USGS Earthquake Hazards Program, Final Report: Deep
Learning Based Approach to Integrate MyShake's Trigger Data
with ShakeAlert for Faster and Robust EEW Alerts (Award No.
G20AP00058, May 2020 through April 2021)

Author: Qingkai Kong

Affiliation:
Previously at Berkeley Seismology Lab, UC Berkeley, till December 2020
Present: Lawrence Livermore National Laboratory (started January 2021)

Address: 7000 East Ave, Livermore, CA 94550

Email: konggk@berkeley.edu or kong11@lInl.gov

Final Technical Reports shall include these components:

Acknowledgement:

Research supported by the U.S. Geological Survey (USGS), Department of the Interior,
under USGS award number G20AP00058. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the
opinions or policies of the U.S. Geological Survey. Mention of trade names or
commercial products does not constitute their endorsement by the U.S. Geological
Survey. This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract Number
DE-AC52-07NA27344. This is LLNL Contribution Number LLNL-TR-830065.


mailto:kongqk@berkeley.edu

Abstract

Earthquake Early Warning (EEW) systems depend on the dense seismic network to
make fast and accurate earthquake detections to issue useful early alerts. The recent
development and implementation of the ShakeAlert system is relying on the west
coast seismic network to detect and estimate the earthquake parameters in real-time.
While working on making improvements on the current system, one potential
approach is to include more seismic recordings from various sources, such as the
low-cost smartphone seismic network, such as the MyShake network, or the Google
Android smartphones, since these smartphone seismic networks have much more
portable stations (phones) to potentially provide useful data to the system. This report
summarizes the initial exploration of using a deep learning approach to combine the
data from both traditional seismic stations and the smartphone data in California. Due
to the heterogeneity nature of the data, we aggregate data from the phones (using
simulation data), as well as that from traditional seismic stations to grid cells. By
generating real-time triggering ratio grid cell maps, the designed deep learning
algorithm can process the data from multiple sources and detect the earthquake
faster than only using that from a traditional seismic network.

. Introduction

Earthquake early warning (EEW) systems are a race with earthquakes (Gasparini,
Manfredi, and Zschau 2007), the faster we can detect the earthquake, the more
warning time we can provide for the people who are likely to be affected (Allen and
Melgar 2019). With the recent launch of the ShakeAlert public roll out (Kohler et al.
2020), more people can be protected from nearby earthquakes. One way to improve
the detection speed and accuracy of the EES system is to increase the number of
seismic stations and cover the region better. A low cost fashion can be a potential
solution, which uses the sensors within commercial devices, such as smartphones, as
portable seismic stations (Allen, Kong, and Martin-Short 2019; Bossu et al. 2018; Lee
et al. 2019; Finazzi 2016; Minson et al. 2015). MyShake is a project developed at
Berkeley Seismology Lab that uses the sensors inside the daily used smartphones to
detect earthquakes in a crowdsourcing way, which can potentially increase the
number of sensors in a place within a very short time frame (Qingkai Kong et al.
2016). The idea behind is to turn the smartphones into portable seismic sensors once
the MyShake application is downloaded. The app monitors the phone’s accelerometer
when it is in steady state (not moving for 5 min), and a standard STA/LTA algorithm
decides whether the phone is moved by some motion. Once the phone movement is
detected, an artificial neural network algorithm running on the phone will check if the
motion is due to earthquake or human activities. If the motion is due to an earthquake,
then a message with the timestamp, latitude, longitude and acceleration amplitude
with some of the phone metadata will be immediately sent to the server for further
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analysis. These triggers arriving at the server can be further analyzed. Due to the
earthquake nature, triggers from the smartphones can show clustering patterns both
in time and space, which can be used for detection. Furthermore, time series data of
5-min also uploaded when the phone connected to WiFi and power, this provides
more data for research analysis. The initial data from the MyShake observations show
promising results, earthquake early warning, routine network operations, array
processing, building health monitoring and so on can potentially achievable (Qingkai
Kong, Martin-Short, and Allen 2020; Qingkai Kong, Allen, and Schreier 2016; Q.
Kong, Patel, and Inbal 2019; Qingkai Kong, Martin-Short, and Allen 2019; Inbal et al.
2019; Qingkai Kong et al. 2018). In 2020, built on top of MyShake experiences,
Google launched the Android Earthquake Alerting System
(https://blog.google/products/android/earthquake-detection-and-alerts/),  which s
aiming to set up a global earthquake early warning system using all the Android
phones they have. This will be a dense global seismic network for the purpose of
earthquake early warning, and potential can do much more.

The opportunity to scale up the seismic network not only on the hardware side to use
thousands of phones, but also in recent development of machine learning algorithms.
Machine learning algorithms have the capability to extract useful features for specific
tasks from large amounts of data, especially the recent development of the deep
learning algorithm, which can automatically extract features (Goodfellow, Bengio, and
Courville 2016; LeCun, Bengio, and Hinton 2015; Voulodimos et al. 2018). There are
existing efforts using machine learning algorithms in EEW (Li et al. 2018; Meier et al.
2019; Fauvel et al. 2020; Apriani, Wijaya, and Daryono 2021; Saad, Hafez, and
Soliman 2021) which show promising results.

In this report, we summarize the initial exploration of combining the data from seismic
stations as well as the smartphone seismic network using a machine learning
approach. There are mainly two parts for this report: first, in order to explore how we
can integrate the data from the two networks, we conduct analysis to understand what
benefits we can have to combine the two networks using simulations, especially on
whether we can have faster alerts using the two networks. We tried both 0.1%
population density as phone contributors (more realistic for MyShake users) as well
as the 10% population, which is more along the lines of Google’s Android phones can
be integrated. Results from this analysis show the expectation of how much overall
faster the combined system can achieve and where the events occur affect the
system detection time. Second, we show the initial results from the designed deep
learning based approach that can handle different data sources motivated by how
human beings are viewing the patterns. By using the simulation data as the training
data, the designed model can recognize the earthquake occurring patterns.
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2. Data

Data used in this study are mainly from two sources (1) EPIC data from ShakeAlert (2)
Simulated smartphone data using the designed simulation platform.

2.1 EPIC data

With help from Ivan Henson from Berkeley Seismology Lab, we got the seismic station
trigger data from the algorithm EPIC in the ShakeAlert system. Data are downloaded
from 2016-02 to 2020-08 for the associated events that are larger than M3.5 in the
USGS earthquake catalog. In total, there were 375 events in CA during this period. This
dataset includes the following data fields for each of the earthquakes:

e Associated earthquake event id from USGS
e Seismic station trigger time
e Seismic station trigger location (latitude and longitude)

2.2 Smartphone simulated data

The main data used in this study are generated from the simulation platform, which can
generate phone triggers including latitude, longitude, trigger time, trigger PGA for
earthquakes and random events. The following lists the data used for the two
applications.

2.2.1 Data used for understanding the improvement of detection speed if phone data
are added

Data used in this analysis contains both simulated data for the 0.1% and 10%
population contributing the phone data. We use the same set of 375 events in 2016-02
to 2020-08 to generate the simulated events within 300 km from the epicenter.
Simulated data contains:

Trigger time

Trigger location (latitude and longitude)
Trigger amplitude

Due to earthquake (P or S) or random trigger

2.2.2 Data used for training the deep learning model
To train and test the deep learning model, we generate the following simulation data

e Center at (38, -122), with 0.1 steps in both directions for latitude and longitude to
generate grid cells. In total, there are 30 bins for latitude and longitude (about
330 by 330 km) to generate cells.

e Magnitude range: 3.5 to 7.6 with 0.5 magnitude step



e Earthquake time during the day: 00:00:00, 06:00:00, 12:00:00, 18:00:00 (at
different time, there are different percentage of the phones available, with
daytime, less phones available for detection)

In total, we generated 8100 earthquake scenarios and 1,425,817 non-earthquake
(images not containing earthquake triggers) and 492,570 earthquake images, with
1,212,069 training samples, 327,546 validation samples, and 378,772 test data.

3. Method

3.1 Simulation platform

Simulation platform
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Figure 1. The overview of the structure of the simulation platform, adopted from (Qingkai Kong,
Martin-Short, and Allen 2020).

The simulation platform is built on top of the MyShake observations that can generate
synthetic trigger times and locations in a region based on the population. The steps of
generating smartphone triggers are showing in Figure 1, starting with defining a
percentage of population can contributing the data in one region, the platform will
decide the phone distribution based on the earthquake occurring time and location
(because different percentage of phones are ready to monitor the earthquakes
depending on the time of the earthquakes) and a triggering probability based on a
attenuation relationship. Based on these triggering probabilities and attenuation
relationship, the platform will provide the time and distribution of the phones that would
trigger during this simulated earthquake, for more details, please refer to (Qingkai Kong,
Martin-Short, and Allen 2020).
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Figure 2. The distribution of the time difference in seconds between server time and phone
trigger time from MyShake network data (2019-10-17 to 2020-03-01) that is used for
approximating the network latencies in the simulation platform.

In this study, we also add one more feature into the simulation platform - the network
latencies. Figure 2 shows the distribution of the time difference in seconds between the
trigger arrival time on server and phone local trigger time. This distribution is used to
provide the basis to draw the time latency potentially within the smartphone network in
the simulation platform, so that it is more accurate in the estimation of the detection time
using the smartphone data.

Data from this simulation platform are both used in the understanding of the
improvement of detention speed if phone data is added and also the design of a deep
learning approach to combine both data sources shown in the preliminary results
section. An example of both the MyShake observed triggers as well as the simulated
triggers with the EPIC triggers are shown in Figure 3. As for the MyShake observations,
as this is a small earthquake M3.81, we can see that the triggers actually happened
during the passage of both P and S waves while in the simulated case, most of the
triggers are along the S wave passage. This is due to the conservative relationship we
used in the simulation platform. But overall, the simulation platform captures the main
characteristics of the patterns.
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Figure 3. Trigger examples from real MyShake observations as well as the simulated triggers for
M3.81 earthquakes near San Fernando, CA on 2020-07-30T13:48:19. (a) MyShake real
observations. (b) Simulated smartphone triggers. Each figure has 4 panels, top left: Trigger
distances v.s. time, green and red lines are theoretical P and S arrivals. Top right: trigger
histogram over 1s time bins. Bottom left: trigger histogram over 5 km distance bins. Bottom
right: map shows the event location.

3.2 Deep Learning approach for combining seismic station data and the phone data



Since the data from the traditional seismic stations and the smartphone sensor network
have different qualities, and the data from the seismic stations are of much higher
quality, we need a way to combine them. The difference between the patterns of the
triggers from earthquakes and non-earthquakes sources is that those from the
earthquakes are usually showing coherence moveout from the epicenter due to the
travel of the seismic waves, while those from the non-earthquake sources are mostly
random in nature. If we look at the distribution of the triggers from the phones or the
seismic in time sequence, we can see the coherent triggers moving out for the
earthquake events. This inspired the idea of the designed method to try to capture these
trigger patterns using the deep learning approach, since they are really good for working
with images and movies, which are just sequences of images (Goodfellow, Bengio, and
Courville 2016; LeCun, Bengio, and Hinton 2015; Voulodimos et al. 2018; Schmidhuber
2015).

In order to take advantage of deep learning’s capabilities to process images, we turn the
problem into image-based detection. In order to generate the images that capture the
trigger patterns, we first divide the spatial regions into 0.1 by 0.1 degree cells, and use
the triggering ratio (number of triggers divide the number of phones) within each cell as
the value to indicate the detection of the shaking. Depending on the confidence level of
the traditional stations, we can set the station trigger in the cell with a high ratio, such as
0.6 or 0.8. Figure 4 shows the trigger patterns from the grid cells before and 5s, 10s,
and 20s after the earthquake, we can clearly see the patterns of the cells light up. The
ratios in each cell are calculated by using a 20s length window, with 0.1s step. Note,
due to the imbalanced nature of the data (there are more random images than
earthquake images), we need to use a class weights to panelize more if the model
makes mistake on the earthquake samples.
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Figure 4. The trigger cell images at different times, i.e. before the event, 5, 10, and 20s after the
event. Each cell is 0.1 by 0.1 degree, and the color of the cell shows the triggering ratio. Places
without cells are no phones. These images are centered at (38, -122) with 30 bins for latitude
and longitude respectively (about 330 by 330 km).

3.2.1 Baseline Convolutional Neural Network

To give a reference model performance as a baseline, we use the most common
structure, a simple convolutional neural network (CNN) with 3 hidden layers. Table 1
shows the structure of the model and the total number of parameters are 121,409. The
input images each have dimensions of 30 by 30, and can be multiple channels. We test
using 1, 3 and 5 consecutive images as the input (corresponding to 1, 3 and 5
channels), and the best result is using 3 images. The standard CNN model extracts the
features from the input images, and passes it to deeper layers. With the deeper layers,
finer features will be extracted with more kernels. A binary_crossentropy loss function
and adam optimizer are used to train the model. Please see the results in section 4.



Layer Kernel size Output shape # of Parameters

Conv2D (3,3) (None, 28, 28, 32) 320
MaxPooling2D (2,2) (None, 14, 14, 32) 0

Conv2D (3,3) (None, 12, 12, 64) 18496
MaxPooling2D (2, 2) (None, 6, 6, 64) 0

Conv2D (3,3) (None, 4, 4, 64) 36928

Flatten / (None, 1024) 0

Dense / (None, 64) 65600

Dense / (None, 1) 65

Table 1. Structure of the Convolutional Neural Network. The input dimension is 30 by 30 pixels.

3.2.2 Convolutional-LSTM model

Since the above baseline model is a standard CNN model which is good at dealing with
individual image and extract features, the problem we are facing also has the temporal
information that provides important features. Therefore, a more sophisticated model
which has the capability to capture this temporal evolution can be tested. Because
Recurrent Neural Network (RNN) is good at addressing the temporal contexture
information in the data, we choose a Convolutional-LSTM (ConvLSTM) as an improved
model. ConvLSTM is a type of RNN for Statio-Temporal estimation that has
convolutional structures in both the input-to-state and state-to-state transitions (Shi et al.
2015).

Table 2 shows the structure of this ConvLSTM model, we only used one ConvLSTM
layer at this point, and the structure still has room to be improved on such as by
experimenting more layers. We use categorical_crossentropy as the loss function, and
use the adam optimizer to train the model.

Layer Kernel size or Output shape # of Parameters
dropout ratio
ConvLSTM2D (2, 2) (None, 29, 29, 32) 17024
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Dropout 0.5 (None, 29, 29, 32) 0
Flatten / (None, 26912) 0
Dense / (None, 50) 1345650
Dense / (None, 2) 102

Table 2. The structure of the model with the ConvLSTM layer.

4. Preliminary Results
4.1 Understanding the improvement of detection speed if phone data are added

We first conduct analysis on combining both the smartphone triggers with the current
ShakeAlert triggers, to understand the improvement of the system detection time. Using
the designed simulation platform, we can generate the simulated phone triggers for the
earthquakes that are first detected by the EPIC algorithm. In total, 375 events are first
detected by the EPIC algorithm in CA during 2016-02 to 2020-08.

4.1.1 Assuming 0.1% of the population contributing phone data

We start the analysis by randomly sampling 0.1% of the California population as the
potential smartphone sensors that are complementary to the ShakeAlert seismic
stations.
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Figure 5. Number of smartphone triggers before the first SA alert for different events, sizes of
the circles represent the magnitude of the earthquakes. (a) 0.1% of the population are assumed
as smartphone sensors. (b) the real number of smartphone triggers from MyShake network.
Note: for real MyShake triggers, most of the downloads in CA are after Oct 2019, this is one of
the reasons there are few/no real MyShake triggers before the ShakeAalert first alert.



The number of smartphone triggers before the first ShakeAlert alert for simulated and
real data is shown in Figure 5. From the left figure, we can see where we expect many
triggers from the phones can potentially help improve the speed of the detection. Since
the EPIC algorithm is relying on the first 4 triggers to declare a new event, we also analyze the
time of when the first 4 triggers arrive at the server using traditional seismic stations alone or
combining with the phones, and show the results below.
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Figure 6. Results with 0.1% of the population that contributes data to the smartphone seismic
network. (a) The histogram shows the time of the first 4 triggers arriving at the server
with/without phone triggers. Blue bars are triggers from only ShakeAlert, while orange bars are
triggers from both networks. The vertical lines are the corresponding mean values. (b) The
spatial distribution of these events with color-coded how many seconds can be faster after
combining the triggers from the phones. Negative numbers means faster.

Figure 6 shows the results with 0.1% of the population that contributes their data for the
smartphone seismic network. Figure 6a shows that, with this amount of phone
contributors, 134 (35.7%) events can have potential faster alerts by combining the
phone sensors, about 2.2s faster (7 - 4.8s) for the mean value. Figure 6b shows where
we can see big improvements (darker color dots). From it, we can see that places with
more population but sparse seismic stations see the biggest improvements.
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spatial distribution of these events with color-coded how many seconds can be faster after
combining the triggers from the phones. Negative numbers means faster.

4.1.1 Assuming 10% of the population contributing phone data

As of the launch of the recent Google Earthquake Alerting system (August 2020), there
are many more phones that can potentially contribute data. As shown in the data
section, we estimate about 10% of the population that can contribute their data to the
system. Figure 7 shows the results with 10% of the population that contributes their data
for the smartphone seismic network. Figure 7a shows that, with 10% phone
contributors, 270 (72.0%) events can have potential faster alerts by combining the
phone sensors, about 3.0s faster (6.6 - 3.6s) for the mean value. The Figure 7b shows
where we can see big improvements (darker color dots). From it, we can see that
places with more population but sparse seismic stations see the biggest improvements.

Figure 8 shows the locations of the events that have no improvements (which means all
the first 4 triggers are from traditional seismic stations). We can see most of these
events occurred at places where we usually have sparse populations or off the coast.
For these events, it is better still relying on the traditional seismic network for the
detection.



Figure 8. Locations of the events (blue dots) that have no improvements when combining the
phone triggers.

4.2 The detection with deep learning model

In this section, we will show the initial results from the baseline model as well as the ConvLSTM
based model. The dataset contains 67 real earthquake events in this region. The current
MyShake DBSCAN method detects 36 events, while the baseline CNN detects 28 events and
the ConvLSTM model detects 32 events. Note, the following results are the ones only from the
phone data without adding in the ShakeAlert triggers. Note that, all the phone triggers used in
this section are generated by the simulation platform with 0.1% of the population assumed as
contributors.

4.2 .1 Results from the baseline CNN model

Results from the baseline CNN model are summarized in Figure 9. Since the loss almost
flattened, we stopped training at 30 epoch, and chose the lowest loss model as our model to
test (Figure 9a). Figure 9b shows the detected events compared with the current MyShake
DBSCAN method, 28 events are detected by the baseline CNN model while the DBSCAN
detects 36. We can see there are many events not detected due to the low sensor coverage at
these places. Panels ¢ and d in Figure 9 show the detection time difference when the baseline
CNN model compares with the current MyShake DBSCAN algorithm running on the same data
as well as the alert time from the ShakeAlert system using the real data.
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Figure 10. Summary of the baseline CNN performance. (a) training curve showing the training
and validation curve. (b) The baseline model detected events compared with the current
MyShake DBSCAN method. (c) the histogram of the detection time difference between
MyShake DBSCAN method and the baseline CNN model, the mean, median and standard
deviation are -0.42s, -0.12s and 2.51s. (d) The histogram of the detection time difference
between ShakeAlert and the baseline CNN model, the mean, median and standard deviation
are 0.67s, 0.8s and 3.29s.

4.2.2 Results from the ConvLSTM model

Figure 11 shows the equivalent performance summary for the ConvLSTM model on the
64 real events with the best model at epoch 47. Overall, this model detects 32 events
comparing the baseline 28 events. It also shows slightly faster detection time than the
baseline CNN model.
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Figure 11. Summary of the ConvLSTM performance. (a) training curve showing the training and
validation curve. (b) The ConvLSTM model detected events compared with the current
MyShake DBSCAN method. (c) the histogram of the detection time difference between
MyShake DBSCAN method and the ConvLSTM model, the mean, median and standard
deviation are -0.39s, 0.11s and 2.30s. (d) The histogram of the detection time difference
between ShakeAlert and the ConvLSTM model, the mean, median and standard deviation are
0.18s, 0.5s and 3.48s.

Figure 12 gives four examples from different magnitude earthquakes with simulated
phone triggers. We can clearly see that when there are more triggers, the patterns are
easily recognized by the model, while cases with fewer phone triggers are not easy to
detect for the models.
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Figure 12. Detection Examples for 4 different events. The left panel in each figure shows the
trigger distances v.s. Time since origin, each dot is a trigger. The red lines are the time when
the model detects there is an event. The right panel is the histogram of the triggers in 1s time
bins. (a) USGS event id nc73291880. (b) USGS event id nc72768191. (c) USGS event id
nc72766046. (d) USGS event id nc72663506.

5. Conclusions and discussions

This study is only the first step in the effort to combine the smartphone data with the
seismic stations to improve the performance of the ShakeAlert system. We first use the
simulation data to understand how fast we can improve the detection time by combining
phone data with the ShakeAlert system in California. With 0.1% of the population
contributing the phone data, we can see 134 events (35.7%) can be potentially faster,
with a mean value of 2.2s faster than only using seismic stations. If we can increase the
phone contributors to 10% of the population, we will see 270 events (72.0%) can be
detected faster than only using the seismic stations. Furthermore, we can also see that
the events that occurred close to population centers benefit more, which is more
important to increase the warning time for these areas. We also compared two deep
learning models using a relatively small dataset for prototype purposes, one is a
standard CNN model that extracts spatial features from 3 consecutive images, and the
other is the one with a ConvLSTM layer, which can extract both spatial and temporal
features. We found the ConvLSTM model works better than the standard CNN model.



Due to the limitation of the time, there is still much work needed to make this method
really reliable and accurate. Here we list out the main ones that need to be carried out.

e Optimize the model. The current tests only show the method is working, and to
get the best results, finding the best combination of the hyperparameters will be
important. Such as quality control parameters (number of phones is needed in
the cells), number of images used in the ConvLSTM model, size of the grid cells
etc.

e Dealing with abnormal cases: the current model trained using the simulation
platform, which only generates random triggers. But in nature, some cases may
generate a large number of triggers within a short time in a region, such as big
thunder storms (lightning). Potential solution is to add in more training that
triggers the cells at different triggering levels at different times, so that the model
can learn roughly the seismic wave speed related trigger patterns.

e Adding in other earthquake parameters in the estimation. Currently, this model
only detects the earthquake occurrence, without estimating the magnitude,
location of the earthquake. My thinking for the location and magnitude of the
earthquake, after the detection of the earthquake using the ConvLSTM, we can
add a chain deep learning model with the same input of the trigger images (as
used in the training ConvLSTM) as well as a grid cell image with median/mean
amplitude in each cell. The output of this model will be the latitude, longitude and
magnitude of the earthquake.

e [nitially, we can set each seismic station trigger as ratio 1 in the cell, so that these
high quality seismic stations play an important role in the detection. But tuning
this as a parameter maybe provide better results.

6. Project materials

Codes for the simulation platform and the deep learning model training can be found in
github repo: https://qgithub.com/gingkaikong/USGS _G20AP00058

Data used in this study can be found in this repository: www.shorturl.at/knNRY
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