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Abstract

The Pacific Northwest (PNW) of North America has substantial earthquake risk, both due to the Cascadia
megathrust fault but also crustal and intraplate events that occur under the region’s population centers. Af-
tershock forecasts for the PNW require statistical modelling of a catalog of its past earthquakes; however, the
PNW’s limited catalog contains multiple tectonic regimes, as well as earthquake swarms, which complicate
statistical seismicity modelling. The Epidemic-Type Aftershock Sequence model (ETAS) is a top-performing
spatiotemporal point process model which parameterizes the rates of earthquakes and aftershocks within a
seismic region. Typically, maximum likelihood estimation is used to fit ETAS to an earthquake catalog;
however, the ETAS likelihood suffers from flatness near its optima, parameter correlation and numerical
instability, making likelihood-based estimates less reliable. We present a Bayesian procedure to estimate
ETAS parameters, such that parameter estimates and uncertainty can be reliably quantified, even for small
and complex catalogs like the PNW. The procedure is conditional on knowing which earthquakes triggered
which aftershocks; this latent structure and the ETAS parameters are estimated stepwise. The procedure
uses a Gibbs sampler to conditionally estimate the posterior distributions of each part of the model. We
simulate several synthetic catalogs and test the modelling procedure, showing posterior distributions that
are well-centered on true values and follow previously reported patterns. We also demonstrate the procedure
on a new catalog for the continental PNW. This catalog is merged from three existing catalogs with auto-
mated procedures for duplicate detection and identification of earthquake swarms. We compare parameter
estimates between catalogs without swarms and classified into the region’s tectonic regimes. More detailed
information about PNW aftershocks can be estimated using Bayesian ETAS than using simpler seismicity
models.

1 Introduction

1.1 Motivation

Since 2018, the USGS has released automated aftershock forecasts following earthquakes with magnitude
above 5. These forecasts are based on statistical seismicity models of both global and local catalogs for
the region in which the earthquake took place. At present, the USGS relies on the Reasenberg-Jones (RJ)
model [Reasenberg and Jones, 1989], which is a simplified model based on several seismological laws. A
more realistic representation of seismicity is the Epidemic-Type Aftershock Sequence (ETAS) model [Ogata,
1998], which has performed well in multiple evaluation experiments of earthquake forecasts [Nanjo et al.,
2012, Schorlemmer et al., 2018]. The ETAS model is advantageous over the RJ model because it incorporates
the spatial dimension of aftershock occurrence and allows for aftershocks to trigger their own sequences,
accounting for cascading sequences, as found in nature.

The ETAS model is a point process model that describes the interdepence between earthquakes in a
catalog, considering each as a point in some space (either time or space-time), equipped with a magnitude
M . The spatiotemporal ETAS model describes the total seismicity rate λ(t, x, y|Ht), at a given time t and
location (x, y), based on the catalog of events up to that time Ht as:

λ(t, x, y|Ht) = µST +

tj<t∑
j

k(Mj)h(t− tj)g(x− xj , y − yj), (1)

where

k(Mj) = K exp(α(Mj −M0))

h(t− tj) = (t− tj + c)−p

g(x− xj , y − yj) =
q − 1

πd1−q
((x− xj)2 + (y − yj)2 + d)−q,

and µST is a spatiotemporal background seismicity rate that is assumed constant for the entire region; k(Mj)
is the Utsu productivity law, with global productivity parameter K and magnitude scaling parameter α;
h(t− tj) is the (modified) Omori temporal decay function, with offset parameter c and decay parameter p;
and g(x − xj , y − yj) is a normalized Utsu-Seki spatial decay function, with offset parameter d and decay
parameter q.
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1.2 Statistical Issues with the ETAS Likelihood

The model described by Equation 1 assumes, among other simplifications, that background seismicity is
stationary with respect to time and space. The latter assumption can be relaxed by letting µ vary spatially
(µST = µST (x, y)), but stationarity in time is fundamental in most statistical studies of time-limited catalogs.

Another central assumption of the ETAS model is that a catalog can be split into sets of background
earthquakes and aftershock sequences. Some authors use rules based on windows in space and time to
identify aftershock sequences in a catalog and apply the ETAS model individually to each sequence [Zhang
et al., 2020, Guo and Ogata, 1997]. However, such deterministic splits of the catalog ignore the fact that
there is never certainty about which events belong to a given sequence. Methods exists for a probabilistic
assignment of every earthquake into the background set or an aftershock sequence [Zhuang et al., 2002].
These better reflect the inherent uncertainty in the classification of aftershocks in a catalog.

Given a split of the catalog between background and aftershock events, ETAS parameters θ = {µ,K, α, c, p, d, q}
may be estimated. The parameter estimates (and their accompanying uncertanties) are key not just in de-
scribing a region’s aftershock patterns, but in forecasting aftershocks after large earthquakes, including those
released by the USGS [Michael, 2018, Llenos and Michael, 2019, Hardebeck et al., 2019, Michael et al., 2020].
Parameters are typically estimated by maximizing the ETAS log-likelihood:

l(θ|HT ) =

n∑
i=1

log(λ(ti, xi, yi|Hti))−
∫ T

0

∫ ∫
S

λ(t, x, y|Ht)dxdydt

= SUM + INT.

Several problems have been documented with using this likelihood to perform inference. Simply evaluat-
ing the likelihood function is non-trivial, particularly the integral term, for which no closed-form expression
exists, forcing researchers to use either numerical solutions [Ogata, 1998, Lippiello et al., 2014] or other
approximations [Schoenberg, 2013]. Optimizing the likelihood function similarly requires iterative numeri-
cal procedures, with final maximum-likelihood estimates (MLEs) being found when the likelihood iteratively
converges to its maximum. But the likelihood is known to be flat near the optima for most ETAS parameters
[Veen and Schoenberg, 2008]. Furthermore, parameter estimates are correlated between several parameter
pairs [Chu et al., 2011, Guo and Ogata, 1997], leading to a likelihood surface that is multimodal [Lombardi,
2015]. All these issues make ETAS MLEs unstable, potentially biased [Seif et al., 2017, Harte, 2013] and
often dependent on the initial values used to start the numerical procedure.

Furthermore, quantifying uncertainty around these parameter estimates is usually based on the inverse
Hessian of the likelihood function. This is rooted in large-sample statistical reasoning, which time-limited
earthquake catalogs rarely satisfy. It also requires further numerical procedures and approximations, which
are again problematic even for large catalogs. As such, uncertainty quantification about ETAS parameter
estimates based on the traditional likelihood is unstable. It may even be unattainable for small catalogs
with complex seismicity [Harte, 2018], as the numerical procedures involved may fail to converge. Despite
these limitations, the vast majority of published ETAS estimates and uncertainties rely on this likelihood
function (e.g, Zhuang [2011], Zhang et al. [2020]).

These statistical challenges with the ETAS likelihood have been reported for decades and researchers
have made different attempts to ameliorate them. In Veen and Schoenberg [2008], the authors utilize the
(unknown) branching structure of the catalog, B = {Bi}, for all catalog earthquakes i, where

Bi =

{
0 if earthquake i was produced by background process

j if earthquake i was triggered by previous earthquake j.

Conditional on values for Bi, they derive a new likelihood function, which we term the branching likelihood.
ETAS parameters can then be estimated in a iterative procedure: first, fix some B based on initial guesses
for the ETAS parameters θ. Then, iteratively maximize the branching likelihood to obtain ETAS parameter
estimates θ̂ and then update B based on the new estimates θ̂. Iterate the previous step until estimates θ̂
converge to a final solution. The authors show that MLEs based on this estimation prcoedure are less biased
and more robust to choice of initial values than traditional MLEs; however, maximizing even this simpler
likelihood still requires a numerical procedure that may not converge for smaller catalogs. Other estimation
techniques have proposed using different numerical procedures for the traditional ETAS likelihood [Lombardi,
2015, Kasahara et al., 2016], but they do not address the fundamental challenges inherent in maximizing
this function.
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1.3 Bayesian Inference for the ETAS Model

Bayesian inference is a statistical paradigm for parameter estimation that eschews maximizing a model’s
likelihood in order to find parameter estimates. Rather, it considers the parameter itself as a random variable
that possesses a probability distribution. Sampling from this posterior distribution requires specifying the
prior knowledge on this parameter (also in the form of a distribution) and then scaling it by the model
likelihood. Bayesian inference is available for spatiotemporal point process models and is often applied
to studies of natural events [Guttorp and Thorarinsdottir, 2012]. This framework has gotten some use in
previous research with the ETAS model. Several studies have investigated how ETAS aftershock forecasts
can be updated using the Bayesian approach during an ongoing sequence [Ebrahimian and Jalayer, 2017,
Omi et al., 2015], but these require the initial computation of parameters MLEs.

Recent work has tackled the Bayesian estimation of ETAS parameters from catalogs. Ross [2017] and
Kolev and Ross [2019] work with the temporal-only ETAS model and, similar to Veen and Schoenberg [2008],
derive a branching likelihood that does not have many of the statistical issues in the traditional likelihood.
They use a Monte Carlo Markov Chain routine to sample from the parameter posterior distributions to more
rigorously quantify uncertainty in the parameter estimates. Ross [2021] extends this to the spatiotemporal
ETAS model.

We expand on this foundation by showing the utility of the Bayesian inference approach for the spa-
tiotemporal ETAS model. We then apply it to a new catalog for the Pacific Northwest region, which has
specific issues that require a customized modelling approach.

1.4 Pacific Northwest Seismicity

The Pacific Northwest of North America has high seismic risk due to a diversity of fault systems, some of
which lie under population centers. Statistical seismicity modelling for the Pacific Northwest is complicated
by the complex tectonics of the region. The Juan de Fuca plate subducts under the North American conti-
nental plate and the resulting fault zone is capable of generating massive megathrust events. The subducting
slab itself produces deep, intraslab earthquakes which are hypothesized to produce few aftershocks. There
are also numerous shallow faults located in the crust of the North American plate that produce crustal
earthquakes that are usually (though not always) smaller in magnitude. These earthquakes are also thought
to have more productive aftershocks than intraslab earthquakes.

Furthermore, the region is known to produce earthquake swarms, which are spatiotemporal clusters of
earthquakes that impedes splitting a catalog into background and triggered seismicity. Swarm events are
not triggered by a previous earthquake as in aftershock sequences; rather, they occur because of aseismic
sources, such as from underground fluids (volcanic magma or groundwater) or anthropogenic sources (such
as wastewater injection). Swarms manifest in a catalog as brief surges in the seismicity rate for a subregion,
beyond what is typical for its background seismicity. The many volcanoes of the PNW contribute to the
presence of swarms in this catalog [Bostock et al., 2019].

Even though the region’s seismicity is complex, the PNW does not have a large set of contemporary
instrumentally-measured earthquakes [Malone, 2019]. Due to sizable seismicity at the US/Canada border,
any catalog for the PNW region must consider earthquakes recorded by both US and Canadian seismic net-
works. Combined international PNW catalogs have been quantitatively studied (e.g., Bostock et al. [2019]),
though almost no previous studies have been made of aftershock patterns across the PNW. The one recent
exception found that intraslab events do indeed appear to have lower productivities than crustal mainshocks
[Gomberg and Bodin, 2021]. This study was based on the Reasenberg-Jones model, with sequence-specific
parameters fit using MLE. Given the importance of aftershock forecasts to emergency managers and other
potential users [Gomberg and Jakobitz, 2013], the spatiotemporal ETAS model may better characterize and
thus forecast aftershock patterns in the PNW. But the heterogenuous and limited catalog problematizes any
traditional MLE-based ETAS model for the region. Our methodology for Bayesian inference for the ETAS
model will thus be instrumental for estimating aftershock parameters together with their uncertainties.

In this technical report, we first explain in detail the Bayesian ETAS methodology and outline our steps
for simulating catalogs on which to test it. We then describe a novel international PNW catalog with
merged data from three data sources. We provide parameter estimation results that show the efficacy of our
methodology under simulated catalogs, and then show results for the PNW catalog.

2 Methods

This section describes the spatiotemporal ETAS model, its branching likelihood and the Bayesian infer-
ence procedure we developed to estimate parameters and quantify their uncertainty. It also explains our
procedures to simulate catalogs from an ETAS model and to elicit priors from experts.
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2.1 ETAS Model and Bayesian Formulation

2.1.1 Spatiotemporal ETAS Likelihood

Consider l(Y |θ), the traditional log-likelihood function for the spatiotemporal ETAS model given in Ogata
[1998]:

l(θ|HT ) =

n∑
i=1

log(λ(ti, xi, yi|Hti))−
∫ T

0

∫ ∫
S

λ(t, x, y|Ht)dxdydt (2)

As mentioned in Section 1.2, this likelihood is challenging, if not impossible, to optimize due to its
multimodality, flatness near parameter optima, and parameter correlation.

The integral term of equation 2 can be rewritten as:

∫ T

0

∫ ∫
S

λ(t, x, y|Ht)dxdydt = µT |S|+
∫ T

0

∫ ∫
S

∫ ∞
M0

N(ds, dξ, dη, dM) ·
∫ T−s

0

∫ ∫
S−(ξ,η)

a(t, x, y,M)dtdxdy

INT = INTb + INTtrig,

where ds, dξ, dη, dM refers to an infinitesimal interval in time-2dspace-magnitude, the triggering function
a(t, x, y,M) = K exp(α(Mj −M0))(t− tj + c)−p q−1

πd1−q ((x− xj)2 + (y− yj)2 + d)−q, T is the catalog period,
S is the two-dimensional catalog spatial zone and |S| is its area. In this model, since we assume a constant
background rate in space, µST (x, y) = µ 1

|S| .

We thus decompose INT into the background component (b) and triggered component (trig) (the latter
two integral terms). In INTtrig, the first integral term can be interpreted as “how many triggered earthquakes
occur in this infinitesimal interval, when integrated over all of time, space and magnitude” and the second
integral term as “what is the contribution to the total triggered intensity from these earthquakes”. The first
integral in INTtrig thus translates to a sum over all earthquakes in the catalog leading to

INTtrig =

n∑
j=1

∫ T−tj

0

∫ ∫
S(j)

a(tj , xj , yj ,Mj)dtdxdy,

with S(j) = {(x− xj , y − yj) : (x, y) ∈ S}. This can be split into its temporal and spatial components:

INTtrig =

n∑
j=1

∫ T−tj

0

K exp(α(Mj −M0))

(t+ c)p
dt

∫ ∫
S(j)

q − 1

πd1−q
1

(x2 + y2 + d)q
dxdy.

2.1.2 Evaluating the Spatial Integral

A particular challenge of the likelihood function is in evaluating the spatial integral in INTtrig. Ogata [1998]
originally suggested to evaluate this intergral by radially approximating it across the catalog zone. Section
6.3 in the Appendix provides a comprehensive explanation of this radial approximation and several other
approaches to handling this integral. The radial approximation relies on setting several arbitrary choices on
how to split the region and is computationally expensive, so we investigated other approaches. It should be
noted that the most common approach in the literature is simply to set this integral equal to unity, allowing
to ignore it [Schoenberg, 2013]. While this is more computationally efficient and does not require arbitrary
choices, it does not work well for seismic regions with seismicity near its borders, which is the case for the
PNW (see Figure 3). We required a different approach to evaluate the spatial integral.

We developed a way to solve for the spatial integral in one dimension analytically (say, x). This yields a
function that is an integral over another dimension (y). This integral does not have a closed form solution
but can be numerically evaluated. Such an analytical+numerical approach has been used in previous ETAS
studies [Werner et al., 2011]. Specifically, solving the (indefinite) spatial integral, G, in one dimension yields:

G =

∫
(x2 + y2 + d)−qdx

= x(d+ x2 + y2)−q(1 +
x2

d+ y2
)q · 2F1(

1

2
, q;

3

2
;
−x2

y2 + d
),
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where 2F1 is the hyper-geometric function that results when integrating a function with a negative power.
We can now rewrite the two-dimensional spatial integral as:∫

S
(j)
y

∫
S
(j)
x

(x2 + y2 + d)−qdxdy

=

∫
S
(j)
y

x(d+ x2 + y2)−q(1 +
x2

d+ y2
)q · 2F1(

1

2
, q;

3

2
;
−x2

y2 + d
)dy,

where S
(j)
x and S

(j)
y are the range of the spatial zone in each direction.

This expression can be evaluated by one-dimensional numerical integration, which is faster and less
sensitive to initial values than two-dimensional numerical integration. The standard approach is to integrate
via some quadrature rule with the most common one being Gaussian quadrature. We use Gaussian-Kronrod
quadrature (in R’s function “integrate”) with a convergence tolerance of 10−6 for each earthquake.

Computing an updated G value for each earthquake for each proposed d/q combination would be com-
putationally costly, especially within an iterative MCMC procedure (see following section). Our solution is
to first compute G for a somewhat fine grid of d/q values. This is done for every earthquake in the catalog,
since the product in the INTtrig term is evaluated earthquake-wise. The grids used in the synthetic catalog
analysis are presented in Table 16 in Appendix Section 6.3.4.

We then interpolate from the grid of G values for a specific proposed d/q combination. We use bilinear
interpolation because of observed smoothness in the G surfaces for several synthetic catalogs. Figure 14
in Appendix Section shows G surfaces for two earthquakes, near the spatial boundary (left plot, lower G
values) and in the middle of the region (right plot, higher G values, as there is more space to integrate over).

2.1.3 Branching Likelihood for ETAS

Now assume that, for each catalog event i, we know B as given in Section 1.2. Conditional on this B, a
branching likelihood L(Y |θ,B) can be derived (we provide this derivation in Section 6.4). For the spatiotem-
poral ETAS model, this branching likelihood is

L(Y |θ,B) = exp(−µSTT )

n∏
j=1

µST

n∏
j=1

(
exp(−k(Mj)H(T−tj)G((x−xj , y−yj))k(Mj)

|Aj |
∏
ti∈Aj

h(ti−tj)g(xi−xj , yi−yj)
)
,

where

H(T − tj) =

∫ T−tj

0

h(t)dt,

G(x− xj , y − yj) =

∫ ∫
S(j)

g(x− xj , y − yj)dxdy,

Aj is the set of all earthquake triggered by earthquake j and A0 is the set of all earthquake not triggered
by a previous earthquake (background events). In the branching likelihood, the first two terms are the
contribution of the background rate to the likelihood and the terms inside the

∏n
j=1 are the aftershock

contribution to the likelihood: integral part and sum part, respectively.
We will work with the log-likelihood l(Y |θ,B) = log(L(Y |θ,B)):

l(Y |θ,B) = |A0| log(µST ) +

n∑
j=1

|Aj | log(k(Mj)) +
∑
ti∈Aj

log(h(ti − tj)) + log(g(xi − xj , yi − yj)) (3)

+ (−µSTT |S|) +

n∑
j=1

−k(Mj)H(T − tj)G(x− xj , y − yj)

Figure 1 shows a surface for l(Y |θ,B) with varying K and α near their true values for Catalog 2A (see
next section). Figure 2 shows a surface for l(Y |θ,B) with varying d and q near their true values for Catalog
3D. Other plots for these two parameter combos for different synthetics looked similar.
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Figure 1: Branching likelihood surface for Catalog 2A, varying K and α near their true values and keeping other
parameters fixed to their true values. Note that this shows the negative log-likelihood values (lowest values are
the maximal values of the log-likelihood values). Contours for every 50 values of the likelihood. The point
marks the true K and α for Catalog 2A.
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Figure 2: Branching likelihood surface for Catalog 3D, varying d and q near their true values and keeping other
parameters fixed to their true values. Contours for every 100 values of the likelihood.
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Parameter Default Prior
Bi Uniform on previous events
µST Gamma(0.1, 0.1)
K Uniform(0, 10)
α Uniform(0, 10)
c Uniform(0, 8)
p Uniform(1, 8)
d Uniform(0, 8)
q Uniform(1, 8)

Table 1: Priors for spatiotemporal ETAS parameters taken from Ross [2021]. No difference was found in the
posteriors for K between the default and alternative Gamma priors.

2.1.4 Bayesian Inference for ETAS Parameters

Bayesian inference is based on drawing samples from the posterior distribution for a parameter of interest.
The parameter’s posterior is proportional to its prior distribution (our initial beliefs about the values the
parameter can take) scaled by the likelihood function (which expresses how likely any given parameter value
is, given the data we have observed and our model). That is, the data enters the model through the likelihood
and only adjusts the prior to the extent that the data contains information about the parameter. Priors are
described in Table 1.

We use the branching likelihood L(Y |θ,B) with the spatial integral term as described in Section 2.1.2. So
every posterior distribution p(θ) for parameter θ will be expressed proportional to the prior, π(θ), multiplied
by L(Y |θ,B). Furthermore, we will work with the log-posteriors, so

p(θ) ∝ π(θ)L(Y |θ,B)

log(p(θ)) ∝ log(π(θ)) + l(Y |θ,B).

We can re-express l(Y |θ,B) from equation 3 as:

l(Y |θ,B) =|A0| log(µST )− µSTT |S|

+

n∑
j=1

−k(Mj)H(T − tj)G(x− xj , y − yj)

+

n∑
j=1

|Aj | log(k(Mj)) +
∑
ti∈Aj

log(h(ti − tj)) + log(g(xi − xj , yi − yj))

= SUMbkgd + INTbkgd + INTtrig + SUMtrig.

Unlike in the traditional likelihood function, the only term here that depends on all three components of the
triggering model is INTtrig, which equals

∑n
j=1−k(Mj)H(T − tj)G(x− xj , y − yj).

We will pair the parameters belonging to each model component and sample from their conditional
posteriors, conditional on fixed values for the other ETAS parameters. The log-posterior density functions
for each parameter pair are derived in Appendix Section 6.5. We use a Gibbs sampler procedure [Ross, 2017,
2021] to sample from each conditional posterior distribution, fixing all other parameters to their current
values. We take the common approach of sampling posterior values directly from each conditional posterior
distribution with the Metropolis-Hastings sampler [Robert and Casella, 1999], a type of Markov Chain Monte
Carlo sampler.

We use the following procedure to sample values from each parameter’s posterior distribution:

1. Set initial values for ETAS parameters Bi, θ = {µ,K, α, c, p, d, q}. Again, we assume a spatially constant
background rate so µST (x, y) = µ 1

|S| .

2. Take a uniform prior distribution on Bi (each previous earthquake has equal probability of triggering
earthquake i, and it is as probable to be a background event). Sample from the posterior of Bi by
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randomly drawing an integer from 0 to j (j < i) with the following probability weights:

P (Bi = j|Y, θ) =


µST

µST+
∑i−1

j=1 k(Mj)h(tj)g(x−xj ,y−yj)
if j = 0

k(Mj)h(tj)g(x−xj ,y−yj)
µST+

∑i−1
j=1 k(Mj)h(tj)g(x−xj ,y−yj)

if j ∈ 1, 2, . . . , i− 1

This is equivalent to sampling from a discrete Uniform distribution with probabilities given by P (Bi =
j|Y, θ).

3. Using the Bi information, sample from the posteriors of ETAS parameters:

• For µ, use a Gamma prior, which means the posterior is also Gamma and can be directly sampled.

• For (K,α), use improper priors and a random walk Metropolis-Hastings algorithm to sample from
the posterior.

• For (c, p), use Uniform priors over a broad interval and a random walk Metropolis-Hastings algo-
rithm to sample from the posterior.

• For (d, q), use Uniform priors over a broad interval and a random walk Metropolis-Hastings algo-
rithm to sample from the posterior.

4. Repeat steps 2 and 3, updating the Bi with new posterior draws for θ and then the estimation of θ
using the updated Bi, for a fixed number of iterations (usually 10,000).

We implemented this computationally as a set of C++ functions that are used within the R statistical
software.

2.2 Simulation of Spatiotemporal ETAS Catalog

In order to evaluate the utility of the Bayesian ETAS procedure and our computational implementation, we
estimate parameters for catalogs simulated from the spatiotemporal ETAS model. We used several fixed
parameter sets and spatiotemporal square region [0, T ]×[0, S]2. To account for know boundary issues [Harte,
2013], we simulate catalogs for a larger auxiliary space-time window and estimate parameters for a smaller
space-time window [0, Ttarget]× [0, Starget]

2, where T = Ttarget + Tmargin and S = Starget + Smargin.
Our simulation, based on Zhuang and Touati [2015], follows the following steps:

1. Draw a set of nbkgd background earthquakes, where nbkgd ∼ Pois(µ·T ), where T is the catalog duration
(eg, 2000 or 5000 days).

(a) For each background event i, simulate a random time ti ∼ Unif(0, T ), a random location xi ∼
Unif(0, S), yi ∼ Unif(0, S), and random magnitude Mi ∼ GR(β), the Gutenberg-Richter law
with slope β.

2. Set Tas = 2·T as the maximum aftershock duration. For each background event (ti,Mi), simulate a
random number of triggered events ntrig,i ∼ Pois(λtrig,i), where

λtrig,i(ti,Mi) = K exp(α · (Mi −M0)) · ((Tas + c)1−p − c1−p) · 1

1− p .

This is the integral of the unnormalized Omori temporal density from t = 0 to t = Tas, scaled by the
time-independent productivity law. This represents the expected number of triggered events within the
finite time window [0, Tas]. Thus, the number of triggered events is a function solely of the mainshock’s
magnitude.

3. Each of these triggered events (j = 1, . . . , ntrig,i) needs a random time, location, magnitude and number
of triggered events.

(a) Draw a random time using the inverse transform sampling technique. The inverse transform for
the modified Omori law is derived in Section 6.1. Simulate r ∼ Unif(0, 1) and draw a random
time difference ∆tj from [0, Tas]:

∆tj = (r · ((Tas + c)1−p − c1−p) + c1−p)1/1−p − c.

Set the triggered event’s time tj = ti + ∆tj . Remove any times that fall outside T .

(b) Draw a random location using inverse transform sampling from the Utsu-Seki law. The inverse
transform for the modified Utsu-Seki law is derived in Section 6.1. This has two steps:

i. Simulate a random distance by drawing r ∼ Unif(0, 1) and drawing a random distance ∆sj
from [0, S]:

∆sj =
√

[(r − 1)(−d1−q)]1/1−q − d.

8



ii. Draw a random angle in the circle, uniformly from (0, 2π). The aftershock is located at the
polar coordinate determined by this random distance and angle.

(c) Draw a random magnitude ∼ GR(β).

(d) Draw a random number of triggered events again using ntrig,j ∼ Pois(λtrig,j), where

λtrig,j(tj ,Mj) = K exp(α · (Mj −M0)) · ((Tas + c)1−p − c1−p) · 1

1− p .

4. Repeat the above step for all generations of triggered events until there are no more. The number of
triggered events is guaranteed to converge to 0 for subcritical catalogs [van der Elst, 2017].

Description µ K α c p β T naux ntar nM>4 br. ratio Mmax

Catalog 2 Low α, highK 0.1 0.02 1.7 0.05 1.08 ln(10) 20000 8121 1590 45 0.677 5.72
Catalog 3 High α 0.1 0.006 ln(10) 0.05 1.08 ln(10) 20000 5866 1384 46 0.633 5.84

Units events
(days·km2)

events 1
M days - - days events events events - M

Table 2: Synthetic test catalogs (Mmin=2.5 for all). Catalogs were simulated for an auxiliary spatial window
of (0,1000; S = 1000km2) and values for the last four columns are for the target window of (250,750) only
(Starget = 500km2). To account for the temporal boundary issues, we used T = 20000 days and Ttarget = 15000
days.

d q
A 1 2
B 1 1.5
C 0.1 2
D 0.1 1.5

Units km2 -

Table 3: Simulation values for spatial parameters. Catalogs 2 and 3 had all four variations simulated.

The above procedure was performed for the “A” version of the catalog (d=1, q=2, see Table 3). We then
used this catalog to reassigned earthquakes to different locations based on the other d and q combinations.
Thus, the total number of earthquakes is kept fixed and aftershocks are simply relocated based on different
spatial parameters. Taking as input the auxiliary catalog (in our case, S=1000) and a d/q combination, we
use the following procedure:

1. Identify all mainshocks as earthquakes that were not triggered by a previous earthquake. Reassign all
mainshock locations uniformly, so xi ∼ Unif(0, S), yi ∼ Unif(0, S) for all mainshocks i.

2. For each mainshock, find its triggered events. Assign to each one a random distance ∆sj from the
mainshock and random angle as in Step 3b above. This provides the (x, y) of the relocated aftershock
j.

3 Pacific Northwest Catalog

We collected a new complete catalog of contemporary seismicity for the international PNW region. We
consider all earthquakes from 1970-2018 instrumentally observed by the authoritative seismic network for a
rectangular box around the states of Washington and Oregon (target region) and a larger auxiliary region,
which comprises of the target zone and a margin zone around it; see Figure 3. The authoritative networks
are the Pacific Northwest Seismic Network (PNSN) for all earthquakes in Washington and Oregon, the
Geological Survey of Canada (GSC) for all earthquakes in British Columbia, and other regional networks for
the US states bordering Washington and Oregon, as included in the Advanced National Seismic System’s
ComCat catalog.

We consider all earthquakes above magnitude 2.0, as this is believed to be the magnitude of completeness
[Malone, 2020] for the PNSN, for the vast majority of this time period and region. However, according to
Malone [2019], “in the early decades of the 1970s and 1980s, southern Oregon was not monitored at all by
the PNSN ...’, and so we follow their example of only considering the region above 42.6°as complete. We
build models on the catalog both down to 42°and 42.6°. Table 4 has information about the three data sources
going into the catalog to be modelled.
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Catalog Latitude Longitude Magnitude Time Window
Target (PNSN) 42°× 49° -125°× -116.5° M2.0+ 1970-01-01 to 2019-01-01
Target (GSC) 42°× 49° -125°× -116.5° M2.0+ 1985-01-01 to 2019-01-01

Auxiliary (PNSN) 41°× 50° -126°× -115.5° M2.0+ 1970-01-01 to 2019-01-01
Auxiliary (GSC) 41°× 50° -126°× -115.5° M2.0+ 1985-01-01 to 2019-01-01

Table 4: Target catalog parameters and number of events for raw catalogs. The latitude and longitude corre-
spond to a rectangular box around the US states of Washington and Oregon, as well as a portion of British
Columbia. The time window begins in 1970, when the instrumental record of the PNSN began. For GSC, the
catalog begins in 1985, as location and magnitude calculations are inconsistent before and after 1985.

Duplicate events between catalogs were algorithmically identified and confirmed by seismologists from
the seismic networks; we used authoritative solutions when possible. More details on this procedure are in
Schneider et al. [Forthcoming]. Our careful study of duplicates resulted in 280 events entering the (auxiliary)
catalog from outside the authoritative source.

We excluded blasts and attempted to identify earthquake swarms, which are common in the PNW
[Bostock et al., 2019] and do not comply with the time-stationarity assumed by the ETAS model of the
background rate. We first removed any seismicity within a 10 km radius circular area of Mt. St. Helens,
which produced thousands of volcanic (non-tectonic) earthquakes. We then use a window-based deterministic
procedure (similar to those used by Jacobs et al. [2013]) to identify earthquake clusters in horizontal space,
time and depth (within the target zone only). These were classified by PNSN seismologists on a six-point
scale:

• 0: Neither a swarm nor an aftershock sequence. These earthquakes do not appear to be related
enough to be a cluster or possess neither the characteristics of swarms, nor sequences.

• 1: Definitely a swarm. The cluster has the features of a swarm, as far as times, locations, magni-
tudes, depths.

• 2: Likely/maybe a swarm. The cluster exhibits more features of a swarm than an aftershock
sequence, but it is not definite.

• 3: Don’t know / too hard to tell. The cluster could either be a swarm or an aftershock sequence.

• 4: Likely/maybe a sequence. The cluster exhibits more features of an aftershock sequence than a
swarm, but it is not definite.

• 5: Definitely a sequence. The cluster has the features of an aftershock sequence, as far as times,
locations, magnitudes, depths.

The full details of this process are given in Schneider et al. [Forthcoming]. We consider models with and
without events in definite or likely swarms (see Figure 4). There are slight differences in the magnitude-
frequency distribution of the catalog with and without maybe/confirmed (MC) swarms (see Figure 6).

The presence of the subducting slab leads to different tectonic regimes in this region, as described in
Section 1.4. We used the Slab 2.0 model [Hayes et al., 2018] to calculate the distance between each event’s
hypocenter and the estimated location of the slab interface. As in Gomberg and Bodin [2021], we considered
an event in the crustal regime if it was at least 10 km above the estimated slab interface, due to the
uncertainty in the location of the interface (n=3935, see Figure 5, left). All events that were below the
estimated slab interface were considered intraplate events (n = 546, see Figure 5, right); further restricting
to events that were at least 10 km below the estimated interface would reduce this to less than 150 events,
so we did not do this.

We computed the spatial integral G for all earthquakes in the PNW target zone, using the d/q grid given
in Table 16.

4 ETAS Model Results

4.1 Results on Simulated Catalogs

MLE Inference Table 5 has MLEs all spatiotemporal ETAS parameters using the branching likelihood
function, for four end-member synthetic catalogs. In general, MLEs are close to true values, though there is
a slight bias in overpredicting µ and underpredicting p.
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Figure 3: Instrumental catalog for the international PNW region. Target zone events are in blue and margin
zone events in gray. Based on the arguments of Malone [2019], we consider only the zone north of 42.6°(above
the green line) to be complete.
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Figure 5: Earthquakes classified as below the slab (left) and earthquakes classified as above the slab (right),
using the Slab 2.0 model [Hayes et al., 2018].
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Figure 6: Magnitude frequency and cumulative plots for all earthquakes, and just those not in maybe/confirmed
swarms, for the target region above 42.6°. Results look similar for the auxiliary region as well.
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Value µ K α c p d q β T n br. ratio Mmax

Cat 2A True 0.1 0.02 1.7 0.05 1.08 1 2 ln(10) 5000 1725 0.677 6.14
Cat 2A MLEs 0.113 (0.005) 0.019 (0.001) 1.715 (0.034) 0.043 (0.008) 1.063 (0.012) 1.008 (0.124) 2.009 (0.07) β T n br. ratio Mmax

Cat 2D True 0.1 0.02 1.7 0.05 1.08 0.1 1.5 ln(10) 5000 1725 0.677 6.14
Cat 2D MLEs 0.125 (0.005) 0.019 (0.001) 1.702 (0.019) 0.04 (0.005) 1.061 (0.009) 0.082 (0.007) 1.476 (0.018) β T n br. ratio Mmax

Cat 3A True 0.1 0.006 ln(10) 0.05 1.08 1 2 ln(10) 5000 1725 0.677 6.14
Cat 3A MLEs 0.108 (0.005) 0.007 (0.001) 2.252 (0.034) 0.052 (0.011) 1.083 (0.014) 0.983 (0.121) 1.986 (0.072) β T n br. ratio Mmax

Cat 3D True 0.1 0.006 ln(10) 0.05 1.08 0.1 1.5 ln(10) 5000 1725 0.677 6.14
Cat 3D MLEs 0.122 (0.005) 0.006 (0.001) 2.29 (0.036) 0.055 (0.012) 1.067 (0.015) 0.091 (0.011) 1.491 (0.028) br. ratio Mmax

Table 5: MLEs for spatiotemporal ETAS parameters in several synthetic catalogs, using the branching log-
likelihood l(Y |θ,B) and Hessian-based standard errors in paranetheses. All runs have initial values close to true
parameters, though results are insensitive to different initial values. Other catalogs not shown did equally well.

Bayesian Inference We evaluated the goodness of fit of the posterior distributions on simulated catalogs
visually. For each parameter, we inspected whether the true value was contained within the posterior density
curve. We also inspected whether the true value was systematically below or above the posterior mode to
evaluate a bias in the estimation (towards over- or under-prediction of the parameter). We further examined
trace plots for each parameter, showing the posterior sample by iteration. We considered whether the
sampling was well-mixed or whether the sampler took excursions to a part of the parameter space. We
finally examined scatterplot matrices of the posterior samples across all parameter pairs to evaluate the level
of parameter correlation and trend.

Figure 7 shows the posterior results for the ETAS parameters θ for two simulated catalogs (Catalog 3A
and 2D) using the following modelling settings: parameters initialized close to the true values, branching
structure initialized close to the true branching structure, and prior distributions taken from Ross [2021].
Posteriors are usually well-centered around the true values (Figure 7) and trace plots show a well-mixed
sampling of the posterior (Figure 8). Scatterplot matrices in Figure 9 show large and relatively linear
correlations between parameters in the same model component (K and α; c and p; d and q) but also across
model components (e.g, K and p). Our posterior estimates allow to more closely investigate parameter
correlation that has been reported in past literature [Lombardi, 2015, Wang et al., 2010].

We ran the following sensitivity checks to check the robustness of our parameter estimation procedure
and computational implementation.

Changes to model implementation:

• Initialized the ETAS parameters θ to values far from the true simulated values

• Initialized the branching structure B to all background events (Bi = 0∀i)
• Fixing the spatial integral for each earthquake Gi = 1∀i rather than calculating it using our numeri-

cal+analytical+interpolation procedure.

Changes to synthetic catalogs:

• Re-simulated the synthetic catalogs with a longer time window

• Simulated 10 versions of each synthetic catalog

Posteriors estimated for each of these changes were similar to those under the initial model implementation,
or with the initial catalogs. Furthermore, we observed qualitatively similar posterior results under all eight
synthetic catalogs (Catalogs 2A-3D). These sensitivity checks suggested that not only was our computational
implementation valid for modelling real catalogs, but that our posterior estimations are robust to different
parameter initializations, which is a known problem for MLEs for the ETAS model (see Section 1.2).
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Figure 7: Sampled posteriors for ETAS parameters for synthetic Catalogs 3A (top) and 2D (bottom), with
posterior means in black and true parameter values in red. Results were similar for the other synthetic catalogs.15
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Figure 8: Trace plots for posterior samples for Catalogs 3A (top) and 2D (bottom), with true parameter values
in red. Results were similar for the other synthetic catalogs.
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Figure 10: Sampled posteriors for ETAS parameters for PNW catalog, target zone (above 42.6°) without
maybe/confirmed swarms, with α fixed to ln(10) and the spatial integral G fixed to 1. Posterior means marked
with black lines.

4.2 Results on PNW Catalog

We sampled posterior distributions for the ETAS parameters for different subsets of the PNW catalog. For
all results, we used non-specific prior distributions from the ETAS literature [Ross, 2021]. Figure 10 shows
posterior densities for ETAS parameters for the catalog, for all earthquakes excluding maybe/confirmed
swarms in the target zone north of 42.6°and covering all tectonic regimes (n=6441). These posterior functions
use a fixed α = ln(10), a spatial integral Gi fixed to 1 for all earthquakes i, and the Cat 2 initial values.
Figures 11 and 12 show the trace plots and scatterplot matrices for these posterior values, respectively.

We ran a series of experiments to test how each of these modelling and catalog choices affect the posterior
results.

Changes to model implementation:

• α parameter fixed to ln(10) (which assumes a self-similar catalog and a Gutenberg-Richter b value of
1) OR allowing α to be estimated by the procedure (see Table 6)

• spatial integral calculated as described in section 2.1.2 OR fixing it to 1, as advocated in Schoenberg
[2013] and used by many authors (see Table 7)

• several sets of initial values (we omit this description)

Changes to PNW catalog:

• using the target zone OR the auxiliary zone (target+margin zones) (see Table 8)

• using all earthquakes OR without events that were in possible or definite swarms (with a value of 1 or
2 on the scale described in Section 3) (see Table 9)

• using all regimes OR just earthquakes classified as being in the crustal or deep regime (see Table 10)
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Figure 11: Trace plots for Bayesian inference for ETAS parameters for PNW catalog.
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Experiment α Fixed? G Fixed? Inits Spatial Zone Swarms? Tectonics? n
Baseline Fixed to ln(10) Fixed to 1 Cat 2 Target (42.6°) No MC swarms All 6441

Free α Free Fixed to 1 Cat 2 Target (42.6°) No MC swarms All 6441

Table 6: Experiments with free α. Target (42.6°) means the target zone north of 42.6°. MC swarms are
maybe/confirmed swarms. All tectonics means all eqks, regardless of their tectonic regime.

Experiment α Fixed? G Fixed? Inits Spatial Zone Swarms? Tectonics? n
Baseline Fixed to ln(10) Fixed to 1 Cat 2 Target (42.6°) No MC swarms All 6441

Calc, interpolate G Fixed to ln(10) Novel Solution Cat 2 Target (42.6°) No MC swarms All 6441

Table 7: Experiments with calculated and interpolated Gi for all earthquakes i.

Experiment α Fixed? G Fixed? Inits Spatial Zone Swarms? Tectonics? n
Baseline Fixed to ln(10) Fixed to 1 Cat 2 Target (42.6°) No MC swarms All 6441

Target (all) Fixed to ln(10) Fixed to 1 Cat 2 Target (42°) No MC swarms All 7119
Auxiliary (north) Fixed to ln(10) Fixed to 1 Cat 2 Auxiliary (42.6°) No MC swarms All 7866

Auxiliary (all) Fixed to ln(10) Fixed to 1 Cat 2 Auxiliary (42°) No MC swarms All 12457

Table 8: Experiments related to the spatial zone being modelled.

Experiment α Fixed? G Fixed? Inits Spatial Zone Swarms? Tectonics? n
Baseline Fixed to ln(10) Fixed to 1 Cat 2 Target (42.6°) No MC swarms All 6441

No confirmed swarms Fixed to ln(10) Fixed to 1 Cat 2 Target (42.6°) No C swarms All 6574
Include swarms Fixed to ln(10) Fixed to 1 Cat 2 Target (42.6°) All events All 7095

Table 9: Experiments related to which swarm events to exclude.

Experiment α Fixed? G Fixed? Inits Spatial Zone Swarms? Tectonics? n
Baseline Fixed to ln(10) Fixed to 1 Cat 2 Target (42.6°) No MC swarms All 6441
Crustal Fixed to ln(10) Fixed to 1 Cat 2 Target (42.6°) No MC swarms Crustal (western only) 3935

Crustal+Eastern Fixed to ln(10) Fixed to 1 Cat 2 Target (42.6°) No MC swarms Crustal (all) 5820
Deep Fixed to ln(10) Fixed to 1 Cat 2 Target (42.6°) No MC swarms Deep only 546

Table 10: Experiments related to tectonic regime.

Since posterior, trace and scatterplots looked similar between most runs, we omit these and just report
summary statistics on the posterior values: their medians and middle 95% intervals (since posteriors tended
to be symmetric). These are described in Tables 11 - 15.

The ETAS posteriors were insensitive to the following model choices: solving the spatial integral G or
fixing it to 1 (Table 12); setting different initial values (table omitted). The results were also insensitive to
the following catalog choices: using the target or auxiliary window (when using the 42.6°southern border,
Table 13)); grouping Crustal+Eastern regimes or considering Crustal events only (except for µ, Table 14);
excluding Maybe/Confirmed swarms v. Confirmed swarms only (Table 15).

The ETAS posteriors were sensitive to fixing α = ln(10) or letting it be estimated (Table 11). They were
also sensitive to the following catalog choices: setting the southern boundary at 42.6°or 42°(Table 13); deep
v. non-deep earthquakes (Table 14); including (any kind of) swarms or not (Table 15).
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6 Appendix

6.1 Derivation of Inverse Transforms

In simulation step 3a, we need to draw random triggering times as specified by the ETAS triggering equation,
normalized over the time interval [0, T ]. To obtain a pdf for this distribution, we divide the triggering equation

by its integral over the time interval [0, T ], using the result that
∫ T
0

(t+ c)−p = ((T + c)1−p − c1−p) · 1
1−p .

f(t) =
K exp(α · (Mi −M0)) · (t+ c)−p∫ T

0
K exp(α · (Mi −M0)) · (t+ c)−pdt

=
K exp(α · (Mi −M0)) · (t+ c)−p

K exp(α · (Mi −M0)) · ((T + c)1−p − c1−p) · 1
1−p

=
(t+ c)−p

((T + c)1−p − c1−p) · 1
1−p

From this, we can use the cdf, F (z), to derive the inverse transform function, from which we can sample
triggering times using a random uniform number.

F (z) =

∫ z

0

(1− p)( (t+ c)−p

((T + c)1−p − c1−p) )dt

= (1− p)( 1

((T + c)1−p − c1−p) )

∫ z

0

(t+ c)−pdt

= (1− p)( 1

((T + c)1−p − c1−p) )(
1

1− p

(
(z + c)1−p − c1−p

)
)

=
(z + c)1−p − c1−p

(T + c)1−p − c1−p

We draw u ∼ Unif(0, 1) and solve F (F−1(u)) = u, to find F−1(u), the inverse transform function that
will draw a sample from the desired pdf f(t).

(F−1(u) + c)1−p − c1−p

(T + c)1−p − c1−p = u

(F−1(u) + c)1−p − c1−p = u((T + c)1−p − c1−p)

(F−1(u) + c)1−p = u((T + c)1−p − c1−p) + c1−p

F−1(u) + c = (u((T + c)1−p − c1−p) + c1−p)
1

1−p

F−1(u) = (u((T + c)1−p − c1−p) + c1−p)
1

1−p − c

This is the uth percentile of the desired pdf.
I next derive the inverse transform for the Utsu-Seki spatial decay law (needed for simulation step 3b).

First, we need to derive the normalization constant, Qs, to get a spatial pdf:

Qs

∫ ∞
−∞

∫ ∞
−∞

(x2 + y2 + d)−qdxdy

= Qs

∫ 2π

0

∫ R

0

(r2 + d)−qrdrdθ

= Qs

∫ 2π

0

1

1− q (
(R+ d)1−q

2
− d1−q

2
)dθ

=
Qs

1− q π((R+ d)1−q − d1−q)
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If we set Qs = q−1
πd1−q , then we would get

q − 1

πd1−q
π

1− q ((R+ d)1−q − d1−q)

=
−1

πd1−q
((R+ d)1−q − d1−q)

= −−d
1−q

d1−q
as R→∞

= 1.

So the spatial pdf is g(x, y) = q−1
πd1−q (x2 + y2 + d)−q as this integrates to 1 over the entire domain. We use

the cdf, G(z) to derive the inverse transform function.

G(z) =

∫ z

−z

∫ z

−z

q − 1

πd1−q
(x2 + y2 + d)−qdxdy

=
q − 1

πd1−q

∫ 2π

0

∫ z

0

(r2 + d)−qrdrdθ

=
q − 1

πd1−q
1

2(1− q)

∫ 2π

0

(z2 + d)1−q − d1−qdθ

=
q − 1

πd1−q
2π

2(1− q) ((z2 + d)1−q − d1−q)

=
(z2 + d)1−q

−d1−q − d1−q

−d1−q

=
(z2 + d)1−q

−d1−q + 1

We draw u ∼ Unif(0, 1) and solve G(G−1(u)) = u, to find G−1(u), the inverse transform function that
will draw a sample from the desired pdf g(x, y).

(G−1(u)2 + d)1−q

−d1−q + 1 = u

(G−1(u)2 + d)1−q = (u− 1)(−d1−q)

G−1(u)2 = [(u− 1)(−d1−q)]1/1−q − d

G−1(u) =
√

[(u− 1)(−d1−q)]1/1−q − d

This is the uth percentile of the desired spatial pdf.

6.2 Derivation of branching likelihood

This can be derived directly from Ogata (1998)’s likelihood function:

L(Y |θ) =

n∏
i=1

λ(ti, xi, yi,Mi|Ht, θ) exp(−
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

λ(t, x, y,M |θ,Ht)dtdxdy)

=

n∏
i=1

(
µST +

∑
j:tj<t

k(Mj)h(tj)g(x− xj , y − yj)
)

exp
(
−
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

µST +
∑
j:tj<t

k(Mj)h(tj)g(x− xj , y − yj)dtdxdy
)

Say we have |S0| background and n − |S0| triggered events in the catalog of size n. The background
events are generated by a homogenuous Poisson process with intensity λ(t|Ht) = µST . So,
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L(Y |θ, S0) =

|S0|∏
i=1

µST exp
(
−
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

µST dtdxdy
)

=

|S0|∏
i=1

µST exp(−µSTT |A|)

= exp(−µSTT |A|)
|S0|∏
i=1

µST

= exp(−µSTT |A|)µ|S0|
ST ,

where |A| is the area of the spatial region being modelled.
Now each of the events triggered by earthquake j (those in set Sj) are generated by a time-inhomogenuous

Poisson process with λ(t|Ht) = k(Mj)h(t− tj)g(x− xj , y − yj). The contribution to the likelihood function
for each aftershock sequence is:

L(Y |θ, Sj) =

|Sj |∏
i=1

k(Mj)h(ti − tj)g(xi − xj , yi − yj) exp
(
−
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

k(Mj)h(tj)g(x− xj , y − yj)dtdxdy
)

= k(Mj)
|Sj |

|Sj |∏
i=1

h(ti − tj)g(xi − xj , yi − yj) exp
(
− k(Mj)

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

h(t− tj)g(x− xj , y − yj)dtdxdy
)

= k(Mj)
|Sj |

|Sj |∏
i=1

h(ti − tj)g(xi − xj , yi − yj) exp
(
− k(Mj)

∫ ∞
0

h(t− tj)dt
∫ ∞
−∞

∫ ∞
−∞

g(x− xj , y − yj)dxdy
)
.

= k(Mj)
|Sj |

|Sj |∏
i=1

h(ti − tj)g(xi − xj , yi − yj) exp
(
− k(Mj)H(T − tj)G(x− xj , y − yj)

)
.

As in the above likelihood term, the spatial integral G(x − xj , y − yj) is evaluated using my analyti-
cal+numerical solution.

Now we combine the background and each aftershock contribution to the likelihood:

L(Y |θ,B) = L(Y |θ, S0) · L(Y |θ, S1) · L(Y |θ, S2) · . . . · L(Y |θ, Sn)

= L(Y |θ, S0)

n∏
j=1

L(Y |θ, Sj)

= exp(−µSTT |A|)µ|S0|
ST

n∏
j=1

(
exp

(
(−k(Mj)H(T − tj)G(x− xj , y − yj)

)
k(Mj)

|Sj |
∏
ti∈Sj

h(ti − tj)g(xi − xj , yi − yj)
)

=
[
µ
|S0|
ST

n∏
j=1

k(Mj)
|Sj |

∏
ti∈Sj

h(ti − tj)g(xi − xj , yi − yj)
]
·

[
exp(−µSTT |A|)

n∏
j=1

exp
(

(−k(Mj)H(T − tj)G(x− xj , y − yj)
)]

=SUM · INT.

6.3 Additional material related to evaluating the spatial integral

6.3.1 Radially approximating the spatial integral

The spatial component of INTtrig (spatial integral) is particularly complicated and is not directly evalu-
able. Several authors (Ogata (1998), Jalilian (2019)) advocate to deal with the spatial integral by radially
approximating it across the catalog zone.
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Figure 13: Jalilian (2019), Figure 1. Note that here, θ refers to the triangle’s central angle but in my (and
Ogata (1998)’s) notation, it is the azimuth angle.

For each mainshock j, partition the region S(j) into N subregions: S
(j)
1 , S

(j)
2 , . . . , S

(j)
N . Do this by setting

N knots along the boundary of S(j) and drawing a segment to connect the earthquake’s location (the origin
of S(j)) to each knot. That is, we split S(j) into a set of N radial wedges (triangles) from the earthquake j
in the center. See Figure 13 for a visual example (Jalilian 2019). Each of these triangles is defined radially
by its radial segment rk and azimuth angle θk (k = 1, . . . , N), and we order the N segments by θ, such that
0 < θ1 < θ2 < . . . < θN < 2π.

Then, using Ogata (1998),∫ ∫
S(j)

q − 1

πd1−q
1

(x2 + y2 + d)q
dxdy ≈

N∑
k=1

G
(i)
k (xi, yi)

∆k

2π
,

where

G
(i)
k =

π

1− q ((r2k + d)1−q − d1−q)

∆k = θk+1 − θk.

The first term in the sum evaluates the Utsu-Seki integral along the radial segment rk and the second
term scales it by a measure of the angular area of the wedge. This is the proportion of the circle (2π)
corresponding to the difference between this central angle and the neighboring central angle. Ogata (1998)
fails to specify the case of k = N , where ∆N = θN+1 − θN does not exist. We simply set ∆N = θN − θN−1.

The number of triangles N must be “sufficiently large for the accurate numerical approximation of the
integral” (Ogata 1998). This is done by trial and error. Currently, we have set N = 20 but need to
experiment with higher and lower Ns.

The above are standard practices for dealing with the spatiotemporal ETAS likelihood. We am adding
one other piece to improve computation of this solution:

6.3.2 Direct evaluation of the spatial integral

The spatial integral
∫ ∫

S(j)
1

(x2+y2+d)q
dxdy may also be computed directly using numerical integral solvers

in R. This would avoid some of the arbitrary choices that the radial approximation requires (eg, setting N ,
the number of knots).

There are many solutions in R for multidimensional integration. The R package cubature offers both
deterministic and Monte Carlo (MC) direct integration. We examined two approaches:

• hcubature, which implements an h-adaptive cubature rule (McFee 1997). A cubature rule is a quadra-
ture rule (integral evaluation procedure) applied to a multidimensional space. The h-adaptive version
recursively partitions the integration area into smaller subareas, applying the same cubature rule to
each, until convergence is achieved within each subarea. Eventually, the integral over the entire area
converges. Open question: it is still unclear what the quadrature rule used by hcubature is. The
documentation refers to Steven G. Johnson’s C code, but the exact quadrature rule is unspecified.
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• vegas, which implements a MC-based integration (Lepage 1980). The integral is computed at random
points from a probability dist’n related to the integrand, drawn using importance sampling. The
integral points are summed to estimate the full function integral.

I evaluated the spatial integral for all earthquakes in catalogs 3A and 3B under both hcubature and
vegas; they yielded very similar values.

6.3.3 Speedier analytical+numerical evaluation of the spatial integral

We may also solve the spatial integral in one dimension analytically (say, x). This yields a function that
is an integral over another dimension (y). This integral doesn’t have a closed form solution but can be
numerically evaluated as described above (1-dimensional numerical integration). Specifically, solving the
(indefinite) spatial integral in one dimension yields

∫
(x2 + y2 + d)−qdx

= x(d+ x2 + y2)−q(1 +
x2

d+ y2
)q · 2F1(

1

2
, q;

3

2
;
−x2

y2 + d
),

where 2F1 is the hyper-geometric function that results when integrating a function with a negative power.
Michael Barall evaluated this analytic solution in Mathematica and we confirmed it with
https://www.wolframalpha.com/calculators/integral-calculator/.

We need the definite integral over our spatial dimensions, however:∫
S
(j)
x

(x2 + y2 + d)−qdx

=
[
x(d+ x2 + y2)−q(1 +

x2

d+ y2
)q · 2F1(

1

2
, q;

3

2
;
−x2

y2 + d
)
]
|S

(j)
xupper

S
(j)
xlower

,

where S
(j)
x is notation for the x-boundaries for box S(j) centered around mainshock j. In my simulated

catalogs, the spatial regions S are all squares: [250, 750]2 (target) and [0, 1000]2 (full=target+auxiliary). So
for target catalogs, the definite integral for mainshock location (xj , yj) is

[
(750− xj)(d+ (750− xj)2 + y2)−q(1 +

(750− xj)2

d+ y2
)q · 2F1(

1

2
, q;

3

2
;
−(750− xj)2

y2 + d
)
]
−[

(250− xj)(d+ (250− xj)2 + y2)−q(1 +
(250− xj)2

d+ y2
)q · 2F1(

1

2
, q;

3

2
;
−(250− xj)2

y2 + d
)
]

We can now rewrite the two-dimensional spatial integral as:∫
S
(j)
y

∫
S
(j)
x

(x2 + y2 + d)−qdxdy

=

∫
S
(j)
y

x(d+ x2 + y2)−q(1 +
x2

d+ y2
)q · 2F1(

1

2
, q;

3

2
;
−x2

y2 + d
)dy,

and when applying to the target catalogs, this becomes

∫ 750−yj

250−yj

[
(750− xj)(d+ (750− xj)2 + y2)−q(1 +

(750− xj)2

d+ y2
)q · 2F1(

1

2
, q;

3

2
;
−(750− xj)2

y2 + d
)
]
−

[
(250− xj)(d+ (250− xj)2 + y2)−q(1 +

(250− xj)2

d+ y2
)q · 2F1(

1

2
, q;

3

2
;
−(250− xj)2

y2 + d
)
]
dy.
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Catalog true d d sequence true q q sequence
A 1 from=0.3, to=1.75, by=0.05 2 from=1.25, to=2.75, by=0.05
B 1 from=0.3, to=1.75, by=0.05 1.5 from=1.05, to=2.25, by=0.05
C 0.1 from=0.025, to=0.175, by=0.005 2 from=1.25, to=2.75, by=0.05
D 0.1 from=0.025, to=0.175, by=0.005 1.5 from=1.05, to=2.25, by=0.05

PNW - from=0.3, to=2.0, by=0.08 - from=1.2, to=1.6, by=0.04

Table 16: d/q grids for pre-computed G evaluations.
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Figure 14: G surfaces for varying d and q around the true values for Catalog 2D. The integral values for an
earthquake near the border (left) are smaller than the values for an earthquake near the center of the region
(right). The values increase for increasing q, but the rate of increase gets smaller for q values above the truth.
White contours show increase in 0.1 steps of integral value.

This expression can be evaluated by 1-dimensional numerical integration. The standard approach is to
integrate via some quadrature rule with the most common one being Gaussian quadrature. We am using a
version of this called Gaussian-Kronrod quadrature (in R’s function “integrate”) which has better accuracy
for higher order functions. There are other options for the numerical procedure (ie, trapezodial quadrature,
Clenshaw-Curtis quadrature) that we could experiment with, if needed.

I confirmed that the spatial integral values produced by this analytical+numerical solution were very close
to those from the preceding 2D numerical approximation, for all earthquakes in several simulated catalogs.

6.3.4 Tables and figures for d/q grids for evaluating the spatial integral

In order to save computation in evaluating the ETAS branching likelihood as parameter posteriors are
sampled, we pre-compute G, the spatial integral, for each earthquake, under a grid of d and q values given
in Table 16. The surfaces of G values for two earthquakes in a synthetic catalog are given in Figure 14.

6.4 Derivation of branching likelihood

We can directly derived the branching likelihood of Ross [2021] from Ogata [1998]’s likelihood function:
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L(Y |θ) =

n∏
i=1

λ(ti, xi, yi,Mi|Ht, θ) exp(−
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

λ(t, x, y,M |θ,Ht)dtdxdy)

=

n∏
i=1

(
µST +

∑
j:tj<t

k(Mj)h(tj)g(x− xj , y − yj)
)

exp
(
−
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

µST +
∑
j:tj<t

k(Mj)h(tj)g(x− xj , y − yj)dtdxdy
)

Say we have |A0| background and n − |A0| triggered events in the catalog of size n. The background
events are generated by a homogenuous Poisson process with intensity λ(t|Ht) = µST . So,

L(Y |θ,A0) =

|A0|∏
i=1

µST exp
(
−
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

µST dtdxdy
)

=

|A0|∏
i=1

µST exp(−µSTT |S|)

= exp(−µSTT |S|)
|A0|∏
i=1

µST

= exp(−µSTT |S|)µ|A0|
ST ,

where |S| is the area of the spatial region being modelled.
Now each of the events triggered by earthquake j (those in set Aj) are generated by a time-inhomogenuous

Poisson process with λ(t|Ht) = k(Mj)h(t− tj)g(x− xj , y − yj). The contribution to the likelihood function
for each aftershock sequence is:

L(Y |θ,Aj) =

|Aj |∏
i=1

k(Mj)h(ti − tj)g(xi − xj , yi − yj) exp
(
−
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

k(Mj)h(tj)g(x− xj , y − yj)dtdxdy
)

= k(Mj)
|Aj |

|Aj |∏
i=1

h(ti − tj)g(xi − xj , yi − yj) exp
(
− k(Mj)

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

h(t− tj)g(x− xj , y − yj)dtdxdy
)

= k(Mj)
|Aj |

|Aj |∏
i=1

h(ti − tj)g(xi − xj , yi − yj) exp
(
− k(Mj)

∫ ∞
0

h(t− tj)dt
∫ ∞
−∞

∫ ∞
−∞

g(x− xj , y − yj)dxdy
)
.

= k(Mj)
|Aj |

|Aj |∏
i=1

h(ti − tj)g(xi − xj , yi − yj) exp
(
− k(Mj)H(T − tj)G(x− xj , y − yj)

)
.

As in the above likelihood term, the spatial integral G(x − xj , y − yj) is evaluated using my analyti-
cal+numerical solution.
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Now we combine the background and each aftershock contribution to the likelihood:

L(Y |θ,B) = L(Y |θ,A0) · L(Y |θ,A1) · L(Y |θ,A2) · . . . · L(Y |θ,An)

= L(Y |θ,A0)

n∏
j=1

L(Y |θ,Aj)

= exp(−µSTT |S|)µ|A0|
ST

n∏
j=1

(
exp

(
(−k(Mj)H(T − tj)G(x− xj , y − yj)

)
k(Mj)

|Aj |
∏
ti∈Aj

h(ti − tj)g(xi − xj , yi − yj)
)

=
[
µ
|A0|
ST

n∏
j=1

k(Mj)
|Aj |

∏
ti∈Aj

h(ti − tj)g(xi − xj , yi − yj)
]
·

[
exp(−µSTT |S|)

n∏
j=1

exp
(

(−k(Mj)H(T − tj)G(x− xj , y − yj)
)]

=SUM · INT.

6.5 Derivations of log posterior density functions

Recall that posteriors for a given parameter pair are conditional on fixed values for the other ETAS param-
eters. In other words, for example. p(K,α) = p(K,α|µ, c, p, d, q). We remove this “conditional” part for
notational ease.

log(p(K,α)) ∝ log(π(K,α)) + l(Y |K,α,B)

= 0 + (

n∑
j=1

|Aj | log(k(Mj))) + INTtrig.

=
( n∑
j=1

|Aj | log(K exp(α(Mj −M0)))
)

+ INTtrig.

log(p(c, p)) ∝ log(π(c, p)) + l(Y |c, p, B)

= 0 +

n∑
j=1

∑
ti∈Aj

log(h(ti − tj)) + INTtrig

=
( n∑
j=1

∑
ti∈Aj

−p(log(ti − tj) + c)
)

+ INTtrig.

log(p(d, q)) ∝ log(π(d, q)) + l(Y |d, q, B)

= 0 +

n∑
j=1

∑
ti∈Aj

log(g(xi − xj , yi − yj)) + INTtrig

=
( n∑
j=1

∑
ti∈Aj

log(q − 1)− log(π) + (q − 1) log(d) + (−q(log((xi − xj)2 + (yi − yj)2 + d))
)

+ INTtrig.
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