ts, η) for PCE. The estimation of yl(z, Sa(1.3Ts))
can be performed by considering the orthogonality between the Hermite polynomial with more details available in
Macedo et al. (2020c). Finally, the DHCs using PCE can be estimated by combining Equations 11 and 16 as per
Equation 17.

λD(z) =

∫ Mmax

Mmin

∫
Sa(1.3Ts)

P∑
l=0

yl(z, Sa(1.3Ts))Ψl(η)f(M |Sa(1.3Ts))∆λ(Sa(1.3Ts))d(Sa(1.3Ts))d(M) (17)

As it can be observed in Equation 17, the PCE approach avoids intensive calculations involved in the logic tree
branches that represent alternative ky, Ts, and D models; hence, improving the computational efficiency. Besides,
the epistemic uncertainties of alternative D models can be represeted through the mean (µEU (Sa(1.3Ts), ky, Ts))

and standard deviation (σEU (Sa(1.3Ts), ky, Ts)) of ln d̂. A flow chart showing the sequence of calculations for
implementing the PCE-based assessments of DHCs is presented in Appendix C.

7 Implementation of D models

To facilitate the use of the developed D models in performance-based assessments, we have implemented them in
the SeismicHazard and PSDA platforms, with details in Candia et al. (2019); Macedo et al. (2020b); Macedo and
Candia (2020, 2019b); Candia et al. (2018); Macedo and Candia (2019a).

The SeismicHazard platform permits characterization of the intensity, uncertainty, and likelihood of ground motions
from subduction zone and shallow crustal earthquakes, considering site-specific and regional-based assessments.
It features several state-of-the-art capabilities for probabilistic and deterministic (scenario-based) seismic hazard
assessment. The platform integrates the latest developments in performance-based engineering for seismic hazard
assessment, including seismic zonation models, GMMs, ground motion correlation structures, and the estimation
of design spectra (Uniform Hazard Spectrum and Conditional Mean Spectrum). In addition to these standard
capabilities, the platform supports advanced features not commonly found in existing seismic hazard codes, such as
the i) vector-hazard PSHA, ii) uncertainty treatment in the median ground motions (i.e., logic trees), iii) regional
shaking fields, and iv) estimation of conditional mean spectra considering multiple tectonic settings. The platform
has been validated against accepted and well-documented benchmark solutions, including the Pacific earthquake
engineering research center (PEER) 2018 Probabilistic Seismic Hazard Analysis Code Verification (Hale et al., 2018).
Figure 26 shows the functionalities of the SeismicHazard platform in the context of PSHA.

The PSDA platform interacts with the SeismicHazard platform to extract hazard information to evaluate DHCs.
The current PSDA platform contains built-in D models (e.g., Bray and Macedo (2019), Saygili and Rathje (2008),
etc) for different tectonic settings. The PSDA platform can perform: (a) estimation of DHCs in the context of scalar
PSHA, (b) estimation of DHCs in the context of vector PSHA, (c) estimation of DHC for systems with contributions
from multiple tectonic settings, (d) uncertainty treatment on DHCs through a logic tree scheme, (5) deaggregation of
earthquake scenarios from DHCs, and 6) uncertainty quantification on DHCs through the PCE theory. In this study,
we have implemented the developed D traditional and ML-based models, the treatment of epistemic uncertainties
(logic tree, PCE), and the performance-based assessment of DHCs using the developed models in the PSDA platform.
Since most of the D models are non-parametric models developed using Python, we use a MATLAB-Python API
(application programming interface) to call Python programs in MATLAB. The general workflow of the PSDA
platform (including the interaction with the developed D models) is shown in Figure 27.

Figure 28 shows some of the implemented D models in the PSDA platform. The estimated mean values of D as
well as the probability of exceedance for various D models given different ky, Ts, M , and ground motion IMs can be
visualized in an efficient manner.

We have also integrated the platform with the existing Unified Hazard USGS tool. In this way, the Unified Hazard
USGS tool can be used to retrieve the hazard information from any location in the United States, and then combine
this information with the developed ML D models to finally estimate seismically-induced slope displacement hazard
curves.
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(a)

(b)

(c)

Figure 26: SeismicHazard platform. (a) Main window, (b) GMM editor and viewer, and (c) module for
M −R− ϵ deaggregation of seismic hazard.
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Figure 27: Schematic illustration of the interface between D models and the MATLAB platform

Figure 28: Demonstration of the GUI window for the implemented D models in the PSDA plaftorm
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8 Examples using the developed D models and implementations from
this study

In this section, we present several examples of applying the developed ML and traditional D models in performance-
based engineering procedures. Firstly, We conduct an estimation ofD using the pseudoprobabilistic procedures, which
dominate the current engineering practice. Then we implement the performance-based probabilistic assessments
previously discussed, which are more consistent with the performance-based design. Specifically, we calculate D
hazard curves considering the convolution of IM hazard and the developed D models and use a logic tree to account
for the epistemic uncertainty. Next, we conduct a similar performance-based assessment of D hazard curves but
use PCE to account for the epistemic uncertainty. Finally, we conduct a regional assessment of seismically-induced
landslides in Anchorage, Alaska.

8.1 Estimation of D using pseudoprobabilistic procedures

D models are typically used in pseudoprobabilistic or performance-based approaches, with the former being most
popular in current engineering practice. In a pseudoprobabilistic approach, first, a PSHA is performed, and a hazard
design level (or return period) is defined, which is then used to estimate the IMs of interest and earthquake-related
parameters if needed (e.g., M). These parameters along with the slope properties (e.g., ky and Ts), are used to
estimate D and its uncertainty through the uncertainty in the D model.

In this section, we demonstrate the use of pseudoprobabilistic procedures to estimate D using the five recommended
ML and traditional models. We consider a hypothetical slope located in the vicinity of Seattle, Washington, as shown
in Figure 29, which is mainly affected by subduction interface and intraslab earthquakes. The slope is assumed to
have a mean Ts of 0.23 s and a mean ky of 0.1. The hazard curves of Sa(1.3Ts) (i.e., Sa(0.3s)) are retrieved
using the USGS unified hazard tool at the location of the slope. Figure 30 shows the hazard curves of Sa(0.3s)
for interface and intraslab earthquakes. Then we conduct a magnitude (M) and distance (Rrup) deaggregation at a
return period of 2475 years using the USGS unified hazard tool. The results indicate that the controlling earthquake
scenarios for interface and intraslab tectonic settings are M = 8.8, Rrup = 85 km and M = 7.1, Rrup = 66 km,
respectively. Given the earthquake scenarios and Sa(0.3s), we estimate PGV using the conditional mean spectrum
(CMS) method (Baker, 2011) with the correlation coefficients between PGV and Sa(0.3s) taken from Macedo and
Liu (2021). Finally, we use the five recommend ML and traditional models to estimate D values. The D values
estimated from these models are presented in Table 10.

Table 10: Estimated D values (cm) using the pseudoprobabilistic approach.

model median D
(interface)

5 to 95 interval
(interface)

median D
(intraslab)

5 to 95 interval
(intraslab)

ML22 10.4 2.5 - 42.1 12.2 3.7 - 39.2
Ridge Regression 10.6 3.2 - 34.2 12.6 4.5 - 34.9
SVR 10.2 3.6 - 28.6 17.2 7.0 - 42.1
Random Forest 13.3 6.3 - 27.8 17.3 9.3 - 32.2
GBDT 18.4 10.5 - 32.2 17.2 10.4 - 28.3
ResNet 10.7 5.1 - 22.6 22.1 12.1 - 40.3

44



Figure 29: The consider site for the pseudoprobabilistic assessment of landslides in Seattle, Washington.

Figure 30: Hazard curves of Sa(0.3s) considered for the pseudoprobabilistic assessment for interface and
intraslab earthquakes

In addition to the estimation of D, we also compare the scaling of D versus Sa(0.3s) for recommended ML and
traditional models. Because the tree-based models (i.e., GBDT and random forest) provide discrete D estimates
given continuous input features, we use the Savitzky-Golay (Press and Teukolsky, 1990) filter to smooth the D trends.
Figures 31 (a) and (b) show the trends of D versus Sa(0.3s) considering the previous slope and earthquake scenarios
obtained from deaggregation for interface and intraslab earthquakes, respectively. PGV is estimated in the same
manner using the CMS method as in the pseudoprobabilistic assessment. It can be observed that all the models
show generally consistent trends, however, with some variations associated with epistemic uncertainties.
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(a) (b)

Figure 31: Scaling of D against Sa(1.3Ts) for D models considering the controlling earthquake scenarios
from deaggregation for (a) interface and (b) intraslab earthquakes. Negligible displacements are assigned
a value of 0.5 cm.

8.2 Estimation of D hazard curves using performance-based procedures and a logic
tree

To illustrate the performance-based implementations, we consider the same slope system located in Seattle as in the
previous section (i.e., Figure 29). In addition to obtain the hazard curves of Sa(0.3s), the hazard curves of PGV also
need to be estimated for their use in the convolution of IM hazard curves and D models. Because the USGS unified
hazard tool does not provide PGV hazard curves, for each hazard level of Sa(0.3s), we perform deaggregation to
identify the controlling earthquake scenarios and use the CMS method to obtain the conditional mean and standard
deviation of PGV (the correlation coefficients between PGV and Sa(0.3s) used in CMS are retrieved from Macedo
and Liu (2021) for interface and intraslab settings). Then, for each level of PGV , we estimate its exceeding probability
according to the distribution of PGV conditioned on Sa(0.3s). Finally, the joint rate of exceedance (or occurrence) of
PGV and Sa(0.3s) can be estimated by combining the hazard of Sa(0.3), the probability of controlling earthquake
scenarios, and the exceeding probability of PGV conditioned on Sa(0.3). Figure 32 shows the hazard curves of
Sa(0.3s) and PGV as well as their joint rate of exceedance for interface and intraslab tectonic settings.
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(a) (b)

(c) (d)

Figure 32: Sa(1.3Ts) and PGV hazard for performance-based assessment using a logic tree. (a) marginal
hazard curves of Sa(1.3Ts), (b) marginal hazard curves of PGV , (c) joint rate of exceedance for Sa(1.3Ts)
and PGV for interface earthquakes, and (d) joint rate of exceedance for Sa(1.3Ts) and PGV for intraslab
earthquakes

To account for the epistemic uncertainties of the slope properties, we consider alternative ky and Ts values in a logic
tree scheme. We assume ky and Ts have mean values of 0.23 and 0.1, respectively, and a coefficient of variation of 0.3.
Then we consider 100 realizations of ky and Ts with their weights assigned according to their probability densities,
resulting in 100 branches in the logic tree. The five recommended ML models and traditional models are considered
to incorporate the epistemic uncertainty associated with the median D values through the logic tree. Tables 11
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summarizes the logic tree branches and weighting factors for the considered D models.

Table 11: Logic tree branches used for D models in performance-based assessment.

Subduction interface and intraslab Weight

ML22 0.1
Ridge Regression 0.18
SVR 0.18
Random Forest 0.18
GBDT 0.18
ResNet 0.18

Figure 33(a) shows the D hazard curves obtained using the performance-based procedures for different D models
(each model has 100 hazard curves corresponding to 100 branches of ky and Ts). In general, all the models show
consistent ranges of hazard curves. Differences can be observed for moderate to large displacements (i.e., D > 10
cm). Especially, the residual neural network model shows slightly wider ranges of hazard curves than the other
models. These differences can be attributed to the epistemic uncertainties in the median D estimates. Figure 33(b)
shows the fractiles and mean values of the 600 hazard curves across all the models.

(a) (b)

Figure 33: D hazard curves estimated using the performance-base assessment. (a) D hazard branches for
different realizations of ky and Ts for different D models, and (b) mean and fractiles of the D hazard curves
across all the models (the dashed curves indicate 5-50-95 percentiles and the solid curve indicates the mean
hazard).

8.3 Estimation of D hazard curves using performance-based procedures and polyno-
mial chaos expansion

Performance-based assessment of D hazard curves using Monte Carlo-based simulation of slope properties (ky and
Ts) can be computationally challenging, especially when there is a large number of ky and Ts realizations. PCE
can be used to reduce the computational cost (Macedo et al. (2020c)). The application of PCE for estimating D
hazard curves is illustrated in this subsection. We consider the same slope system and site location described in
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previous sections. In terms of D models, we use the ridge regression model developed with one IM (i.e., Sa(1.3Ts))
as described in Section 3 for illustration purposes and simplicity. In this context, the input parameters for estimating
D in the considered ridge regression model are ky, Ts, M , and Sa(1.3Ts). We also compare the results obtained
using the traditional Monte Carlo-based and PCE approaches.

The hazard curves of Sa(1.3Ts) are retrieved using the USGS unified hazard tool as described earlier (i.e., Figure 30).
Then for each hazard level, we also obtain the magnitude deaggregation. To account for the epistemic uncertainties
associated with slope properties, we consider 1000 realizations of ky and Ts, sampled from their probabilistic distri-
butions (i.e., mean and coefficient of variation) using Monte Carlo simulation. As a result, the logic tree approach
contains 1000 branches of ky and Ts. Then we compare the estimated D hazard curves using the Monte Carlo and
the PCE approaches as described in Section 6.

Figure 34(a) shows the 1000 hazard curves corresponding to the 1000 realizations of ky and Ts using the two
approaches (i.e., Monte Carlo and PCE). Figure 34(b) shows the corresponding fractiles and means for the two
approaches. It can be observed that the hazard curves estimated using PCE are consistent with those estimated
using a traditional Monte Carlo approach. However, the computational time for PCE (0.07s) is more than 50 times
smaller than that of the Monte Carlo approach (3.71s). Hence, the PCE approach is an attractive alternative for
performance-based procedures when the number of branches in a logic tree is large.

(a) (b)

Figure 34: Comparison of D hazard curves obtained using the Monte Carlo and PCE approaches. (a)
Hazard curve branches corresponding to 1000 realizations of ky and Ts, (b) 5-50-95 fractiles (dashed
curves) and mean hazard curves (solid curves).

8.4 Regional assessments of seismically-induced landslides in Alaska using performance-
based procedures

Regional assessments of D hazard are often required to produce seismic landslide hazard maps that identify zones
prone to earthquake-induced slope failures that are key inputs for mitigation plans. We illustrate in this subsection
how the D models developed in this study can be used in the regional assessment of seismically-induced landslides.

We consider a study area of around 301 km2 located in the vicinity of Anchorage, Alaska. Previous studies (e.g.,
Jibson and Michael (2009), Wang and Rathje (2015), etc.) have also developed seismic landslide hazard maps for
the study area, but using only shallow crustal D models. Figure 35 shows the extent of the study area considered in
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this study, which is similar to the one considered in Wang and Rathje (2015).

Figure 35: Overview of the study area in Anchorage, Alaska.

In terms of slope properties, we focus on shallow landslides; hence we assume rigid sliding masses with a Ts of zero.
The ky values are estimated using as inputs (1) strength properties (friction and cohesion) for the different geological
units, assigned based on geological maps; (2) topographic information to assess the inclination of different slopes;
and (3) the regional variation of the water table. The inputs are used to estimate ky, as follows:

FSstatic =
c′

γt sinα
+

tanϕ′

tanα
(1−m

γw
γ
) (18)

ky = (FSstatic − 1) sinα (19)

in which α represents the slope inclination, c′ is the effective cohesion, ϕ′ is the effective friction angle, γ is the
material unit weight (considered as 18.8 kN/m3), γw is the unit weight of water (9.8 kN/m3), t is the slope-normal
thickness of the sliding mass, and m is the proportion of the sliding mass thickness that is saturated. The geological
and topographical information for the study area, required for Equations 18 and 19, is available in Wang and Rathje
(2015) and was kindly shared with us by the authors.

To estimate ky, the study area is divided into 16 million grid cells with a resolution in the order of meters. Then
each grid cell is assigned to one of the existing 17 geologic units in the study area. Figure 36(a) shows the spatial
distribution of the geological units in the study area. Then the friction angle and effective cohesion for each cell are
assigned based on their corresponding geologic unit, as shown in Table 12. The slope angle for each cell is estimated
based on a digital elevation model used in Wang and Rathje (2015), as shown in Figure 36(b). The values of m and
t are assumed based on the geologic units as well as engineering observations in Anchorage (Jibson and Michael,
2009). To capture the epistemic uncertainties associated with ky, coefficients of variation are assigned to c′ and ϕ′,
and a three-point approximation (Keefer and Bodily, 1983) is used to represent the distribution of c′ and ϕ′ in a
logic tree, leading to 54 ky values in each cell. More details regarding the estimation of ky can be found in Wang
and Rathje (2015).
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(a) (b)

Figure 36: Spatial distribution of (a) slope angles and (b) geologic units in the study area. Geologic unit
descriptions are provided in Table 12

Table 12: Geologic units and associated shear strengths.

Unit ϕ c (kPa) Unit description

af 36 24 Deposits in alluvial fans, alluvial cones, and emerged deltas
al 36 19 Alluvium in abandoned stream channels and in terraces along modern

streams
an 36 24 Coarse-grained surficial deposits
b 40 192 Bedrock
bc 0 120 Bootlegger Cove Clay
c-br 38 38 Colluvium derived from bedrock on slopes of the Chugach Mountains
c-bl 0 38 Colluvium derived from glacial materials along coastal bluffs
f 34 48 Manmade fills
ga 32 38 Glacial alluvium in irregular-shaped hills (including kames, eskers, and kame

terraces)
gm 38 48 Glacial and (or) marine deposits, typically in elongate hills
l 0 144 Lake and pond deposits
ls 30 24 Landslide deposits, similar to an unit
m 38 43 Morainal deposits, generally in long ridges marking the margins of former

glaciers
mg 37 38 Marine, glacial, and (or) lacustrine deposits
s 0 72 Silt
sh 34 24 Sand deposits in broad, low hills, and windblown sand deposits in cliffhead

dunes near Point Campbell
sl 34 19 Sand deposits in a wide low-lying belt around Connors Lake
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Regarding ground motion hazard, we obtain the peak ground acceleration (PGA) hazard curves (PGA is considered
as Ts is equal to zero) for Anchorage (-149.9, 61.22) using the USGS unified hazard tool. The hazard curves are
assumed to be applied to the entire study area as its extension is the order of 10 by 10 km, where no significant
spatial effects are expected, putting site conditions aside. The probability of magnitude given each level of PGA is
obtained from the deaggregation results in the USGS unified hazard tool. The PGV hazard curves are estimated
using the same CMS approach described in previous sections. Figure 37 shows the hazard curves of PGA and PGV
for interface and intraslab earthquakes, as well as their joint rate of exceedance.

(a) (b)

(c) (d)

Figure 37: PGA and PGV hazard for the regional assessment in Anchorage, Alaska. (a) marginal hazard
curves of PGA, (b) marginal hazard curves of PGV , (c) joint rate of exceedance for PGA and PGV for
interface earthquakes, and (d) joint rate of exceedance for PGA and PGV for intraslab earthquakes

The slope properties and ground motion hazard are used as inputs on the PLSR model to generate seismic landslide
maps. We select the PLSR model to illustrate the application of an ML-based model for the regional-based assessment
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of seismically-induced landslides. The potential of landslide-induced damage is classified into different categories
based on the D estimates given a specific hazard level. In this study, we adopt the thresholds used by USGS to
produce a seismic landslide map (Wang and Rathje (2015)), in which the landslide hazard is defined as low, moderate,
high, and very high if the estimated D with 2% probability of exceedance in 50 years is smaller than 1 cm, between
1 to 5 cm, between 5 to 15 cm, and larger than 15 cm, respectively.

Figure 38 shows the seismic landslide map for the study area in Anchorage for a 2% probability of exceedance in
50 years. It can be observed that only a small fraction of the area has a very high potential for seismically-induced
damage. Most areas with high or very high hazard are along coastal bluffs, stream valleys, or mountainous areas.
The results in Figure 38 are also consistent with the findings in Wang and Rathje (2015) for the same study area.

Figure 38: Seismic landslide hazard map of Anchorage at 2% probability of exceedance in 50 years.

9 Summary and Conclusions

In this study, we have developed machine-learning-based models for estimating seismically-induced landslides in sub-
duction tectonic settings. The developed models benefit the performance-based assessment of the damage potential
of seismically-induced landslides in regions affected by subduction-type earthquakes.

Given the lack of models for estimating seismically-induced slope displacements (D) induced by subduction zone
earthquakes, we develop traditional and machine-learning-based D models for subduction interface and intraslab
earthquakes. It is important to highlight that D is commonly used as a proxy to assess the damage potential of
seismically-induced landslides. We use the NGA-Sub ground motion database to generate D realizations with stick-
slip coupled Newmark-based analyses that are subsequently used to develop D models. We first develop traditional D
models (i.e., models based on polynomial-based fixed functional forms) using functional forms similar to the BMT18
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model. The developed traditional model for interface earthquakes shows consistent performance with the BMT18
model, which was also developed for interface earthquakes. However, the traditional intraslab model developed in
this study exhibits different trends than the BMT18 model. Moreover, the BMT18 model presents residual trends
in intraslab tectonic settings, highlighting the different scaling of D and the need to develop different D models for
subduction interface and intraslab tectonic settings.

We also develop machine-learning-based D models using different algorithms, including ridge regression, principal
component regression, partial least square regression, random forest, gradient boosting decision tree, support vector
regression, and residual neural networks. Before estimating the parameters and hyperparameters in the machine-
learning-based D models, we conduct a systematic feature selection among various candidates representing slope
properties and ground motion IMs. Specifically, we use forward stepwise regression, LASSO, and random forest
algorithms to select efficient features, finding that ky, Ts,M , Sa(1.3Ts), and PGV are adequate features for estimating
D. Our findings on efficient features suggest that there is value in implementing/refining capabilities for a rapid
assessment of PGV and spectral accelerations using USGS tools (e.g., ShakeMap, Ground Failure) in subduction
tectonic settings such as the U.S. Pacific Northwest. These implementations, which could be performed in future
efforts, would be useful in the rapid assessment of the damage potential of seismically-induced landslides.

The performance of the machine-learning-based D models is evaluated based on their prediction error on the test set,
computational cost, model trends, and case histories (when case histories are available). Based on this assessment, we
recommend ridge regression, support vector regression, random forest, gradient boosting decision tree, and residual
neural network models as alternative models for estimating D for both interface and intraslab tectonic settings. Of
note, in the case of subduction intraslab tectonic settings, we did not find case histories in the public domain with
adequate information on ground motions, material properties, and the observed performance. Thus, we encourage
the future collection/generation of case histories in this tectonic setting.

We also demonstrate the application of the developed D models to estimate D hazard curves in subduction earth-
quake zones, which are required in the performance-based assessment of the damage potential of seismically-induced
landslides. In addition, we present two approaches to treat the epistemic uncertainties associated with D estimates.
The approaches include a logic tree-based treatment of uncertainties, which is commonly used in engineering prac-
tice, and a more computationally efficient approach that employs the polynomial chaos framework. Finally, we
present several examples to illustrate the application of the machine-learning-based D models developed in this
study. First, we conduct a pseudoprobabilistic assessment of D for an area in the Pacific Northwest affected by
subduction-type earthquakes. The pseudoprobabilistic approach has been commonly used for assessing the damage
potential of seismically-induced landslides due to its simplicity (e.g., Wang and Rathje (2015); Jibson and Tanyaş
(2020); Rathje and Saygili (2008); Tsai and Chien (2016); Hsieh and Lee (2011); Jibson (2007)). However, with
most applications limited to shallow crustal tectonic settings. Then we illustrate the use of the developed machine
learning-based models in performance-based assessments considering two different approaches for the treatment of
epistemic uncertainties, namely logic trees, and polynomial chaos expansions. In particular, the computational effi-
ciency of the polynomial chaos approach is highlighted. Lastly, we illustrate the application of one of the developed
machine learning-based models in the regional assessment of the damage potential of seismically-induced damage
for an area in Anchorage, Alaska that has also been examined in previous studies (Wang and Rathje (2015); Jibson
and Michael (2009)), so it is used as a benchmark. The results indicate that only a few areas have a very high
damage potential, which is consistent with the findings in Wang and Rathje (2015). The other machine learning
models could also be similarly used in regional-based assessments to incorporate additional epistemic uncertainties.
In closing, it is essential to highlight that the traditional and machine learning models developed in this study (six
models for subduction interface and six models for subduction intraslab) enhance the performance-based assessment
of seismically-induced landslide hazards in subduction earthquake zones.

10 Project Data

The developed machine-learning-based displacement models have been made readily and permanently available
through the DesignSafe data depot (https://doi.org/10.17603/ds2-d0s9-ew95). The research results will also
be promptly disseminated to the scientific and engineering communities, professional organizations, and the public,
in peer-reviewed technical journals and conference proceedings, consistent with USGS expectations.
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