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Abstract 
In recent years, the USGS and others (including the PI of this effort) have worked to develop 
predictive regional models for ground failure with a focus on landslides and liquefaction (Zhu et 
al., 2015, 2017; Nowicki et al., 2014). The models provide probability estimates of ground 
failure given the shaking from an earthquake event. The current USGS preferred models (Zhu et 
al., 2017 for liquefaction and Nowicki et al., 2014 for landslides) result in a probability estimate 
for the respective ground failure. The liquefaction probability is converted to a value that 
represents spatial extent as a percentage per pixel. The current USGS implementation includes 
the ground failure models as a product on the overview page for each earthquake on the USGS 
Earthquake Hazard Program website (as discussed by Wald et al., 2018; Allstadt et al. 2019). 
The USGS implementation provides evidence that a geospatial approach to liquefaction extent 
after an earthquake is a useful part of post-event earthquake response and communication. In the 
Zhu et al. (2017) geospatial liquefaction model (GGLM17), the models are based on a set of 27 
earthquakes where the 2011 Tohoku earthquake and the 2011 Christchurch and Darfield 
earthquakes represent the most recent earthquakes with liquefaction occurrence in the 
liquefaction database. The GGLM17 also included earthquakes from 2014 and 2015 in 
California which did not experience liquefaction. In this work, we have updated the liquefaction 
database to include 51 earthquakes. The database includes 5 earthquakes which did not 
experience liquefaction. Using the enhanced database, we have provided an update to GGLM17 
reflecting the new data. The updated model also uses logistic regression for model development. 
In addition to the explanatory variables evaluated in GGLM17, we also included elevation above 
water body, soil and sediment thickness (Pelletier et al. 2017), topographic roughness index, and 
topographic position index. In this work, the top performing best-fit model GGLM21a based on 
the AUC, Briar score, and AIC uses PGV, TRI, distance to closest water body, distance to river, 
and elevation above water body as the explanatory variables. The second best-fit model 
GGLM21b uses PGV, slope-based Vs30, distance to closest water body, distance to closest river, 
and elevation above closest water body as explanatory variables. These models (GGLM21a and 
GGLM21b) provide improved performance across both the 2017 and 2021 databases across the 
new inventory. We also evaluate regional bias. Performance is best for Japan, North America 
and Oceania. Performance is weaker (and the dataset is more limited) for Europe, South 
America. 
 
Introduction 
 
We have developed a regional liquefaction mapping approach that relies on broadly available 
geospatial parameters (Zhu et al., 2015; Zhu et al., 2017). Our work is based on the premise 
exemplified by previous work like Youd and Perkins (1978) that characterized the relationship 
between geologic depositional environments and liquefaction and Wald and Allen (2007) that 
demonstrated the relationship between soil properties and topography. As a direct precursor to our 
work, Knudsen and Bott (2011) found the likelihood of liquefaction is highly correlated with 
common geospatial features such as topographic slope and distance to the closest river. The 
geospatial liquefaction model relies on geospatial proxies for soil density and soil saturation 
combined with earthquake loading estimates from USGS ShakeMap to predict the spatial extent 



of liquefaction after an earthquake. The soil saturation geospatial proxies are borrowed from the 
hydrology community and include the compound topographic index and a global estimate of water 
table depth. In addition, we evaluate geospatial proxies for saturation such as: elevation above 
closest water body, and distance to coast, distance to river, and distance to closest water body. The 
preferred soil density parameter is the slope-derived Vs30 derived by Wald and Allen (2007). 
Although geospatial proxies borrowed from the geomorphology including topographic position 
index  (TPI) and topographic roughness index (TRI) are potentially useful. We also test global 
layers for soil and sediment thickness (Pelletier et al., 2016).  
 
In our original work (Zhu et al. 2015), we developed a liquefaction occurrence/nonoccurrence 
database that was unbiased with respect to the spatial extent (i.e., complete coverage of 
liquefaction and nonliquefaction occurrence over the mapped area) using liquefaction from four 
earthquakes in Christchurch, New Zealand and Kobe, Japan. Using logistic regression and 
statistical goodness of fit metrics, we tested geospatial parameters as proxies for earthquake 
loading, soil density, and soil saturation and developed two predictive models: one for regional 
use and one for global use (herein referred to as GLM15). The model results provide a first-order 
estimate of the spatial coverage of liquefaction from simple geospatial parameters (peak ground 
acceleration, compound topographic index, and Vs30) and can be implemented for loss estimation 
and rapid response.  
 
In the second rendition of the geospatial liquefaction model (Zhu et al., 2017, herein referred to as 
GLM17), the objective was to further improve the predictive performance of the geospatial 
liquefaction model, especially for generalization to new regions. In the Zhu et al. (2017) geospatial 
liquefaction model (GLM17), the model is based on a set of 27 earthquakes where the 2011 
Tohoku earthquake and the 2011 Christchurch and Darfield earthquakes represent the most recent 
earthquakes with liquefaction occurrence in the liquefaction database. This expanded dataset was 
no longer spatially complete, so we needed to make some assumptions about sampling and the 
resulting model was developed using a balanced sample of liquefaction to nonliquefaction across 
the 27 events. GLM17 relied on PGV as the shaking parameter, slope-based Vs30 as the soil 
density parameter, and annual precipitation, distance to closest water body, and water table depth 
as the saturation parameters. GLM17 also uses thresholds where the probability of liquefaction is 
assigned the value of zero if PGV<3cm/s or Vs30>320 m/s.  
 
The global geospatial liquefaction model developed by Zhu et al. 2017 (GGLM17) is described by 
the following equations: 
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P(x) is the probability of liquefaction which lies between zero and 1; and X includes explanatory 
variables that describes density, saturation and loading conditions and is given by: 
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If PGV > 3 cm/s AND Vs30 < 620 m/s 

Otherwise 



 
Where the coefficients are listed in Table 1. 
 
Table 1. Variables’ coefficients used in the GGLM (Zhu et al., 2017) 

Variable Coefficient unit 

Ln (PGV) 0.334 cm/ s 

Ln (Vs30) -1.918 m/s 

Precipitation 5.408-4 mm 

Distance to Water -0.2054 km 

Water table Depth -0.0333 m 

 
The liquefaction probability (P) is then converted to liquefaction spatial extent (LSE) using 
equation 3 as introduced by Zhu et al. (2017): 

 

LSE(P)  = 49.15

(1+42.4�
−9.165(�)

)
2    

     (3) 
Where P is the probability of liquefaction calculated by equation 1. This equation was derived by 
comparing probability values with observed liquefaction spatial extent from earthquakes with 
spatially complete maps (as discussed in Zhu et al., 2017).  LSE after an earthquake is the spatial 
area covered by surface manifestations of liquefaction reported as a percentage of a pixel at a 
specific location on the map.   
 
In Rashidian and Baise (2020), we compiled the initial dataset for this work and evaluated GLM17 
performance across the expanded dataset. In that work, we found that the precipitation term tended 
to lead to high probabilities over wet regions and that liquefaction probabilities were high for small 
PGA values. As a result, two additional thresholds were added to the GLM17 model. When PGA 
is below 0.1g, liquefaction probability is assigned a value of zero.  When annual precipitation is 
above 1700mm, overprediction is likely, so the annual precipitation should be capped at 1700mm. 
 
In recent years, the USGS has adopted this work and that of others to develop predictive regional 
models for ground failure with a focus on landslides and liquefaction (Zhu et al., 2015, 2017; 
Nowicki et al., 2014). The current USGS implementation includes the ground failure models as a 
product on the overview page for each earthquake on the USGS Earthquake Hazard Program 
website (as discussed by Wald et al., 2018; Allstadt et al. 2019). The USGS implementation 
provides evidence that a geospatial approach to liquefaction extent after an earthquake is a useful 
part of post-event earthquake response and communication.  
 
In this study, we present the expanded liquefaction inventory that includes 46 earthquakes. To 
develop the geospatial model, we sample the 46 liquefaction events for both liquefaction and 
nonliquefaction occurrence and supplement with five additional nonliquefaction events. Overall, 
this work includes 28 earthquakes that were not included in the Zhu et al. (2017) inventory. We 



use a balanced sampling strategy where the more significant liquefaction events are 
undersampled so that they don’t dominate the model. For each liquefaction occurrence and 
nonoccurrence, the geospatial proxies for earthquake loading, soil saturation, and soil density are 
sampled and the resulting dataset is used for model development. The geospatial model uses 
logistic regression where goodness of fit is evaluated with the Area Under the Curve (AUC) and 
the Briar Score.  
 
Liquefaction Inventory 
The liquefaction inventory builds on the past inventories developed by Zhu et al. (2015), Zhu et al. 
(2017), and Rashidian and Baise (2020). Table A1 in the appendix summarizes the earthquakes included 
in the liquefaction inventory. Spatial location of liquefaction occurrence was determined from primary 
sources which included digital files of points and polygons, or georeferenced points using latitude and 
longitude, or georeferenced points from scanned figures. Table A1 provides information on sources on 
georeferencing. Table A2 summarizes the earthquakes includes in our work as nonliquefaction events. 
 
Sampling Liquefaction and Nonliquefaction Points 
 
The liquefaction inventory includes both points and polygons. In order to sample the inventory to get 
liquefaction and nonliquefaction points, liquefaction points are used directly and liquefaction polygons 
are sampled on a 100 m grid. For sampling non-liquefaction points, a 1 km and 15 km buffer zone is 
applied to liquefaction points and polygons and the region between 1 km and 15 km is sampled on a grid 
with 1.5 km spacing. This is illustrated in Figure 1 and is consistent with the sampling in Zhu et al. 
(2017). 
 
To manage the class imbalance across earthquakes with large liquefaction regions and large regions of 
nonliquefaction, liquefaction and non-liquefaction points of each event are downsampled to the maximum 
numbers of 2000 and 1000 points, respectively. Finally to make sure that each event has roughly 
equivalent influence on the modeling, liquefaction and non-liquefaction points are resampled so that the 
size of each event in the dataset is roughly the same. The resulting sampled database is summarized in 
Table 2. 
 
 



 
Figure 1. Example sampling of nonliquefaction points 
 
Table 2. Liquefaction and nonliquefaction sampling  
  

Event Name Date Mw Liquefacti
on 
Occurrenc
e 

Liquefaction 
Points 

Sampled 
Liquefaction 
Points 

Nonliquefaction 
Points 

Sampled 
Nonliquefaction 
Points 

1 Achaia 6/8/2008 6.5 Yes 7 7 662 662 

2 Aquila 4/6/2009 6.3 Yes 4 4 321 321 

3 Arequipa 6/23/2001 8.4 Yes 11 11 1489 1000 

4 Baja 4/4/2010 7.2 Yes 50 50 1939 1000 

5 Bhuj 1/26/2001 7.6 Yes 50358 2000 1938 1000 

6 Central Italy 8/24/2016 6.2 No 0 0 2237 1000 

7 Cephalonia 1/26/2014 6.1 Yes 12 12 210 210 

8  Chichi 9/21/1999 7.6 Yes 1935 1935 2255 1000 

9  Chiba 12/17/1987 6.5 Yes 624 624 1834 1834 

10 Chino Hills 7/29/2008 5.4 No 0 0 2224 1000 

11 Christchurch 2/22/2011 6.1 Yes 19278 2000 962 962 

12 Darfield 9/3/2010 7 Yes 30506 2000 1554 1000 

13 Denali 11/3/2002 7.9 Yes 40 40 4922 1000 

14 Duzce 11/12/1999 7.2 Yes 3 3 636 636 

15 Emilia 5/20/2012 6 Yes 58 58 809 809 

16 Haiti 1/12/2010 7 Yes 13 13 735 735 



17 Hector Mine 10/16/1999 7.1 No 0 0 2234 1000 

18 Hokkaido 7/12/1993 7.7 Yes 1414 1414 3416 1000 

19 Honduras 5/28/2009 7.3 Yes 13 13 539 539 

20 Illapel 9/16/2015 8.3 Yes 5 5 646 646 

21 Iquique 4/1/2014 8.2 Yes 11 11 867 867 

22 Kobe 1/17/1995 6.9 Yes 6491 2000 2089 1000 

23 Kocaeli 8/17/1999 7.6 Yes 36 36 1772 1000 

24 Loma Prieta 10/17/1989 6.9 Yes 1088 1088 2842 1000 

25 Maule 2/27/2010 8.8 Yes 72 72 13742 1000 

26 Meinong 2/6/2016 6.3 Yes 12 12 585 585 

27 Miyagi Ken 6/12/1978 7.6 Yes 104 104 1668 1000 

28 Muisne 4/16/2016 7.8 Yes 13 13 1187 1000 

29 Napa 8/24/2014 6 Yes 2 2 283 283 

30 Nepal 4/25/2015 7.8 Yes 12 12 618 618 

31 Niigata 1964 6/16/1964 7.6 Yes 10184 2000 3510 1000 

32 Niigata 2004 10/23/2004 6.6 Yes 6110 2000 1533 1000 

33 Niigata 2007 7/16/2007 6.6 Yes 281 281 737 737 

34 Nihonkai 5/26/1983 7.7 Yes 9423 2000 2493 1000 

35 Nisqually 2/28/2001 6.8 Yes 55 55 658 658 

36 Northridge 1/17/1994 6.6 Yes 42 42 1761 1000 

37 Oklahoma 9/3/2016 5.8 Yes 4 4 552 552 

38 Piedmont 8/17/2015 4 No 0 0 1568 1568 

39 Puget Sound 
1949 

4/13/1949 6.9 Yes 153 153 7982 1000 

40 Puget Sound 
1965 

4/29/1965 6.7 Yes 228 228 6029 1000 

41 Samara 9/5/2012 7.6 Yes 13 13 869 869 

42 San Simeon 12/22/2003 6.6 Yes 20 20 226 226 

43 Tecoman 1/22/2003 7.5 Yes 9 9 862 862 

44 Telire 
Limon 

4/22/1991 7.6 Yes 43 43 1447 1000 

45 Tohoku 3/11/2011 9.1 Yes 46478 2000 5780 1000 

46 Tokaichi 9/26/2003 8.3 Yes 147 147 4418 1000 

47 Tottori 10/6/2000 6.7 Yes 916 916 979 979 

48 Van Tab 10/23/2011 7.1 Yes 19 19 1158 1000 

49 Virginia 8/23/2011 5.8 Yes 2 2 348 348 

50 Wenchuan 5/12/2008 7.9 Yes 116 116 2135 1000 

51 Yountville 9/3/2000 5 No 0 0 2135 1000 

 
 



Geospatial Proxies 
We use the same geospatial proxies that were used in Zhu et al. (2017) to estimate sediment density, 
sediment saturation, and earthquake loading with the addition of height above the nearest water 
table (zwb), and two proxies derived from a global sedimentary geology layer (Pelletier et al. 2016) 
that includes categorical variables such as uplands, lowlands and an estimate of sediment thickness. 
The geospatial proxies are summarized in Table 3 and illustrated for the San Francisco Bay area 
in Figure 2. 
 
Table. 3. Potential Geospatial proxies 

 
Distance to the nearest coast is from a global data set created by the NASA’s Ocean Color Group 
(2009). This data set was generated with the Generic Mapping Tools (GMT) software using its 
intermediate-resolution coastline. It was first computed at a spatial resolution of 0.04 degrees and 
then interpolated to 0.01 degrees. In the original dataset, negative distances represent locations 
over land (including land-locked bodies of water), while positive distances represent the ocean. 
For our application, we further process the data so that locations on land have positive distances 
and on ocean have zero distance. 
 
Distance to the nearest river is calculated based on the HydroSHEDS database (Lehner et al. 2008). 
The development of this database includes a sequence of extensive hydrologic conditioning 
procedures to incorporate the locations of known rivers and lakes. The river network provided in 
this database is in vector format. Because distance computation using vector data at a global scale 
is inefficient, we derived a raster river network using the same threshold (100 upstream cells) and 
perform a raster distance calculation. Distance is in number of pixels and is a Cartesian distance. 
 
Simulated water table depth is from a global dataset by Fan et al (2013). The authors simulate 
groundwater flow at 30 arc-seconds spacing using a model constrained by climate, terrain and sea 
level. Hydraulic conductivity of soil is estimated from a soil map and assuming a steady decay 
over depth. They digitized over 1.5 million published records of water table depths. The results 
have been adjusted using actual water-table depths as a means of calibration across climate zones 



on all inhabited continents. This model predicts natural patterns of water table depth and so does 
not account for any pumping or irrigation carried out by humans. The data is at a spatial resolution 
of 30 arc-seconds. Mean annual precipitation is from a global layer developed by Hijmans et al. 
(2005). Hijmans et al. (2005) interpolated average monthly precipitation from weather stations 
across the world (47,554 locations) on a 30 arc-second resolution grid and averaged over the 1959-
2000 time periods. 
 
To model soil density, we derive the VS30 layer form a global DEM using the approach described 
by Wald and Allen (2007). The VS30 layer used in the development of GLM15 was based on 
GTOPO30. In GLM17, we update the VS30 layer by deriving it from the GMTED, a global DEM 
with enhanced quality. The GTOPO30 was initially developed in 1996 by the USGS, and the 
GMTED10 was recently developed by the USGS and NGA collaboratively to replace GTOPO30 
as the elevation dataset for global application (Danielson and Gesch 2010). Therefore in this 
version, we use GMTED10 for the DEM. 
 
The landform type (uplands/lowlands) and sedimentary thickness data are from a high-resolution 
gridded global data set developed by a multidisciplinary team at the University of Arizona 
(Pelletier et al., 2016). The data set is developed for regional and global land surface modeling 
and has a spatial resolution of 30 arcsec (~1 km). For the model development, Pelletier et al. 
(2016) explicitly mapped global landform types and then estimated the thicknesses of 
sedimentary deposit using models optimized for each landform type and the best available data 
for topography, climate, and geology as input. The sedimentary deposit thickness is within the 
range of 0-50 m, and areas with predicted sedimentary thickness greater than 50 m are assigned a 
value of 50 m. The dataset is archived at the Oak Ridge National Laboratory (ORNL) Distributed 
Active Archive Center (DAAC) 
(https://daac.ornl.gov/SOILS/guides/Global_Soil_Regolith_Sediment.html). 
 
To model earthquake shaking, we use PGA and PGV from ShakeMap, PGA is more frequently 
used in liquefaction modeling methods (e.g., Seed and Idriss, 1971) because it is proportional to 
the maximum shear stress induced in the sediment (Terzaghi et al., 1996). However, many studies 
show that PGV is a better predictor of liquefaction than PGA. Midorikawa and Wakamatsu, (1988) 
used PGA and PGV data from approximately 130 liquefaction sites and found PGV is better 
correlated with the occurrence of liquefaction. Bardet and Liu (2009) performed Monte Carlo 
simulation to study the relationship between the probability of liquefaction with other controlling 
parameters and found PGV is a more relevant indicator for characterizing the potential contribution 
of earthquakes. The reason might be liquefaction initiation is more sensitive to the low frequency 
components of the ground motion and the integration of the acceleration records to calculate 
velocity filters out higher frequencies. Bardet and Liu (2009) also observed nonlinear behavior 
between the PGV and empirical probability of liquefaction; As PGV increases, the probability of 
liquefaction first rapidly increases and then reaches a plateau when PGV is greater than a threshold 
(i.e., 10 cm/s). In our study, we add PGV as a candidate shaking proxy and compare the model 
with PGV and PGA as shaking proxies. We test different transformations of the shaking parameter 
and compare their performances.   
 

https://daac.ornl.gov/SOILS/guides/Global_Soil_Regolith_Sediment.html


Figure 2. Geospatial proxies mapped for the greater San Francisco Bay 
 
 



Exploratory Analysis 
 
We explored the relationships between liquefaction and nonliquefaction across each of the potential 
geospatial proxies as a way of understanding which proxies were the most promising. This exploration is 
shown in Figure 3. Univariate logistic regression models are developed for each explanatory variable. 
Transformations are applied as shown in the x-axis. PGV, PGA, and Vs30 are lognormally transformed. 
TPI and TRI are transformed with the square-root of the absolute value. Dwb, Zwb, and elevation are 
transformed with the square-root transformation. Soil thickness, aridity, and precipitation are not 
transformed. The blue histogram represents nonliquefaction points. The orange histogram represents 
liquefaction points. The yellow dot represents the ratio of liquefaction to nonliquefaction points. And the 
purple line represents the best fit univariate logistic regression model for that geospatial proxy. 
 
Based on the results of this exploratory analysis, ln(PGA) and ln(PGV) are the strongest proxy candidates 
for loading. TPI, TRI, Vs30 and slope are the strongest proxy candidates for soil density. Dwb (as well as 
dc and dr), Zwb, and wtd are the strongest candidates for soil saturation.  
 

 
Figure 3. Exploratory analysis of each of the geospatial proxies. Univariate logistic regression models are 
developed for each explanatory variable. Transformations are applied as shown in the x-axis. The blue 
histogram represents nonliquefaction points. The orange histogram represents liquefaction points. The 
yellow dot represents the ratio of liquefaction to nonliquefaction points. And the purple line represents the 
best fit univariate logistic regression model for that geospatial proxy. 
 
 
 
 
 



 
Performance Criteria 
In this study, three different performance metrics have been used to guide us through the model 
building process: area under the ROC curve (AUC), Akaike information criterion (AIC), and the 
Brier score.  
 
Receiver Operating Characteristics (ROC) curve which is one of the most commonly used 
performance measures in classification, plots the true positive rate (TPR) against the false 
positive rate (FPR) where: 

��� =
���� ��������

���� �������� + ����� ��������
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Area under the ROC curve (AUCROC) can be used as a summary static to quantify the predictive 
capability of the model where AUC=1 represents the perfect classifier and AUC =0.5 relates to 
the completely uninformative classifier. ROC curves are helpful visual tools in understanding 
model's strength and weaknesses but using AUCROC as the only performance measure in model 
selection might not be ideal since models with close AUC values might have different predictive 
characteristics.  
 
A common approach in performance assessment of statistical learning algorithms is to use 
metrics that penalize the learning algorithm based on its deviations from the correct predictions. 
AIC and Brier score use such an approach to quantify the model performance.  
 
Akaike information criterion (AIC) (Akaike 1974) uses a logarithmic loss function for this 
purpose: 

��� = −2� + 2� 
 

Here k is the number of parameters in the model and L is the log likelihood for the probability 
predictions of the classification algorithm which for a binary classifier will be equal to: 

� = � ����(���) − (1 − ��)�� (1 − ���) 

Where yi is the actual class identifier and ŷi is the predicted probability of belonging to the class 
y=1.  
 
Brier score (Brier 1950) uses a similar approach by calculating the mean squared error between 
the predicted probabilities and the actual class values: 

����� ����� =
1

�
 �(�� − ���)

� 

where N is the sample size. Since both AIC and Brier score are loss functions, lower values of 
them are related to better model performances (unlike AUCROC). While AIC values can go from 
0 for the ideal classifier to infinity, Brier scores change between 0 (similarly for the ideal 
classifier) and 0.25 for the random classifier.  

 
 



 
Candidate Models 
Candidate models were generated using logistic regression to estimate the probabilities of liquefaction.  

   

P(x) =
1

1+�−�     

      
Here X is a linear combination of geospatial explanatory variables xi. We evaluate different combinations 
of geospatial explanatory variables with a focus on determining optimal load variable combinations, 
density variable combinations, and saturation variable combinations using the strongest candidate 
geospatial proxies as found through the exploratory analysis.  
 
In the current version of the models we do not retain the thresholds established in Zhu et al. (2017) around 
PGV and Vs30 as shown above. In the current liquefaction inventory, 1.5% of the liquefied data have 
PGV>3 cm/s and Vs30>620 m/s. Candidate models are presented in Table 4. Among the studied 
candidate models, there are tow models with similar performance: one including PGV, Vs30, elevation 
from the closest water body (Zwb) and distance from the river and distance to coast (Dr and Dc) and the 
other with Vs30 replaced with TRI.  
 
 
Table 4. Goodness of fit for candidate models 

Model 
Number 

Load 
Variable 

Density 
Variable 

Saturation Variable AUC Brier AIC 

1 ln(PGA) TRI0.5 Zwb
0.5 0.856 0.114 17,186 

2 ln(PGA) TRI0.5 ln(dc+1), ln(dr+1) 0.906 0.088 14,283 

3 ln(PGA) TRI0.5 ln(dc+1), ln(dr+1), Zwb
0.5 0.910 0.085 14,030 

4 ln(PGA) ln(Vs30) Wtd 0.857 0.110 17,329 

5 ln(PGA) ln(Vs30) ln(dc+1), ln(dr+1) 0.891 0.090 14,992 

6 ln(PGA) ln(Vs30) ln(dc+1), ln(dr+1), Wtd 0.901 0.088 14,563 

7 ln(PGA) ln(Vs30) ln(dc+1), ln(dr+1), Zwb
0.5 0.909 0.085 14,135 

8 ln(PGV) TRI0.5 Zwb
0.5 0.863 0.111 16,886 

9 ln(PGV) TRI0.5 ln(dc+1), ln(dr+1) 0.907 0.087 14,136 

10 ln(PGV) TRI0.5 ln(dc+1), ln(dr+1), Zwb
0.5 0.915 0.085 13,789 

11 ln(PGV) ln(Vs30) Wtd 0.859 0.109 17,156 

12 ln(PGV) ln(Vs30) ln(dc+1), ln(dr+1) 0.893 0.089 14,858 

13 ln(PGV) ln(Vs30) ln(dc+1), ln(dr+1), Wtd 0.902 0.088 14,463 

14 ln(PGV) ln(Vs30) ln(dc+1), ln(dr+1), Zwb
0.5 0.914 0.085 13,911 

 
 
Based on these efforts, our recommended updated global geospatial liquefaction model (GGLM21) is 
described by the following equations: 
 

   



P(x) =
1

1+�−�    

   
P(x) is the probability of liquefaction which lies between zero and 1; and X includes explanatory 
variables that describes density, saturation and loading conditions and is given by: 
 
GGLM21a: 
 
�� = �� + ��. ��(���) + ��. (���)�.� + ��. ln (�� + 1) + ��. ln (�� + 1) + ��. (���)�.�  
 
GGLM21b: 
 
�� = �� + ��. ��(���) + ��. ��(��30) + ��. ln (�� + 1) + ��. ln (�� + 1) + ��. (���)�.�  
 
Where the coefficients are listed in Table 5. The standard error of the coefficients is calculated by 
taking 100 random samples from the inventory and then taking the mean and standard deviation 
of the resulting coefficients.  
 
Table 5. Variable coefficients and standard error used in the GGLM21a and GGLM21b models 

Model 1 Model 2 
Variable Coefficient SE unit Variable Coefficient SE unit 
intercept 4.925 8.14E-02 - intercept 9.504 1.72E-01 - 
ln (PGV) 0.694 1.37E-02 cm/ s ln (PGV) 0.706 1.37E-02 cm/ s 

TRI -0.459 1.15E-02  ln (Vs30) -0.994 3.05E-02 cm/s 
dc -0.403 5.69E-03 m dc -0.389 5.63E-03 m 
dr -0.309 5.69E-03 m dr -0.291 5.84E-03 m 

Zwb -0.164 4.25E-03 m Zwb -0.205 3.87E-03 m 
 
Performance of the new model is also compared to the old model (Zhu et al. 2017) in Figure 4 and Table 
6.  
 
 



 
Figure 4. ROC Curve comparing GGLM15, GGLM17a and b (Zhu et al. 2017) and the updated models 
GGLM21a and GGLM21b. These are plotted using the updated GGLM21 database. 
 
Table 6. Comparison of GGLM15, GGLM17a and GGLM17b with GGLM21a and GGLM21b across the 
new inventory 

 AUC Brier AIC 

GGLM 2021a 0.918 0.083 16,848 

GGLM 2021b 0.915 0.084 17,278 

GGLM 2017a 0.819 0.132 37,542 

GGLM 2017b 0.868 0.105 21,828 

GGLM 2015 0.832 0.124 28,556 

 
Regional performance of the candidate models is shown in Figure 5 and summarized with accuracy 
statistics in Table 7. Both candidate models are compared with the proposed GGLM17b. Performance of 
the GGLM21 models is strongest in North America, Asia, Japan and Oceania. Performance in South 
America is stronger than the GGLM17b model but not as strong as other regions. Performance in Europe 
is comparable to GGLM17b. The inventory is smaller for South America and Europe. 
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Figure 5. Regional performance of the candidate models  
 
Table 7. Summary of regional performance of candidate models 

  
 AUC   Brier   AIC  

 
GGLM21a GGLM21b GGLM17b GGLM21a GGLM21b GGLM17b GGLM21a GGLM21b GGLM17b 

Asia 0.859 0.844 0.805 0.144 0.151 0.172 2628 2707 3257 

Europe 0.785 0.790 0.776 0.030 0.029 0.032 1260 1252 1266 

Japan 0.919 0.914 0.874 0.123 0.124 0.176 4566 4669 6245 

North 
America 

0.900 0.907 0.868 0.055 0.052 0.055 3727 3582 3775 

Oceania 0.961 0.966 0.896 0.209 0.218 0.419 1426 1480 2914 

South 
America 

0.796 0.800 0.709 0.047 0.049 0.044 1967 2132 1893 

 
 
Conclusions 
In this work, we have updated the liquefaction inventory to include 51 earthquakes. The database 
includes 5 earthquakes which did not experience liquefaction. In each of these earthquakes, we 
sample points that are classified as liquefied or not liquefied. Each location is also sampled for 
earthquake specific shaking parameters and geospatial parameters as proxies for soil density and 
soil saturation. In addition to the explanatory variables evaluated in GLM17, we also included 
elevation above water body, soil and sediment thickness (Pelletier et al. 2017), topographic 
roughness index, and topographic position index. Using the enhanced database, we have 
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provided an update to GLM17 reflecting the new data. We present two updated models which 
also use logistic regression for model development. In this work, the top performing best-fit 
model GGLM21a based on the AUC, Briar score, and AIC uses PGV, TRI, distance to coast, 
distance to river, and elevation above water body as the explanatory variables. The second best-
fit model GGLM21b uses PGV, slope-based Vs30, distance to coast, distance to closest river, 
and elevation above closest water body as explanatory variables. These models provide 
improved performance across both the 2017 and 2021 databases. 
 
Project Data 
The liquefaction inventory will be supplied with the peer-reviewed journal publication as an electronic 
supplement. The journal publication is in preparation and will be submitted to the USGS when external 
review is complete. 
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Appendix 
 
 
 
Table A1. Table of Earthquakes included in the database, including earthquake summary, and source information  



# Date Mag. Earthquake 
Name 

Prior 
Inventory 

Data source Second reference Shape 

1 9/3/2010 7.0 Darfield Zhu et al., 
2015, 
2017 

Townsend, D., Lee, J.M., Strong, D.T., 
Jongens, R. et al (2016). Dataset S1 
 

Zhu et al. 2015: the data for the 2010-2011 
Darfield and Christchurch earthquakes from the 
Canterbury geotechnical database 
(https://canterburygeotechnicaldatabase.projectorb
it.com; last accessed July 2014). 

Polygons 

2 2/22/2011 6.1 Christchurch Zhu et al., 
2015, 
2017 

Townsend, D., Lee, J.M., Strong, D.T., 
Jongens, R. et al (2016). Dataset S2 
 

Zhu et al. 2015: the data for the 2010-2011 
Darfield and Christchurch earthquakes from the 
Canterbury geotechnical database 
(https://canterburygeotechnicaldatabase.projectorb
it.com; last accessed July 2014). 

Polygons 

3 1/17/1995 6.9 Kobe Zhu et al., 
2015, 
2017 

Hamada, M., Isoyama, R., and 
Wakamatsu, K., 1995. The 1995 
Hyogo-ken Nanbu (Kobe) Earth-quake: 
Liquefaction, Ground Displacement and 
Soil Condition in the Hanshin Area, 
Assoc. for Development of Earthquake 
Prediction, Tokyo, 194 pp. 
 

 Points 
and 
Polygons 

4 10/17/1989 6.9 Loma Prieta Zhu et al., 
2017 

Tinsley et al. (1998). Maps and 
descriptions of liquefaction and 
associated effects. The Loma Prieta, 
California, Earthquake of October 17, 
1989-Liquefaction. Edited by Thomas L. 
Holzer, USGS Professional Paper 1551-B 
 

 Polygons 
and 
points 

5 4/13/1949 6.9 Puget Sound Zhu et al., 
2017 

Chleborad, A. F., & Schuster, R. L. 
(1990). Ground failure associated 
with the Puget Sound region 
earthquakes of April 13, 1949, and 
April 29, 1965 (No. 90-687). US 
Geological Survey. 

 Points 
 



6 4/29/1965 6.7 Puget Sound Zhu et al., 
2017 

Chleborad, A. F., & Schuster, R. L. 
(1990). Ground failure associated 
with the Puget Sound region 
earthquakes of April 13, 1949, and 
April 29, 1965 (No. 90-687). US 
Geological Survey. 

 Points 

7 2/28/2001 6.8 Nisqually Zhu et al., 
2017 

Bray, J. D., Sancio, R., Kammerer, 
A. M., Merry, S., Rodriguez-Marek, 
A., Khazai, B., & Dreger, D. (2001). 
Some Observations of the 
Geotechnical Aspects of the 
February 28, 2001, Nisqually 
Earthquake in Olympia, South 
Seattle, and Tacoma, 
Washington. Report sponsored by 
NSF, PEER Center, UCB, 
University of Arizona, Washington 
State University, Shannon and 
Wilson Inc., and Leighton and 
Associates. 

 Points 

8 1/17/1994 6.6 Northridge Zhu et al., 
2017 

Stewart, J. P., Bray, J. D., Seed, R. 
B., & Sitar, N. (1994). Preliminary 
report on the principal geotechnical 
aspects of the January 17, 1994 
Northridge earthquake. University 
of California, Berkeley, Earthquake 
Engineering Research Center] 
Report UCB/EERC-94/08. 
Berkeley: Earthquake Engineering 
Research Center, University of 
California  

Stewart et al. (1996) Polygons 
and 
points 

9 12/22/200
3 

6.6 San Simeon Zhu et al., 
2017 

Holzer, T. L., Noce, T. E., Bennett, 
M. J., Tinsley III, J. C., & 
Rosenberg, L. I. (2005). 
Liquefaction at Oceano, California, 
during the 2003 San Simeon 
earthquake. Bulletin of the 
Seismological Society of 
America, 95(6), 2396-2411 

 Polygons 
and 
points 



10 7/12/1993 7.7 Hokkaido 
Nansei-oki 

Zhu et al., 
2017 

Wakamatsu, K. (2011). Historic 
Liquefaction sites in Japan, 745-2008, 
University of Tokyo Press.  

 Polygons 
and 
points 

11 12/17/198
7 

6.5 Chiba-ken-
oki 

Zhu et al., 
2017 

Wakamatsu, K. (2011). Historic 
Liquefaction sites in Japan, 745-2008, 
University of Tokyo Press.  

 Polygons 
and 
points 

12 6/12/1978 7.6 Miyagi-ken-
oki 

Zhu et al., 
2017 

Wakamatsu, K. (2011). Historic 
Liquefaction sites in Japan, 745-2008, 
University of Tokyo Press.  

 Polygons 
and 
points 

13 5/26/1983 7.7 Nihonkai 
Chubu 

Zhu et al., 
2017 

Wakamatsu, K. (2011). Historic 
Liquefaction sites in Japan, 745-2008, 
University of Tokyo Press.  

 Polygons 
and 
points 

14 10/23/200
4 

6.6 Niigata-ken 
Chuetsu 
2004 

Zhu et al., 
2017 

Wakamatsu, K. (2011). Historic 
Liquefaction sites in Japan, 745-2008, 
University of Tokyo Press.  

 Polygons 
and 
points 



15 6/16/1964 7.6 Niigata 1964 Zhu et al., 
2017 

Wakamatsu, K. (2011). Historic 
Liquefaction sites in Japan, 745-2008, 
University of Tokyo Press.  

 Polygons 
and 
points 

16 7/16/2007 6.6 Niigata 2007 Zhu et al., 
2021 

Wakamatsu, K. (2011). Historic 
Liquefaction sites in Japan, 745-2008, 
University of Tokyo Press.  

 Polygons 
and 
points 

17 10/6/2000 6.7 Tottori-ken 
Seibu 

Zhu et al., 
2017 

Wakamatsu, K. (2011). Historic 
Liquefaction sites in Japan, 745-2008, 
University of Tokyo Press.  

 Polygons 
and 
points 

18 9/26/2003 8.3 Tokaichi-oki Zhu et al., 
2017 

Wakamatsu, K. (2011). Historic 
Liquefaction sites in Japan, 745-2008, 
University of Tokyo Press.  

 Polygons 
and 
points 

19 3/11/2011 9.1 Tohoku Zhu et al., 
2017 

Ministry of Land, Transport and 
Tourism (MLITT) (2011) 

 Polygons 
and 
points 



20 9/21/1999 7.6 Chi-Chi Zhu et al., 
2017 

Chu, D. B., J. P. Stewart, S. Lee, J. S. 
Tsai, P. S. Lin, B. L. Chu, R. B. Seed, 
S. C. Hsu, M. S. Yu, and M. C. Wang 
(2004).Documentation of soil conditions 
at liquefaction and non-liquefaction 
sites from 1999 Chi–Chi (Taiwan) 
earthquake, Soil Dynam. Earthq. Eng. 
24, 647–657. 

Stewart P. J., Chu, D. B., Guglielmo, E., (2003). 
Documentation of soil conditions at liquefaction 
sites from 1999 Chi Chi (Taiwan) Earthquake, 
Pacific Earthquake Engineering  Research Center 
(digitized Figure 1) 

Polygons 
and 
points 

21 1/26/2001 7.6 Bhuj Zhu et al., 
2017 

Singh, R. P., S. Bhoi, and A. K. Sahoo 
(2002). Changes observed in land and 
ocean after Gujarat earthquake of 26 
January 2001 using IRS data, Int. J. 
Rem. Sens. 23, 3123–3128 (digitized 
Figure 2b) 

 
Polygons 
 

22 8/24/2014 6 Napa Zhu et al., 
2017 

Geo-Engineering Extreme Events 
Reconnaissance (GEER) Association 
(2014). Geotechnical Engineering 
Reconnaissance of the August 
24, 2014 M 6 South Napa Earthquake, 
Rept No. GEER-037. 

 Points 

23 5/12/2008 7.9 Wenchuan Zhu et al., 
2017 

Cao, Z., L. Hou, H. Xu, and X. Yuan 
(2010). Distribution and characteristics 
of gravelly soil liquefaction in the 
Wenchuan Ms 8.0 earthquake, 
Earthq. Eng. Eng. Vib. 9, 167–175. 

Chen LW, Yuan XM, Cao ZZ, et al. (2009), 
“Liquefaction Macrophenomena in the Great 
Wenchuan Earthquake,” Earthquake Engineering 
and Engineering Vibration, (digitized Figure 1) 

Points 

24 11/3/2002 7.9 Denali 
(Alaska) 

Rashidian 
and Baise 
(2020) 

Kayen R, Thompson E, Minasian D, et al. 
Geotechnical Reconnaissance of the 
2002 Denali Fault, Alaska, Earthquake. 
Earthquake Spectra. 2004;20(3):639-
667. 

  Points 

25 1/22/2003 7.5 Tecoman Rashidian 
and Baise 
(2020) 

Wartman J, Rodriguez-Marek A, Macari 
EJ, et al. Geotechnical Aspects of the 
January 2003 Tecomán, Mexico, 
Earthquake. Earthquake Spectra. 
2005;21(2):493-538. (digitized Figure 4) 

  Points 



26 4/4/2010 7.2 Baja 
California 

Rashidian 
and Baise 
(2020) 

Stewart, J. P., & Brandenberg, S. J. 
(2010). Preliminary report on 
seismological and geotechnical 
engineering aspects of the April 4 
2010 mw 7.2 El Mayor-Cucapah 
(Mexico) earthquake. Geotechnical 
Extreme Events Reconnaissance 
(GEER) Association 
(digitized Figure) 

  Points 

27 8/23/2011 5.8 Mineral, 
Virginia 

Rashidian 
and Baise 
(2020) 

Carter, M. and Maurer, B., 2011. 
Geotechnical Quick Report on the 
Affected Region of the 23 August 2011 
M5. 8 Central Virginia Earthquake near 
Mineral, Virginia. Geotechnical Extreme 
Events Reconnaissance (GEER) 
Association. (Digitized Figure 1) 

  Points 

28 9/3/2016 5.8 Oklahoma Rashidian 
and Baise 
(2020) 

Clayton, P., Zalachoris, G., Rathje, E., 
Bheemasetti, T., Caballero, S., Yu, X. 
and Bennett, S., 2016.  The 
geotechnical aspects of the September 
3, 2016 M 5.8 Pawnee, Oklahoma 
earthquake. GEER Association, 
Berkeley, California.  

  Points 

29 6/23/2001 8.4 Arequipa Rashidian 
and Baise 
(2020) 

Gómez, J.C., Tavera, H.J., Orihuela, N., 
2005. Soil liquefaction during the 
Arequipa Mw 
8.4, June 23, 2001 earthquake, 
southern coastal Peru. Eng. Geol. 78 (3), 
237–255. (digitized from Figure 1) 

 Points 
 

30 2/27/2010 8.8 Maule Rashidian 
and Baise 
(2020) 

Verdugo, R., 2011. Comparing 
liquefaction phenomena observed 
during the 2010 Maule, 
Chile earthquake and 2011 Great East 
Japan earthquake. In: Proceedings of 
International Symposium on 
Engineering Lessons Learned from the 
(pp. 1-4). 

 Points 



31 4/1/2014 8.2 Iquique Rashidian 
and Baise 
(2020) 

Rollins, K., Ledezma, C., Montalva, G., 
2014. Geotechnical aspects of April 1, 
2014, M8. 2 Iquique, Chile 
Geotechnical Extreme Events 
Reconnaissance (GEER) 
Association. 

Franke, Kevin W., et al. “Reconnaissance of Two 
Liquefaction Sites Using Small Unmanned Aerial 
Vehicles and Structure from Motion Computer 
Vision Following the April 1, 2014 Chile 
Earthquake.” Journal of Geotechnical and 
Geoenvironmental Engineering, American Society 
of Civil Engineers, 2 Dec. 2016, 
ascelibrary.org/doi/10.1061/%28ASCE%29GT.194
3-5606.0001647.  

Points 

32 9/16/2015 8.3 Illapel Rashidian 
and Baise 
(2020) 

Candia, G., de Pascale, G., Montalva, G., 
Ledezma, C., 2015. Geotechnical 
Reconnaissance 
of the 2015 Illapel Earthquake. 
Geotechnical Extreme Events 
Reconnaissance (GEER) 
Association. 

 Points 

33 4/16/2016 7.8 Muisne Rashidian 
and Baise 
(2020) 

Nikolaou, S., Vera-Grunauer, X., Gilsanz, 
R., Luque, R., Kishida, T., Diaz-Fanas, G., 
Alzamora, D., 2016. GEER-ATC M 7.8 
April 16, 2016 Muisne, Ecuador 
Earthquake Reconnaissance Report. 
Geotechnical Extreme Events 
Reconnaissance (GEER) Association. 
GEER-049  
doi:10.18118/G6F30N 

 Points 

34 4/22/1991 7.6 Telire Limon Rashidian 
and Baise 
(2020) 

Yasuda, S., Watanabe, H., Yoshida, N., 
Mora, S., 1993. Soil Liquefaction During 
the 1991 Telire-Limón, Costa Rica, 
Earthquake. (Figure 2) 

 Points 

35 5/28/2009 7.3 Honduras Rashidian 
and Baise 
(2020) 

Luna, R., 2010. Reconnaissance Report 
of the May 28, 2009 Honduras 
Earthquake, M 7.3. 
Geotechnical Extreme Events 
Reconnaissance (GEER) Association. 

 Points 



36 1/12/2010 7.0 Haiti Rashidian 
and Baise 
(2020) 

Rathje, E., Bachhuber, J., Cox, B., 
French, J., Green, R., Olson, S., Rix, G., 
Wells, D., andSuncar, O., 2010. 
Geotechnical Reconnaissance of the 
2010 Haiti Earthquake, GEER 
Association Report No. GEER-021. 

Olson, S.M., Green, R.A., Lasley, S., Martin, N., 
Cox, B.R., Rathje, E., French, J., 2011. 
Documenting liquefaction and lateral spreading 
triggered by the 12 January 2010 
Haiti earthquake. Earthquake Spectra 27 (S1), 
S93–S116. 

Points 

37 9/5/2012 7.6 Samara Rashidian 
and Baise 
(2020) 

Rollins, K., Franke, K., Luna, B.R., Rocco, 
N., Avila, D., Climent, M.R., 2013. 
Geotechnical Aspects of Sept. 5, 2012 
m7.6 Samara, Costa Rica Earthquake. 
Geotechnical Extreme Events 
Reconnaissance (GEER) Association. 

M 7.6 - Costa Rica (usgs.gov) Points 

38 8/17/1999 7.6 Kocaeli Rashidian 
and Baise 
(2020) 

Sonmez and Ulusay; 2008; Liquefaction 
potential at Izmit Bay: comparison of 
predicted 
and observed soil liquefaction during 
the Kocaeli earthquake.;  
Rathje, E.M., Karatas, I., Wright, S.G., 
Bachhuber, J., 2004. Coastal failures 
during the 1999 Kocaeli earthquake in 
Turkey. Soil Dyn. Earthq. Eng. 24 (9), 
699–712. 

C Scawthorn, G.S Johnson, Preliminary report: 
Kocaeli (Izmit) earthquake of 17 August 1999, 
Engineering Structures, Volume 22, Issue 7, 2000, 
Pages 727-745, ISSN 0141-0296, 
https://doi.org/10.1016/S0141-0296(99)00106-6 
(http://www.sciencedirect.com/science/article/pi
i/S0141029699001066) 

Points 

39 11/12/199
9 

7.2 Duzce Rashidian 
and Baise 
(2020) 

Ghasemi et al.; The Nov 1999 Duzce 
Earthquake: Post-EQ investigation of 
the structures of the TEM 
https://www.fhwa.dot.gov/publications
/research/infrastructure/structures/00
146.pdf 

 Points 

40 6/8/2008 6.5 Achia Rashidian 
and Baise 
(2020) 

Pavlides, S., Papathanassiou, G., 
Valkaniotis, S., Chatzipetros, A., Sboras, 
S., Caputo, R., 2013. Rock-falls and 
liquefaction related phenomena 
triggered by the June 8, 2008, M. Ann. 
Geophys. 56 (6), S0682. 

Preliminary Report on the Principal Seismological 
and Engineering Aspects of the Mw=6.5 Achaia-
Ilia (Greece) Earthquake on 8 June 2008 

Points 

41 4/6/2009 6.3 Aquila Rashidian 
and Baise 
(2020) 

Monaco, P., Santucci de Magistris, F., 
Grasso, S. et al. Analysis of the 
liquefaction phenomena in the village 
of Vittorito (L’Aquila). Bull Earthquake 
Eng 9, 231–261 (2011). 
https://doi.org/10.1007/s10518-010-
9228-0 

GEER Report Aquila Points 

https://earthquake.usgs.gov/earthquakes/eventpage/usp000jrsw/ground-failure/summary


42 10/23/201
1 

7.1 VanTab Rashidian 
and Baise 
(2020) 

Erdik, M., Kamer, Y., Demircioğlu, M. et 
al. 23 October 2011 Van (Turkey) 
earthquake. Nat Hazards 64, 651–665 
(2012). 
https://doi.org/10.1007/s11069-012-
0263-9 

Aydan, Ö., Ulusay, R. & Kumsar, H. Seismic, 
ground motion and geotechnical 
characteristics of the 2011 Van-Erciş and 
Van-Edremit earthquakes of Turkey, and 
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Table A2. Nonliquefaction events used in this study 

Date Magnitude 
Earthquake 
Name Source 

9/3/2000 5 Yountville  

8/17/2015 4 Piedmont  

7/29/2008 5.4 Chino Hills 

Geo-Engineering Extreme Events Reconnaissance (GEER) Association 
(2008). Preliminary Geotechnical Observations of the July 29, 
2008 Southern California Earthquake, available at http://www 
.geerassociation.org/images/GEER_Activities/07-29-2008%20LA% 
20EQ/ChinoHillsEarthquakeFinal.pdf (last accessed March 2017). 
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