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Improvements to the Near Surface Velocity Model of the Sacramento-San Joaquin Delta 

M. Craig, K. Hayashi, and S. Shuler 

Abstract 

Seismic surface wave surveys were performed at twelve sites in the Sacramento-San Joaquin 
Delta region, providing improved shear wave velocity (VS) models of the near surface and VS30 
measurements. A combined active and passive method utilizing MASW (Multichannel Analysis 
of Surface Waves) and MAM (Microtremor Array Method) provided depth penetration of 20 m 
to 40 m, depending on site. The method was able to detect velocity reversals and surficial layers 
as thin as 1 m. Velocity models derived from surface wave surveys were in good agreement with 
lithologic sequences from soil borehole logs. Measured peat velocities were extremely low, 
ranging from 42 m/s to 150 m/s. Velocities of a deeper sand unit ranged from 220 m/s to 370 
m/s. Measured average VS from the surface to a depth of 30 m (VS30) ranged from 98 m/s to 257 
m/s. Sites were assigned to NEHRP site classes D, E, and F. Assignments to class F were based 
on the presence of a near-surface peat layer up to 8 m thick. All sites have soft near-surface soils 
and are liable to experience large ground accelerations in the event of a strong earthquake. At 
four of the sites, additional surveys were performed using the two-station spatial autocorrelation 
(SPAC) method to provide depth penetration of approximately 2000 m. Velocity was determined 
to frequencies as low as 5 Hz, 1 Hz, and 0.3 Hz using MASW, MAM, and 2ST-SPAC, 
respectively. Tests indicate that near-surface seismic reflection data quality is good and that 
reflection profiling may be successfully conducted in the area using a relatively modest 
recording system. 

 

Introduction 

The goal of this study was to improve the near-surface shear-wave velocity (VS) model of the 
Sacramento-San Joaquin Delta. VS is directly related to the elastic rigidity of soil and rock, and is 
used to estimate the strength of ground shaking due to an earthquake. In this study, seismic 
surface wave methods were used to measure VS at twelve sites. The primary products for each 
survey site are a 1D shear-wave velocity model and a VS30 measurement. The quality of the 
velocity models produced in this work was assessed through comparison with geotechnical logs 
from nearby boreholes. 

The Sacramento-San Joaquin Delta consists of a network of river channels that originate in the 
Sierra Nevada and drain through the Carquinez Strait to San Francisco Bay. Because its outlet is 
constricted, deposits of peat and mud up to 10 m thick accumulated in the central Delta during 
the Holocene. These estuarine and floodplain deposits are underlain by eolian sands and 
Pleistocene alluvial fan deposits (Atwater and Belknap, 1980). The Delta is a major source of 
water for the State of California, is the site of agriculture, and provides habitat for a variety of 
species. During the past century, most the tidal wetlands constituting the Delta were converted to 
farmland by building levees around the perimeter of islands and draining the islands. Many of 
the islands have a thick peat layer, and have undergone several meters of subsidence during the 
past century as the peat has dried, oxidized, been carried away by wind, and undergone 
compaction (Mount and Twiss, 2005). The elevation of the ground surface of the island interiors 
is typically several meters below the height of the river outside the levees. The risk of flooding 
due to levee failure would be exacerbated by strong shaking due to an earthquake on a nearby 
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Table 1. NEHRP site classes (BSSC, 2000) 

Site Class Material Velocity (m/s) 

A Hard rock VS30 > 1500 

B Rock 760 < VS30  1500 

C Very dense soil and soft rock 360 < VS30  760 

D Stiff soil 180  VS30  360 

E Soil VS30 < 180 

F Soils requiring site-specific evaluations  

 

Site class F includes liquefiable soils, peats more than 3 m thick, and certain types of clays 
vulnerable to failure under seismic loading. 

VS30 , as defined by BSSC (2001), is the average shear-wave velocity over the upper 30 m, 
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 = 30 m. 

Site Locations 

Site locations were selected to provide relatively uniform spatial coverage of the central Delta 
and to sample a range of different geologic conditions. Where possible, locations of stations used 
in previous studies or networks were reoccupied. New sites were located in areas where borehole 
logs were available. Sites were located at a total of twelve locations (Figure 4): Sherman Island 
(SIA), Bethel Island (SRB), Holland Marina (HOL), Sandmound Boulevard (SMB), Empire 
Tract (EMR-E, EMR-N, EMR-S) , Webb Tract (WEB-N, WEB-S), Bacon Island (BAC-N, 
BAC-S), and Clifton Court Forebay (CC). Four sites were at or near the locations used by 
Fletcher and Boatwright (2013): SRB, HOL, SMB, and EMR.   
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During the course of conducting surface wave surveys for this study, field records for several 
sites were observed to contain coherent reflections. indicating that reflection profiling could be 
successfully used to image near-surface stratigraphy. Reflection profiling is more time intensive 
than surface wave surveying, but has the potential to provide higher resolution images needed to 
resolve stratigraphic and structural details associated with faulting.  
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