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ABSTRACT 

This report describes the development of a method of estimating moment magnitude and stress drop for 
moderate events (M 3.5 to 6) in central and eastern North America (CENA) from regional ground-motion data.  
Ground-motion data include thousands of response spectra compiled for events of M3.5 to 6 as part of the 
NGA-East, NGA-West2 and seismotoolbox projects. The basic idea is to empirically characterize the 
relationship between observed spectral amplitudes at near-to-regional distances and seismic moment.  The 
effective use of regional data to provide insight into source and attenuation is important, because near-source 
data are sparse in CENA.  By considering both NGA-East and NGA-West2 databases, the study enables 
consistent comparisons of stress drops for events of the same moment amongst regions.  The constraints that are 
provided by this study on source and attenuation parameters in CENA are important to the development of 
ground-motion prediction equations for use in the national seismic hazard maps, for accurate assessment and 
mitigation of earthquake hazards, and for ShakeMap applications in the East. 

The report is divided into several sections, each of which stands alone.  The first provides an introduction and 
overviews the general concepts used.  The second presents the method to estimate moment M, while the third 
describes a comprehensive model of ground motions in CENA.  Finally, the fourth section provides a recipe by 
which the study components can be easily used to obtain moment and stress drop for events from response 
spectral parameters commonly available through ShakeMap applications, and also provides source parameter 
estimates for the CENA events in the NGA-East database. 
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1 - Introduction 

This project explores basic source parameters – moment magnitude and stress drop – for moderate events in 
Central and Eastern North America (CENA), and places constraints on ground-motion attenuation in CENA, 
particularly within 50 km and across the transition zone to Lg spreading (from 50 to 150 km).  The model 
developed in the study accomplishes the following:  (i) produces a catalogue of estimated moment magnitudes 
and stress drops for moderate events recorded on regional networks in CENA, in comparison to consistently-
obtained source parameters for California events; (ii) provides insight into attenuation in CENA; and (iii) 
provides a fast and reliable model to estimate seismic moment and stress drop from ShakeMap parameters, for 
future events.  A calibrated ground-motion prediction equation (GMPE) for CENA based on stochastic point-
source modeling of the NGA-East database is also provided.  These research products are very useful for GMPE 
development, seismic hazard estimation, and for ShakeMap applications.   

The methodology is largely empirical in nature, with use of a simple stochastic point-source model (Boore, 
2003) to provide a Brune-model context for basic source parameters (seismic moment and stress drop).  The 
focus is on the moderate events (M<6) that make up the CENA database. 

Background and Database 

An understanding of basic ground-motion characteristics - in particular their near-source amplitudes and how 
they scale with magnitude and attenuate with distance - is crucial to accurate assessment and mitigation of 
earthquake hazards.  In CENA the characterization of ground motion is subject to particularly large 
uncertainties, due to the paucity of data from strong earthquakes, and at short distances.  The large uncertainties 
and relative lack of confidence in our assessment of the expected motions is a significant impediment to 
reducing urban seismic risk:  without a confident and unambiguous assessment of hazard and ground motions, 
decision-makers are reluctant (with some justification) to spend limited resources on mitigation.  It is thus 
crucial to reduce uncertainty in the characterization of CENA ground motions to enable progress on seismic 
hazard assessment and mitigation.   

Knowledge of the attenuation of motions is especially needed at distances R<50km (due to their significance to 
hazard), but is also important through the “transition zone”, where direct waves are joined by post-critical 
reflections from the Moho, and out to regional distances dominated by Lg-phase spreading.  The attenuation 
needs to be understood over a broad range of distances so that we can “tie together” observations at distance 
with motions near the source.  Attenuation studies in the East have focused on the data available in the 
northeastern U.S./southeastern Canada (e.g. Atkinson, 2004) due to the availability of recordings on rock sites 
in that region.  Recent studies (Babaie Mahani and Atkinson, 2013; Hassani and Atkinson, 2014) suggest that 
the attenuation and source parameters are not significantly different in the central United States than in the more 
eastern regions of the continent.  Hence we can analyze CENA as a single large region for the purposes of 
ground motion and attenuation studies.   

Regional ground-motion investigations can be conducted using data from small-to-moderate events recorded on 
ANSS (Advanced National Seismic System) and affiliated broadband seismographic stations in CENA and 
elsewhere (where “ANSS” is often used loosely to include all ground-motion recording stations, including 
velocity and acceleration sensors from a number of cooperating networks).  Many of these data have been 
compiled as part of the NGA-East ( www.peer.berkeley/ngaeast/ ), NGA-West ( www.peer.berkeley/ngawest/ ) 
and Seismotoolbox ( www.seismotoolbox.ca ) projects.   Figures 1 to 2 provide maps of the events for which we 
have available ground-motion amplitudes for model development and comparisons from the NGA projects;  
recording station locations are also shown.  The maps cover the study regions of the central U.S. (CUS, 
including New Madrid and surrounding regions), northeast U.S./ southeastern Canada (NEUS), northern 
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Califoria (NCal) and southern California (SCal).  For the events shown on these maps, the NGA projects have 
already compiled the response spectra data (PSA, 5% damped pseudo-acceleration, horizontal and vertical 
components).  There are also some additional data for the NEUS region in the seismotoolbox, which is regularly 
updated to include significant new events.  The moment magnitude determinations performed by Prof. R. 
Herrmann (http://eqinfo.eas.slu.edu/Earthquake_Center/MECH.NA/MECHFIG/mech.html) for many of these 
events make them particularly valuable for calibration of attenuation and source studies, as will be discussed in 
more detail later.  We include both the eastern and western data in the small-to-moderate magnitude range in 
this study, to enable consistent inter-regional comparisons of source and attenuation characteristics. 

 

 

Figure 1 – Map of 
earthquakes and 
permanent stations in 
the CUS (lower left) and 
NEUS (upper right) for 
which we have compiled 
ground-motion data 
(from NGA-East). 
(Transportable-array 
stations not shown.) 
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An understanding of attenuation is a pre-requisite to obtaining reliable estimates of source parameters for 
CENA earthquakes, as these source parameters must be estimated from observations gathered at distance.  
Source parameters, in turn, are critical to the prediction of ground-motion amplitudes at near-source distances 
and their scaling with magnitude, which is the focus of GMPEs for hazard applications.  In particular, we 
require an understanding of the linked behavior of source and attenuation characteristics to make meaningful 
progress in predicting ground-motion amplitudes for future large earthquakes in the CENA.  The linkage of 
source and attenuation parameters is an important “trade-off” problem in the development of GMPEs (e.g. 
Boore et al., 2010).   

Seismic moment has an important role to play in constraining the source versus attenuation trade-off in ground-
motion modeling.  Consider Figure 3, which plots the Brune model Fourier acceleration spectrum (Brune, 1970; 
Boore, 2003) at a reference hypocentral distance of Rhypo=1 km, for earthquakes of M3.5 to 6.5, for stress drops 
( Δσ ) of 50 and 500 bars (spanning the usual range for CENA events).  The Brune spectral model is typically 
the basis for the source spectrum as prescribed by stochastic ground-motion simulations in the development of 
ground-motion prediction equations (GMPEs) for the CENA (eg. Toro et al., 1997; Frankel, 1996; Atkinson and 
Boore, 2006; Pezeshk et al., 2011).  In this model, the long-period displacement level is proportional to 
moment, and thus the acceleration spectrum rises as frequency-squared, to the “corner frequency”, above which 
it attains a constant value that depends on stress drop.  The corner frequency depends on moment and stress 
drop;  thus stress drop is a key unknown parameter in such models.  The importance of stress drop for ground 
motions at high frequencies is apparent in Figure 3.  For example, for M6.5 the high-frequency motions for a 
500-bar event exceed those from a 50-bar event by a factor of about 5.  The high-frequency decay parameter, 
kappa (Anderson and Hough, 1986), is also significant, especially at f>5Hz.  At low frequencies, the Fourier 
spectrum at the source is entirely constrained by the moment magnitude (and a scaling constant).  For small-to-

Figure 2 – Map of 
earthquakes and 
permanent stations in 
California for which we 
have compiled ground-
motion data (from NGA-
West; only the small-to-
moderate magnitude 
dataset is shown here). 
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moderate events (M<5), the “moment end” of the spectrum effectively constrains near-source ground motions 
for frequencies up to ~1 Hz.   

 

 

Methodology 

In this research program, several inter-related studies were conducted, in order to develop a methodology to 
determine basic source parameters (moment magnitude and Brune stress parameter) for events of M3.5 to 6.5 
from regional ground-motion data.  The underpinning of the methodology is an effective point-source stochastic 
model of ground motion, as described by Boore (2003, 2009) and Yenier and Atkinson (2014a). The 
methodology is general in nature and can be applied to both eastern and western events.  This transportability of 
methodology is important because it enables consistent determination of eastern and western source and 
attenuation parameters for comparative purposes, which is very useful.  For example, one of the preferred 
methods of GMPE development in the east, the hybrid-empirical method (Campbell, 2003; Pezeshk et al., 
2011), relies on comparison of eastern vs. western stress drops.   

The first component of the methodology is the determination of moment magnitude.  In Section 2, I describe the 
use of 1-Hz response spectral amplitudes to estimate moment magnitude, using a calibrated point-source 
simulation model, for small-to-moderate events.  (Note: moment magnitude for larger events, of M>4, is 
typically available from regional or global centroid moment tensor solutions, hence the focus of this study on 
reliable moments for smaller events.)  This work has been published in Seismological Research Letters 
(Atkinson et al., 2014).  Note that in this study, many simplifications are made in order to get an estimation 
formula that is efficient to use in practice.  An alternative to use of Section 2 in estimation of moment 
magnitude would be to use the more detailed approach described in Section 3, which would be robust over a 
wider range of magnitudes and distances.  Alternatively, one could use the calibration-based moment magnitude 
estimate derived for events at regional distances, as described in Atkinson and Babaie Mahani (2013).  All three 
of these possible algorithms give similar values of moment for most events, and the choice between them is a 
matter of convenience and suitability for the application. 

In Section 3, the simulation modeling approach is extended to derive a generic GMPE for eastern events, taking 
advantage of the NGA-East database.  The model developed is tied to a corresponding model derived in 
analogous fashion from the more comprehensive NGA-West2 database.  This novel study introduces a number 
of new concepts in stochastic point-source modeling, including an approach to decouple spectral shape from 

Figure 3 – Fourier spectrum of 
acceleration (at Rhypo= 1 km) for 
Brune source model, for M=3.5, 5.0, 
6.5, with stress drop parameters of 
50 bars (green) and 500 bars (red), 
for kappa=0.02.  Influence of kappa 
is illustrated by also plotting curves 
for kappa=0.06 at M5 (lower 
dashed curves for M5). 
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amplitude level (through the use of a calibration constant) to provide more meaningful estimates of stress 
parameter, which are independent of the preferred model for geometric spreading.  For the events in the NGA-
East database, the stress parameter is determined based on the shape of the attenuation-corrected source 
spectrum.  This work has been submitted for possible publication in the Bulletin of the Seismological Society of 
America (Yenier and Atkinson, 2014b). 

Finally, in Section 4, I describe how we can use the simulation-based GMPE of Section 3 to rapidly determine 
both M (moment magnitude) and stress parameter for any moderate event that occurs in CENA, based on PSA 
at 1 Hz (to determine M), and PSA at 10 Hz or PGA (to determine stress parameter).  This in turn allows the 
definition of a calibrated event-specific GMPE that can be used in ShakeMap applications. 
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2 - Estimation of moment magnitude (M) for small events (M<4)  

on local networks    

(Gail M. Atkinson, D.Wesley Greig, and Emrah Yenier; as published in Seism. Res. L., 2014) 

 

Section Summary 

We develop a simple model to estimate moment magnitude for events of M<4, at distances out to ~300km, 
based on readily-available ShakeMap parameters and seismological scaling principles.  Estimates of moment 
magnitude for such small events are not available from standard methods, but are needed for local-network 
applications and for traffic light systems for induced seismicity applications; this issue is currently of particular 
interest in central and eastern North America. The method takes advantage of the fact that for small events the 
response spectrum is well-correlated with seismic moment for periods greater than 0.3s, and can be predicted 
from a simple stochastic point-source model.  We develop an equation by which we calculate M   from the 1s 
PSA (M≥3) or the 0.3s PSA (M<3) at each station, using a simple linear equation that corrects for the effects of 
attenuation.  We show that this method produces unbiased estimates of moment magnitudes in both eastern and 
western North America, for events of M≤4 recorded at distances <300 km. 

   

Introduction 

This section outlines a simple method to estimate moment magnitude (M) (Hanks and Kanomori, 1979) for 
small events (M<4) based on recorded ground motion parameters from a local seismographic network.  The 
focus here is on small events, as the seismic moment (and hence M) from larger events can be obtained from 
standard seismological methods using regional and/or global data. For example, global and regional seismic 
moment tensor solutions are routinely available in most of North America for events of M>3.5 from the Univ. 
of St. Louis website of R. Herrmann (http://www.eas.slu.edu/eqc/eqcmt.html), or from the Global Moment 
Tensor catalogue for events of M>4.5 (www.globalcmt.org). The challenge to be addressed is reliable and 
robust estimation of size for small events (M<4), particularly the very small events (M≤3) that may only be 
recorded above noise at close distances.   Reliable moment estimates are difficult to obtain for such events with 
either conventional moment estimation methods, or with methods based on calibration of regional data.  
Obtaining reliable moment estimates for small events is an important problem for two common seismological 
applications:  (i) developing magnitude-recurrence relations for regions that merge small-event and large-event 
seismicity catalogues; and (ii) for induced-seismicity applications, in which traffic light protocols for 
responding to induced events require a reliable assessment of moment magnitude.  These applications are 
currently of great interest in central and eastern North America (ENA). 

The proposed method is based on vertical-component 5%-damped pseudo-acceleration amplitudes (PSA) at 1s 
or 0.3s. (Note: PSA at 1s is defined as the maximum displacement, in response to the ground motion, of a 
single-degree-of freedom 5%-damped oscillator, having a natural vibration period of 1s, multiplied by the factor 
(2π)2).  Response spectra at 1s and 0.3s are commonly-used parameters in engineering seismology; for example, 
both of these are standard ShakeMap parameters (Wald et al., 1999).  Moreover, PSA at 1s and 0.3s provide a 
stable estimate of low-frequency ground motion for small events that is closely correlated with seismic moment.  
Recently, Atkinson and Babaie Mahani (2013) showed that reliable estimates of M may be obtained for 
moderate events in North America (M 3 to 5) using PSA at 1s recorded at regional distances (150 to 500 km), 
using a technique that employs calibration to moderate events with known moment magnitude.  This technique 
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is useful for moderate events, but may not be useable for the small events (M<3) that are particularly important 
for induced seismicity applications, because such events may not have adequate signal-to-noise ratio at 1s at 
regional distances.  Moreover, due to the lack of calibration events with known M, the method would rely on 
extrapolation of the calibration-based equations beyond the magnitude range in which they were defined, and 
might thus be significantly biased.  Therefore, we need a modified approach that will make optimal use of local 
network data over a range of distances from short (<20 km) to regional (< 300 km), and that will have a reliable 
basis when applied to small events for which independent M estimates are not available for calibration.  The 
purpose of this chapter is to describe such an approach.  This provides an additional tool to that given by 
Atkinson and Babaie-Mahani (2013).  Either tool can be used in estimating moments, depending on the 
application under consideration.  Alternatively, the more detailed approach described in Section 3 can be used 
to estimate moment. 

Method for Estimating M for small events 

In this study, we develop a robust method of estimating M from PSA at 1s or 0.3s from local network data, 
focusing on short-to-regional distances, and using a stochastic point-source model to provide a physically-based 
scaling of the relationship down to small magnitudes.  The vertical component PSA at 1s (PSA1) is selected as 
the preferred parameter for our method – though as discussed further in the following, we also use PSA at 0.3s 
(PSA0.3) for small events (M<3) to allow for greater signal-to-noise ratio.  We use the vertical component 
because it minimizes the influence of site response, and is applicable to a range of sites which may have 
unknown site conditions.  In general, vertical-component PSA will be similar to an unamplified horizontal-
component PSA (see Lermo and Chavez Garcia, 1993; Siddiqqi and Atkinson, 2002; Atkinson and Boore, 
2006).   

For events of M<4, 1s is on the flat "low frequency" end of a standard Brune (1970) model displacement 
spectrum, where the amplitude is directly proportional to seismic moment, as shown on Figure 1.  Moreover, for 
sufficiently small events, M<3, 0.3s is also on the low-frequency end of the spectrum, over a wide range of 
stress drop values.  We use this basic seismological principle to formulate the method to estimate M.  At 1s, 
PSA will scale with seismic moment in a manner that is practically independent of stress drop;  the same is true 
for 0.3s PSA, if the event is of M<3.  This simple point-source model is appropriate for the small events of 
interest here, and has been shown to be a reasonable model for ground motions in many parts of the world; see 
Boore (1983; 2003) for examples and a discussion of the seismological principles involved.  The response 
spectrum is similar to a Fourier spectrum, though not identical as the response spectrum shows the maximum 
response of an oscillator to a record, while the Fourier spectrum is a more direct measure of its amplitude at 
each frequency. Atkinson (2012) shows the relationship between Fourier and response spectral amplitudes for 
small events in ENA.  
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Figure 1 – Source spectrum (at R=1km) for M=1, 2, 3, 4, for stress drop values of 100 bars (solid lines) and 
500 bars (dashed lines) for Brune point-source model (neglecting high-frequency effects of kappa).  Circles 
show corner frequencies and vertical black lines highlight 1Hz (=1s) and 3.3Hz (=0.3s). 

 

The approach taken is to use a model-driven ground-motion prediction equation (GMPE) for PSA1 and PSA0.3, 
formulated as a function of M and distance, as a tool from which to calculate M at each station.  To do this, we 
use the stochastic point-source algorithm SMSIM (Boore, 2000) to simulate time series for events of M 0 to 4 
(in increments of 0.2 units), at distances from 1 to 300 km (in increments of 0.1 log units), from which we 
calculate the average PSA at 1s and 0.3s.  The model-based GMPE is an equation we define to express PSA1 
and PSA0.3 as a simple function of M and the distance to the hypocenter (R).  The underlying assumptions in 
these predictions, and their justification, are as follows:  

1) the vertical component has minimal site amplification; thus no crustal or site amplifications are applied. This 
is consistent with a simplified interpretation of the relationship of horizontal-to-vertical spectral ratio to site 
response (Lermo and Chavez-Garcia, 1993; Siddiqqi and Atkinson, 2002), and has been applied in previous 
GMPEs, such as Atkinson and Boore (2006).  

2) we assume a hinged bilinear form for the attenuation model, following Babaie Mahani and Atkinson (2013) 
and Yenier and Atkinson (2014); the geometrical spreading is modeled as R-1.3 and R-0.5 at distances ≤ 50 km 
and >50 km, respectively.   

3) the stress drop is 300 bars for “western” regions, or 600 bars for “eastern” regions;  these values are 
consistent with the adopted attenuation models, according to empirical data analyses in the two regions, as 
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shown by Atkinson and Boore (2014) for ENA and Yenier and Atkinson (2014) for western North America 
(WNA).  (Note:  In Chapter 3 we subsequently refine the stress parameters using a shape-based technique; 
however the results presented herein are not sensitive to stress drop, as we show, so this difference is 
unimportant.)  

4) anelastic attenuation, is represented by a whole-path Q given as Q = max(170f 0.45,100)  for “western regions” 
(Raoof et al., 1999) or Q = 525f 0.45 for “eastern regions” (Atkinson and Boore, 2014) (where f is frequency).  

5) duration is given by 1/f0 +0.05R in all regions, where f0 is the corner frequency (which depends on moment 
and stress drop as described by Boore, 2003); the duration model is one that is commonly-adopted for point-
source simulations (Boore, 2003; Atkinson and Silva, 2000; Atkinson et al., 2009). 

 6) near-surface attenuation is represented with the kappa parameter (Anderson and Hough, 1984), assuming κ0 
= 0.02s;  this is a typical value for competent sites with minimal site effects (e.g. Atkinson and Boore, 2006; 
Campbell, 2009).   

Figure 2 plots the simulated PSA0.3 and PSA1 amplitudes for both eastern and western attenuation models, along 
with the simplified function that we have defined as a basis for the magnitude estimation: 

log𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 = 𝐶𝐶𝑇𝑇 + 1.45𝐌𝐌− log𝑍𝑍(𝑅𝑅)− 𝛾𝛾𝑇𝑇𝑅𝑅                            (1a) 

  

where γ represents the coefficient of anelastic attenuation and Z(R) is the geometrical attenuation that is given 
by 

log𝑍𝑍(𝑅𝑅) = �
1.3log𝑅𝑅                                         𝑅𝑅 ≤ 50 𝑘𝑘𝑘𝑘
1.3log50 + 0.5log(𝑅𝑅 50⁄ )        𝑅𝑅 > 50 𝑘𝑘𝑘𝑘                (1b) 

The logarithmic terms are in base 10. R is hypocentral distance in km, and PSA is in cm/s2. Note that Equation 1 
employs the same geometrical attenuation model used for the simulations, which is a 
simplification/approximation, as shown in more detail in Chapter 3. Table 1 gives the values of the coefficients 
that correspond to the lines on Figure 2, and which define our adopted ground-motion model that is used in 
estimation of M. 

Table 1 – Coefficients of adopted ground-motion model for M estimation (Equation 1) 

 WNA ENA 

 0.3s 1.0s 0.3s 1.0s 

CT -3.15 -4.25 -3.3 -4.5 

γT 0.005 0.0035 0.0015 0.0007 

 
The equation is very simple, because the scaling of PSA at 0.3s and 1s is very regular for small events (Figure 
1);  we caution that this equation would generally underestimate M if applied to events of M>4, as it does not 
consider saturation effects that come into play when modeling larger events as a point source.  The defined lines 
are not a regression fit to the simulated points, but rather represent the overall trends, in particular the 
magnitude-scaling indicated by the simulations from M0 to M4 at typical local-network distances of 5 to 50 
km.  The offset of the lines from the simulated values, apparent on Figure 2, reflects an empirical calibration 
factor that we use to ensure a good fit of the model equations to observations in both WNA and ENA, as 
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discussed in the next section.  Essentially, we used the simulations to determine the magnitude scaling that we 
wished to impose on our ground-motion amplitude model.  Then, with the geometric spreading and magnitude 
scaling held fixed, we calibrated the CT and γT terms based on the empirical ground-motion data (next section) 
to determine their values, as given in Table 1.   We note that if we had simply regressed the simulated 
amplitudes to obtain the coefficients of Equation 1, we would obtain very similar values to those in Table 1, but 
the constant C would be approximately 0.3 units lower in WNA, and 0.1 units lower in ENA, for the simulated 
values.  This offset between simulations and observations reflects model misfits attributable to factors such as 
unmodeled source and site effects and the effect of noise on observed PSA, and is discussed in more detail in 
Section 3. 

In Table 1, we have given variants for two typical regional γ values, which are applicable to active tectonic 
regions such as WNA and stable continental regions such as ENA.  This primarily affects the term in R, though 
there is also a difference in the constant, due to the calibration to observed regional ground-motion amplitudes.  
The coefficient in R and the overall constant term can be adjusted where warranted on a regional basis using 
empirical observations, without affecting the overall magnitude scaling that is constrained by the Brune point-
source model. 

  

 

 

 

Figure 2 – Adopted model of vertical-component PSA at 0.3s (left) and 1s (right) as a function of hypocentral 
distance based on SMSIM point-source simulations.  Points show simulation results, lines show model defined 
to represent simulation points, after calibration with empirical data (Equation 1).  

 

We invert Eqn 1 to write an expression to calculate M at a station based on measured PSA1 or PSA0.3: 
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𝐌𝐌 = (log𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 − 𝐶𝐶𝑇𝑇 + log𝑍𝑍(𝑅𝑅) + 𝛾𝛾𝑇𝑇𝑅𝑅)/1.45                            (2) 

  

with the coefficients as listed in Table 1. To apply this estimation method to recorded PSA data, we assume that 
R=√(D2+h2), where D is epicentral distance and h is focal depth.  For local network applications, we 
recommend assigning a nominal depth of 5 km to all events to ensure stability.  The reason we fix the depth is 
that it may not be well determined initially; the actual depth value is not critical in this application, as long as it 
is reasonable (e.g. the magnitude will be relatively insensitive to depth within the range of focal depths from 1 
to 20 km).  The average M for an event is determined by averaging M estimates obtained over all stations for 
which we have a reasonable signal to noise ratio (e.g. a factor of three). 

Calibration and Evaluation of Performance 

We used ground-motion databases to calibrate the overall level of the M formulation equation and to test its 
performance.  For WNA, we use the NGA-W2 ground-motion database (www.peer.berkeley.edu), which at 
small magnitudes is comprised of data from California.  Figure 3 plots the data amplitudes of PSA0.3 and PSA1 
in comparison to the prediction equations for WNA.  It is important to note there are no data in the database for 
M<3, and thus the curves can only be compared to data for events of M≥3.  A small initial mismatch in overall 
amplitude level between the simulations and the observations was corrected by an appropriate choice of the 
constant term in Equation 1, which is equivalent to applying a calibration factor; this is the source of the offset 
seen in Figure 2 between the defined prediction lines and the simulation amplitudes.  It is interesting that the 
offset, and hence the calibration factor required, is greater in WNA than in ENA (0.3 log units versus 0.1 units). 
This may reflect greater site amplification effects that are present on the vertical component in WNA, due to the 
gradational shear-wave velocity profile.  Overall, Figure 3 shows that there is good agreement between the 
observed PSA data and the defined model equations, in both amplitude level and attenuation shape, suggesting 
that the model is generally applicable and that the assumed attenuation is reasonable.   

 

Figure 3 – Comparison of Equation 1 (lines), evaluated at M=3.2, 3.55 and 3.85, with WNA ground-motion 
data (plus symbols), for PSA at 0.3s (top) and 1.0s (bottom).  Circles show average data amplitudes in distance 
bins. 
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Figure 4 provides a more quantitative evaluation of how well the proposed M estimation model (Eqn 2) works 
for the NGA-W2 database.  For each observation with M≤4 and R≤300 km, we calculate M from Eqn 2 (with 
C=-4.25 and γ=0.0035) and compare it to the known value of M tabulated in the NGA-W2 database, to define 
the M bias (e.g.Mi,known – Mij,predicted, where Mi,known represents the known M of event i and Mij,predicted denotes 
the predicted M for the same event using the PSA obtained at station j).  By plotting the bias versus distance in 
several magnitude ranges, we observe that the equation works well for events of M 3 to 4, at distances up to 300 
km, with no significant trends.   Moreover, comparing the known M with the estimated values, for earthquakes 
having three or more observations within 300 km, we note that predictions generally lie within ± 0.1 units of the 
known magnitude value.  

 

Figure 4 – Assessment of M estimates (Eqn. 2) based on the ground motions from NGA-W2 database, showing 
M bias determined for each record, as a function of hypocentral distance for three magnitude ranges (a to c). 
Mean bias is computed over all magnitudes, at equal distance intervals of 20 km. (d) average M estimate and 
its known value for earthquakes having three or more observations at R≤300 km. The solid line represents 
Mi,predicted = Mi,known and the dashed lines indicate ± 0.1 band about the solid line. 
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We test the performance of the model for earthquakes in ENA using the NGA-East and seismotoolbox 
databases, as compiled by Hassani and Atkinson (2014).   These data cover the regions of southeastern 
Canada/northeastern U.S., as well as the central U.S.  (Note:  tests were made to confirm that the noted trends 
do not differ significantly between the northeast and the central U.S.)  Figure 5 shows the data amplitudes with 
respect to Equation 1, while Figure 6 shows the bias in terms of estimated moment magnitude, as well as 
average M estimates for events in the ENA database (where the M values are derived from, or calibrated to, 
regional moment tensors as in Atkinson and Babaie Mahani, 2012). The agreement is satisfactory overall, 
though in some magnitude ranges there is a tendency for larger-than-predicted amplitudes at close distances.  
However, the data at close distances are sparse.  Average M estimates for earthquakes having three or more 
observations within 300 km are mostly within ± 0.1 units of the known M, for M≤4. 

 

Figure 5 – Comparison of Equation 1 (lines), evaluated at M=3.2, 3.55 and 3.85, with ENA ground-motion 
data (plus symbols), for PSA at 0.3s (top) and 1.0s (bottom).  Circles show average data amplitudes in distance 
bins.  
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Figure 6 – Assessment of M estimates (Eqn. 2) based on the ground motions from ENA database, showing M 
bias determined for each record, as a function of hypocentral distance for three magnitude ranges (a to c). 
Mean bias is computed over all magnitudes, at equal distance intervals of 20 km. (d) average M estimate and 
its known value for earthquakes having three or more observations at R≤300 km. The solid line represents 
Mi,predicted = Mi,known and the dashed lines indicate ± 0.1 band about the solid line. 

 

Moment Magnitude Estimation for Events of M<3 

We have shown that the proposed moment magnitude estimation equation based on PSA at 1s works well in 
both ENA and WNA, for events of M 3 to 4 at distances up to 300 km.  The use of point-source simulations to 
constrain the magnitude scaling should ensure robust and meaningful magnitude estimates at smaller 
magnitudes.  However, the influence of noise on PSA becomes important for M<3, and could result in a bias 
toward overestimation of event magnitudes. We examined typical regional network data in eastern and western 
Canada to determine response spectral amplitudes that would be expected from noise alone (e.g. oscillator 
response for a window of 30 to 60 seconds in length, in the absence of any earthquake signal).  It is common to 
observe PSA, from noise alone, in the range from 10-4 to 10-3 cm/s2, over a broad period band.  As illustrated in 
Figure 7, this significantly limits the magnitude-distance range over which we can obtain moment magnitudes 
using PSA at 1s, because small events will only have significant signal, in relation to the noise PSA, at very 
close distances.  One solution would be to reduce the noise through improved installation techniques, for 
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example by placing instruments in deep boreholes.  A more economical and practical solution in most situations 
is to choose a period band where the signal for small events is stronger.  This is the motivation for using 0.3s 
PSA in place of 1s PSA, for events of M<3, and why we derived equations using both 0.3s and 1s PSA values.  
Specifically, we observe in Figure 7 that for relatively-quiet conditions (the lower noise level), the signal PSA 
at 0.3s is above noise for events of M=1 within 40 km, whereas for 1s it is only above noise within 8 km.   For 
events of M<3, the 0.3s PSA is at a sufficiently long period to represent the moment of the event (Figure 1), and 
thus it is logical to use the 0.3s PSA in preference to the 1s value to improve the signal-to-noise ratio.   

As a practical matter, then, we propose that if the magnitude value calculated from the 1s PSA is <3, the 
magnitude for the event should be recalculated using the 0.3s PSA.  We tested to confirm that there is no 
significant difference, on average, between M computed from 0.3s or 1s, for events in the NGA-W2 and ENA 
databases, for events of M 3 to 4, though the M value determined for individual events may vary by +/- 0.13 
units (standard deviation) depending on which ground-motion parameter is selected.  We also investigated more 
generally if there is an advantage to using an average of M from the two ground-motion parameters, for events 
in the intermediate-magnitude range of M3.0 to M3.5, and found that this also makes no difference – 
individual-event M values may vary slightly (+/- 0.1), but overall the bias and its variability are the same. We 
therefore would generally recommend using the 1s PSA formula for the initial M calculation, and switching to 
the 0.3s PSA formula if the calculated M from 1s PSA is less than 3.0. 

 

 

Figure 7 – Comparison of predicted PSA for WNA at 0.3s (left) and 1.0s (right) for events of M0.5 to 4.0, versus 
hypocentral distance (black lines).  Heavy grey horizontal lines show typical weak and strong noise levels. 

 

Ideally, we would like to be able to evaluate the performance of the algorithm for events as small as M 1, which 
is the threshold for some traffic light protocols.  Small-magnitude ground-motion datasets with reliable moment 
magnitude estimates are difficult to obtain, but a very good set was compiled by Douglas et al. (2013).  They 
used ground-motion data from induced events, along with stochastic simulations, to develop a GMPE for 
induced earthquake ground motions in geothermal areas, including several areas in Europe and California.  
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Their database of several thousand records contains events in the M 1 to 4 range, at close distances (<50 km).   
Douglas et al. compiled horizontal-component PSA, but corrected it for site conditions to an equivalent rock site 
condition, as characterized by a near-surface shear-wave velocity of 1100 m/s.  Because of the correction to a 
reference rock condition, their horizontal-component amplitudes should be similar to those expected on the 
vertical component (e.g. see Siddiqqi and Atkinson, 2002).  Douglas et al. (2013) analyzed displacement 
spectral amplitudes in order to estimate moment magnitude for all events, as based on the Brune model.  
Atkinson (2014) shows that the observed ground-motion amplitudes for the Douglas database are well-predicted 
by the stochastic simulation model for western events employed in this study.  It is therefore reasonable to 
compare the magnitude estimation procedure proposed herein against the Douglas et al. database, assuming that 
the horizontal-component, corrected for site effects, is equivalent to the vertical component.  The comparison is 
shown in Figure 8 for events recorded by three or more stations.  The magnitude calculations track each other 
well, but the moment magnitudes calculated by our algorithm using 0.3s PSA are on average 0.14 (+/-0.20) 
units higher than those calculated by Douglas et al. (2013).  There are many more data available in their 
database at 0.3s (3300 records) than at 1s (120 records), due to noise limitations, which further supports the 
switch to PSA at 0.3s for M<3 events. The agreement of average magnitude values within ~0.1 units is 
considered satisfactory, despite the significant variability in estimates from event-to-event.  Thus we believe the 
moment-M algorithm is robust down to at least M1.5.  We note on Figure 8 that there is a greater tendency 
toward overestimation of M for M<1.5, likely due to noise effects on PSA. 

 

 

Figure 8 – Comparison of M estimated from PSA (this study) to M estimated from displacement spectra, for 
induced-seismicity ground-motion database of Douglas et al. (2013), for events recorded by three or more 
stations. The heavy solid line represents one-to-one match of magnitude estimates and the dashed lines indicate 
± 0.1 band about the solid line. 
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For events of M<1.5, our ability to determine magnitude will be limited by the station distribution and noise.  If 
there are insufficient stations with clear signal to noise ratio (e.g. a factor of 3 or more over a significant 
frequency band), then the best that can be accomplished is to estimate an upper limit on the actual magnitude.  
For example, one might calculate M at each of the three closest stations (even if just barely above noise), all of 
which should be overestimates of the actual value of M, and estimate an upper limit on M as the average of 
these values.  This strategy may be sufficient to establish that an event did not exceed a traffic light threshold 
such as M1. 

Conclusion 

We have proposed a simple model (Eqn 2) to provide robust estimates of moment magnitude for events of M<4, 
at distances less than ~300km.  The model can be refined on a regional basis as more detailed empirical 
information on the overall amplitude level and attenuation is gathered.  The method is transparent and robust, 
being based on simple and well-known seismological scaling principles, and can be used in typical network 
applications, as well as for traffic light systems for induced seismicity. 
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3 - Regionally-Adjustable Generic Ground-Motion Prediction Equation based on 
Equivalent Point-Source Simulations:  

Application to Central and Eastern North America 

(Emrah Yenier and Gail M. Atkinson, submitted to Bull. Seism. Soc. Am., Nov. 2014) 

Section Summary 

We develop a generic ground-motion prediction equation (GMPE) that can be adjusted for use in any region by 
modifying a few key model parameters. The basis of the GMPE is an equivalent point-source simulation model 
whose parameters have been calibrated to empirical data in California, in such a way as to determine the 
decoupled effects of basic source and attenuation parameters on ground motion amplitudes. We formulate the 
generic GMPE as a function of magnitude, distance, stress parameter, geometrical spreading rate and anelastic 
attenuation coefficient. This provides a fully adjustable predictive model, allowing users to calibrate its 
parameters using observed motions in the target region. We also include an empirical calibration factor to 
account for residual effects that are different and/or missing in simulations compared to observed motions in the 
target region. As an example application, we show how the generic GMPE can be adjusted for use in central 
and eastern North America (CENA), and calibrated with the NGA-East database. We provide median 
predictions of ground motions in CENA for average horizontal-component peak ground motions and 5%-
damped pseudo spectral acceleration (periods up to T = 10 s), for magnitudes M3 to M8 and distance up to 600 
km. 

 

Introduction 

Reliable estimates of ground motions that may be produced by future earthquakes require robust modeling of 
the earthquake source and attenuation attributes in the region of interest. Ground-motion observations from past 
events provide a valuable empirical basis to develop ground-motion prediction equations (GMPEs) that describe 
amplitudes as a function of variables such as magnitude, distance and site condition.  However, with the 
exception of well-monitored active regions such as California and Japan, empirical ground-motion data are 
generally sparse in the magnitude-distance range of engineering interest. Thus there are insufficient data for 
development of reliable GMPEs in many regions, with central and eastern North America (CENA) being a 
classic example.  

There are several alternative methods used for derivation of GMPEs in data-poor regions. A widely-used 
method is the simulation-based approach, in which synthetic ground motions are generated over a wide 
magnitude and distance range, and the GMPE is developed based on the simulated amplitude data. The 
simulations are based on a seismological model of the source, path and site effects, with the parameters being 
calibrated using the available empirical data for the region. Simulations can be performed using a variety of 
techniques ranging from simple stochastic point-source methods to more sophisticated finite-source broadband 
simulations (e.g., Atkinson and Boore, 1995, 2006; Toro et al., 1997; Silva et al., 2002; Somerville et al., 2001, 
2009; Frankel, 2009). Another common approach is the hybrid empirical method (Campbell, 2002, 2003). This 
method calibrates an empirically well-constrained GMPE in a data-rich host region (e.g., western North 
America, WNA) for use in a data-poor target region (e.g., CENA) based on adjustment factors obtained from 
response-spectral ratios of stochastic simulations in the host and target regions (e.g., Campbell, 2002, 2003; 
Scherbaum et al., 2005; Pezeshk et al., 2011). A third method is the referenced empirical approach introduced 
by Atkinson, (2008). It is similar to the hybrid empirical method in concept but adjustment factors are 
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determined empirically using spectral ratios of observed motions in the target region to predictions of an 
empirical GMPE in the host region (e.g., Atkinson, 2008, 2010; Atkinson and Boore, 2011, Atkinson and 
Motazedian, 2013; Hassani and Atkinson, 2014). 

Both the hybrid empirical method and the referenced empirical approach anchor their predictions to magnitude 
scaling and saturation effects observed in data-rich regions, assuming that these effects are transferable. 
Although the magnitude scaling is assumed to be similar between regions, no such assumption is made 
regarding the overall level of ground-motion amplitudes. Differences in overall amplitude level and distance 
scaling between regions are attributed to regional differences in fundamental source and attenuation parameters. 
The hybrid empirical method requires sound knowledge of these parameters in both host and target regions in 
order to determine host-to-target adjustment factors via simulations reliably. This may restrict the applicability 
of the method (Campbell, 2003). The referenced empirical approach resolves this issue by determining the 
adjustment factors empirically, avoiding the need for assumptions of the source and attenuation parameters for 
the host and target regions. An important limitation of the referenced empirical approach, however, is that the 
available ground-motion data in the target region may not sufficiently represent all important regional 
characteristics (Atkinson, 2008). 

In this study, we take advantage of key concepts from both the hybrid empirical and referenced empirical 
approaches to develop a robust simulation-based generic GMPE.  The generic GMPE can be adjusted for use in 
any region by modifying a few key modeling parameters, and calibrated for regional use from limited empirical 
data.  The basic idea is that we first develop a well-calibrated simulation-based GMPE for active tectonic 
regions, using the NGA-West2 database (Ancheta et al., 2014).  We parameterize this generic GMPE so as to 
isolate the effects of the basic source and attenuation parameters on peak ground motions and response spectra. 
This provides effective and transparent control over the transferable factors between regions. The fundamental 
seismological parameters that are used as predictive variables in the generic GMPE include magnitude, 
distance, stress parameter, geometrical spreading rate and the anelastic attenuation coefficient. This provides an 
adjustable predictive model that is readily calibrated with minimal regional data.  In the generic GMPE, we also 
consider an empirical calibration factor to account for residual effects that are different and/or missing in 
simulations compared to empirical data. This closes any remaining gap between simulated and observed 
motions. 

As an example implementation of the generic model, we use it to develop a GMPE for CENA by adjusting the 
stress and anelastic attenuation, and calibrate the model using the NGA-East database.  During the calibration 
exercise, we infer a magnitude- and depth-dependent stress parameter model based on the values obtained from 
study events. We provide median predictions of ground motions in CENA for average horizontal-component 
peak ground motions and 5%-damped pseudo spectral acceleration (periods up to T = 10 s), for wide ranges of 
magnitude (M3-M8) and distance (< 600 km). 

 

Functional Form of the Generic GMPE 

A regionally-adjustable generic prediction equation requires a robust yet simple functional form that 
successfully decouples the effects of fundamental source and attenuation parameters on ground-motion 
amplitudes. We define the generic GMPE as 

ln𝑌𝑌 = 𝐹𝐹𝐸𝐸 + 𝐹𝐹𝑍𝑍 + 𝐹𝐹𝛾𝛾 + 𝐹𝐹𝑆𝑆 + 𝐶𝐶                                                     (1) 

where lnY is the natural logarithm of a ground-motion intensity measure. FE, FZ, Fγ and FS represent functions 
for earthquake source, geometrical spreading, anelastic attenuation and site effects, respectively. The C term is 
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an empirical calibration factor that accounts for the residual differences between simulations and empirical data. 
We formulate the source and geometrical spreading effects (FE and FZ) in an equivalent point-source sense, 
using ground-motion simulations with parameters calibrated to observations in California, obtained from the 
NGA-West2 database (Ancheta et al., 2014). The anelastic attenuation (Fγ) is adjusted to optimize observed 
frequency-dependent attenuation effects. In this study, we provide predictions for the orientation-independent 
horizontal component of peak ground acceleration (PGA), peak ground velocity (PGV) and 5%-damped 
pseudo-spectral acceleration (PSA), where PGA and PSA are given in units of g and PGV is in cm/s. 

The source function (FE) describes the effects of magnitude and stress parameter on ground-motion amplitudes 
as:  

𝐹𝐹𝐸𝐸 = 𝐹𝐹𝑀𝑀 + 𝐹𝐹∆𝜎𝜎                                                                      (2) 

where FM represents the ground motions (for moment magnitude M) that would be observed at the source, if 
there were no distance-saturation effects, for the reference stress (Δσ) and kappa (κ0) parameters, for the 
reference site condition. We choose Δσ = 100 bar and κ0 = 0.025 s as the reference modeling parameters based 
on the findings of Yenier and Atkinson (2014b) for California earthquakes. In Equation 2, FΔσ represents the 
stress adjustment factor that is needed when Δσ is different than 100 bars. 

The FM term is defined as a function of moment magnitude (M), using a hinged-quadratic function: 

𝐹𝐹𝑀𝑀 = � 𝑒𝑒0 + 𝑒𝑒1(𝐌𝐌−𝐌𝐌h) + 𝑒𝑒2(𝐌𝐌−𝐌𝐌h)2           𝐌𝐌 ≤ 𝐌𝐌h
 𝑒𝑒0 + 𝑒𝑒3(𝐌𝐌−𝐌𝐌h)                                          𝐌𝐌 > 𝐌𝐌h

                              (3) 

where the hinge magnitude, Mh, and model coefficients, e0 to e3, are period-dependent.  This mimics the 
functional form of magnitude scaling used by Boore et al. (2014) in their NGA-West2 empirical GMPE. 

The stress adjustment term is defined as: 

𝐹𝐹∆𝜎𝜎 = 𝑒𝑒∆𝜎𝜎ln(∆𝜎𝜎 100⁄ )                                                                  (4) 

where eΔσ describes the rate of the ground-motion scaling with Δσ. Equation 4 describes the relationship 
between stress parameter and response spectral amplitudes, facilitating the determination of Δσ from PSA data 
in the target region. 

We model the geometrical spreading effects based on the equivalent point-source method.  Seismic waves are 
assumed to radiate from a virtual point source placed at an overall effective distance from the site, such that the 
empirically-observed saturation effects are successfully reproduced. The effective distance (R) is given as 

𝑅𝑅 = �𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟2 + ℎ2                                                                    (5) 

where Drup is the closest distance from the site to the fault-rupture surface and h is a pseudo-depth term that 
accounts for distance saturation effects. The pseudo-depth is generally defined as a function of magnitude to 
account for the extension of distance-saturation effects to larger distances with increasing magnitude. In this 
study, we define the pseudo-depth as  

ℎ = 10 −0.405 + 0.235𝐌𝐌                                                          (6) 

Equation 6 is defined from a loose interpretation of the findings of recent empirical studies, as shown in Figure 
1, in such a way as to preclude oversaturation of predicted amplitudes at large magnitudes (shown later). 
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Figure 1. Pseudo-depths (h) determined from modeling of observed ground motion (symbols) and alternative 
pseudo-depth models (lines). Asterisks and squares indicate h values obtained from well-recorded earthquakes 
of M ≥ 6 around the world by Boore et al. (2014a) and Yenier and Atkinson (2014a), respectively. Circles 
represent h values calculated from the modeling of the 2010-2012 Christchurch, New Zealand aftershocks of M 
< 6 (Yenier and Atkinson, manuscript in preparation). The relations proposed by Atkinson and Silva (2000) and 
Yenier and Atkinson (2014a) are shown by heavy dotted and dashed lines, respectively. The thin dashed line 
indicates the extrapolation of Yenier and Atkinson (2014a) model for M < 6. The h model used in this study 
(Equation 6) is shown by the heavy solid line. 

 

We define the geometrical spreading function (FZ) as 

𝐹𝐹𝑍𝑍 = ln(𝑍𝑍) + (𝑏𝑏3 + 𝑏𝑏4𝐌𝐌) ln�𝑅𝑅 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟⁄ �                                           (7) 

where Z represents the geometrical attenuation of Fourier amplitudes, while the multiplicative component, 
(b3+b4M)ln(R⁄Rref), accounts for the change in the apparent attenuation that occurs when ground motions are 
modeled in the response spectral domain rather than the Fourier domain. The coefficients b3 and b4 are period-
dependent, and Rref is the reference effective distance, given as 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 = √1 + ℎ2. 

In ground-motion modeling, Z is generally considered as a piecewise continuous function that describes the 
distance-dependent attributes of geometrical spreading, considering the contributions of direct waves at close 
distances, and multiple reflections and refractions at larger distances.  Babaie Mahani and Atkinson (2012) 
evaluated the ability of various functional forms to describe the geometrical attenuation in North America, and 
concluded that a bilinear model provides a good balance between simplicity and ability to capture the key 
attenuation attributes over a broad distance range. In this study, we define Z using a hinged bilinear model that 
provides for a transition from direct-wave spreading to surface-wave spreading of reflected and refracted waves: 

𝑍𝑍 = �
 𝑅𝑅𝑏𝑏1                                  𝑅𝑅 ≤ 𝑅𝑅𝑡𝑡
 𝑅𝑅𝑡𝑡𝑏𝑏1(𝑅𝑅/𝑅𝑅𝑡𝑡)𝑏𝑏2               𝑅𝑅 > 𝑅𝑅𝑡𝑡

                                                (8) 
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where Rt represents the transition distance, and b1 and b2 are the geometrical attenuation rates of Fourier 
amplitudes at R ≤ Rt and R > Rt, respectively. In the generic GMPE, we fix the transition distance at Rt = 50 km 
based on the findings of Yenier and Atkinson (2014a). 

The geometrical spreading rate at close distances is often assumed to be given by b1 = -1.0, based on the 
homogeneous whole-space approximation. However, theoretical waveform simulations suggest faster spreading 
rates, about b1 ≈ -1.3, for typical layered earth models (Ojo and Mereu 1986; Burger et al., 1987; Ou and 
Herrmann, 1990; Somerville et al., 1990; Chapman and Godbee, 2012, Chapman 2013). Empirical modeling of 
ground motions in various regions, including WNA, CENA and Australia also support this finding (Atkinson, 
2004; Allen, 2007; Babaie Mahani and Atkinson, 2012; Yenier and Atkinson, 2014a, 2014b). Therefore, we 
define the geometrical spreading rate at R ≤ 50 km as b1 = -1.3 in the generic model. The geometrical spreading 
rate at R > 50 km is fixed at the widely-used value of b2 = -0.5, which is consistent with attenuation of surface 
waves in a half-space (Ou and Herrmann 1990; Atkinson 2012).  

Equation 7 effectively decouples the geometrical spreading of Fourier amplitudes (Z) and the change in 
observed decay of amplitudes when convolved by the response transfer function. Although the descriptive 
parameters of Z are fixed at their generic values in the model, Equation 7 allows modification of the shape and 
rates of Z if there is compelling evidence supporting such a change. In such a case, the preferred model as given 
in Equation 8 can be replaced with an alternative geometrical spreading model that is compatible with the decay 
of the Fourier amplitudes in the target region. 

The anelastic attenuation function (Fγ) is given as: 

𝐹𝐹𝛾𝛾 = 𝛾𝛾𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟                                                                         (9) 

where γ is a period-dependent anelastic attenuation coefficient that is empirically determined from regional 
ground-motion data. 

In the generic GMPE, we describe site effects relative to a reference condition of NEHRP (National Earthquake 
Hazards Reduction Program) B/C boundary, for which the travel-time weighted average shear-wave velocity 
over the top 30 m is VS30 = 760 m/s. In this study, we adopt the site effects model of BSSA14 (Boore et al., 
2014b): 

𝐹𝐹𝑆𝑆 = 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐹𝐹𝑙𝑙𝑙𝑙                                                                          (10) 

where Flin represents the linear site effects, and Fnl represents the nonlinear site effects. The linear site response 
is defined as a function of VS30: 

𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 = � 𝑐𝑐 ln(𝑉𝑉𝑆𝑆30 760⁄ )       𝑉𝑉𝑆𝑆30 ≤ 𝑉𝑉𝑐𝑐
 𝑐𝑐 ln(𝑉𝑉𝑐𝑐 760⁄ )           𝑉𝑉𝑆𝑆30 > 𝑉𝑉𝑐𝑐

                                             (11) 

where c describes the VS30-scaling and Vc is the limiting velocity beyond which ground motions no longer scale 
with VS30. The nonlinear site response is given as  

𝐹𝐹𝑙𝑙𝑙𝑙 = 𝑓𝑓1 + 𝑓𝑓2 ln �
𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟 + 𝑓𝑓3

𝑓𝑓3
�                                                (12) 

where f2 represents the degree of nonlinearity as a function of VS30: 

𝑓𝑓2 = 𝑓𝑓4[exp{𝑓𝑓5(min(𝑉𝑉𝑆𝑆30, 760) − 360)} − exp{𝑓𝑓5(760 − 360)}]                   (13) 
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In Equations 11 to 13, parameters c, Vc, f1, f3, f4 and f5 are model coefficients given in BSSA14 and PGAr is the 
median peak horizontal acceleration predicted for the reference condition (VS30 = 760 m/s). 

 

Determination of Model Coefficients 

We calculate model coefficients of the magnitude effect (FM), geometrical spreading function (FZ) and stress 
adjustment factor (FΔσ) from amplitude data generated from ground-motion simulations. The simulations are 
based on the equivalent point-source stochastic method with modeling parameters calibrated to observed 
motions in California as described by Yenier and Atkinson (2014b);  model parameters are summarized in 
Table 1.  Briefly, we use the additive double-corner-frequency source model of Boore et al. (2014a) with a 
spectral-sag parameter (ε) suggested by Yenier and Atkinson (2014b). In simulations, the geometrical decay of 
Fourier amplitudes (Z) is defined in terms of effective distance, as given in Equation 8 (b1 = -1.3, b2 = -0.5 and 
Rt = 50 km). We use the pseudo-depth model given in Equation 6 to account for near-distance saturation effects. 
We constrained the pseudo-depth function to avoid oversaturation of predicted amplitudes at large magnitudes, 
which is why this function is slightly different than the h model used in Yenier and Atkinson (2014b). The 
simulations do not include anelastic attenuation, because we will determine these effects empirically from 
regional ground-motion data (shown later). We simulate ground motions at NEHRP B/C site conditions 
assuming the generic crustal amplification factors given by Atkinson and Boore (2006).  We assume that the 
near-surface high-frequency attenuation parameter is κ0 = 0.025 s for this site class. Yenier and Atkinson 
(2014b) showed that equivalent point-source simulations with these modeling parameters (but also including 
regional anelastic attenuation effects) can reproduce average observed spectral amplitudes of earthquakes in 
California, for magnitudes up to M7.5 and distances less than 400 km.  Any inadequacies or misfits between the 
simulations and empirical data will map into unresolved residuals, which will be taken into account through the 
calibration factor, C. 

Table 1. Parameter values used in stochastic equivalent point-source simulations (from Yenier and Atkinson, 
2014b) 

Parameter Value 

Shear-wave velocity β = 3.7 km/s 

Density ρ = 2.8 g/cm3 

Source model Generalized additive double-corner-frequency source 
model of Boore et al. (2014a) 

Spectral sag ε = min[1, 10 1.2 – 0.3M] 

Effective distance R = (Drup
2 + h2)0.5 

Pseudo-depth h = 10 -0.405 + 0.235M 

Geometrical attenuation R-1.3 for R ≤ 50 km, and 50-1.3(R/50)-0.5 for R > 50 km 

Anelastic attenuation Not considered in simulations (determined 
empirically) 
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Site amplification 
(NEHRP B/C) 

Table 4 of Atkinson and Boore (2006)  
Frequency-amplification pairs delimited by 
semicolons: 
0.0001Hz-1; 0.1Hz-1.07; 0.24Hz-1.15; 0.45Hz-1.24; 
0.79Hz-1.39; 1.38Hz-1.67; 1.93Hz-1.88; 2.85Hz-
2.08; 4.03Hz-2.2; 6.34Hz-2.31; 12.5Hz-2.41; 
21.2Hz-2.45; 33.4Hz-2.47; 82Hz-2.50 

Kappa factor κ0 = 0.025 s 

Source duration 0.5/fa + 0.5/fb where fa and fb are the corner 
frequencies 

Path duration* Table 1 of Boore and Thompson (2014) 
Rupture distance-path duration pairs delimited by 
semicolons: 
0km-0s; 6.59km-2.32s; 44.7km-8.32s; 124.8km-
10.9s; 175km-17.5s; 269km-34.1s. Path duration 
increases with distance at a rate of 0.156s/km after 
the last nodal point. 

Simulation calibration factor for California† Csim = 3.16 

* The nodal rupture distances of Boore and Thompson (2014) are converted to effective distance using the 
pseudo depths (h) for each magnitude level. 
† Factor applied to simulations for matching simulations to observed response spectra in California with zero 
bias. (Reader is referred to Yenier and Atkinson (2014b) for more information regarding the Csim parameter) 

 

We perform time-domain equivalent point-source stochastic simulations using the widely-cited SMSIM 
software (Boore, 2003, 2005), for magnitudes from M3 to M8 (with increments of 0.1 M units) and distances 
from 1 km to 400 km (with increments of 0.1 log10 units), for a fixed stress parameter of Δσ = 100 bar.  We 
generate 100 synthetic ground motions for each combination of M, Drup.  For each simulated time series we 
calculate PGA, PGV and PSA at 31 periods from 0.01 s to 10 s, then take the geometric mean for each 
parameter over the 100 simulations. 

The coefficients of the magnitude-scaling term FM are computed from the regression of simulations obtained at 
Drup = 1 km (Ysim,1km). Recall that FM represents the magnitude scaling of ground motions that would be 
observed at the source if there were no saturation effects. Therefore, we need to remove the saturation effects 
that we imposed in the simulations at 1km to extract the unsaturated magnitude effects, FM. This is easily done: 

ln𝑌𝑌sim,1km = 𝐹𝐹𝑀𝑀 − 1.3ln ��1 + ℎ2�                                        (14) 

where the last term accounts for the saturation effects imposed in the simulations (i.e. FZ at Drup = 1 km). We 
use a grid search to determine the hinge magnitude (Mh), where we determine the coefficients e0 to e3 by 
regression of the amplitudes at 1 km, for each trial value of Mh. We select the best-fitting Mh and the associated 
coefficients (e0 to e3) based on minimizing the residuals of the simulated amplitudes with respect to the model 
equation. Figure 2 compares ground motions simulated at Drup = 1 km and the fitted model (Equation 14) as a 
function of magnitude, for peak ground motions and response spectra. As seen in the figure, the fitted functional 
form captures the magnitude scaling and saturation effects implied by simulations very well. 
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Figure 2. Ground motions simulated at Drup = 1 km (circles), and the fitted model (lines) as a function of 
magnitude. 

We determined the model coefficients of the geometrical spreading function from regression of simulated 
amplitudes at variable distances, after playing back the magnitude effects (i.e. lnYsim – FM).  We use the form:  

ln𝑌𝑌sim − 𝐹𝐹𝑀𝑀 = ln(𝑍𝑍) + (𝑏𝑏3 + 𝑏𝑏4𝐌𝐌) ln�𝑅𝑅 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟⁄ �                             (15) 

In this regression, we constrain the Z to the decay shape used in the simulations (i.e., b1 = -1.3, b2 = -0.5 and Rt 
= 50 km). This forces the differences between the decay rates of Fourier and response spectral amplitudes to 
map into (b3+b4M)ln(R⁄Rref). In Figure 3, we compare the generic GMPE (i.e., FM + FZ) against simulations to 
assess the performance of the fitted FZ model. This shows that the generic GMPE is in good agreement with the 
behavior of the simulated amplitudes. The values of model coefficients for FM and FZ are listed in Table 2.  This 
specifies the generic GMPE for California for the reference stress parameter (100 bars) and the reference site 
condition (B/C), but without anelastic attenuation or overall amplitude calibration factor.  These factors can be 
determined empirically, as described further later, and are listed in Table 4 for completeness. 
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Figure 3. Simulations (symbols) in comparison to predictions of the generic GMPE (lines), as a function of 
rupture distance, for magnitudes M3 to M8 (Δσ = 100 bar, VS30 = 760 m/s). Note that no anelastic attenuation 
is included in either simulations or the generic GMPE because this effect is determined empirically. 

Table 2. Model coefficients of the magnitude term (FM) and geometrical spreading function (FZ) in the generic 
GMPE. 

T (s) Mh e0 e1 e2 e3 b3 b4 

0.010 5.85 2.23E+0 6.87E-1 -1.36E-1 7.64E-1 -6.21E-1 6.06E-2 
0.013 5.90 2.28E+0 6.85E-1 -1.29E-1 7.62E-1 -6.26E-1 6.13E-2 
0.016 5.85 2.27E+0 6.97E-1 -1.23E-1 7.59E-1 -6.31E-1 6.19E-2 
0.020 5.90 2.38E+0 7.00E-1 -1.07E-1 7.49E-1 -6.38E-1 6.25E-2 
0.025 6.00 2.56E+0 6.84E-1 -9.42E-2 7.41E-1 -6.31E-1 6.10E-2 
0.030 6.15 2.81E+0 6.61E-1 -9.09E-2 7.39E-1 -6.03E-1 5.64E-2 
0.040 5.75 2.73E+0 7.03E-1 -1.09E-1 7.38E-1 -5.48E-1 4.82E-2 
0.050 5.35 2.56E+0 7.19E-1 -1.64E-1 7.54E-1 -5.10E-1 4.28E-2 
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0.065 5.75 3.00E+0 6.84E-1 -1.55E-1 7.55E-1 -4.67E-1 3.64E-2 
0.080 5.20 2.58E+0 7.65E-1 -2.43E-1 7.87E-1 -4.21E-1 3.07E-2 
0.100 5.45 2.78E+0 7.12E-1 -2.62E-1 7.94E-1 -3.77E-1 2.47E-2 
0.130 5.35 2.64E+0 7.35E-1 -3.32E-1 8.12E-1 -3.55E-1 2.22E-2 
0.160 5.25 2.47E+0 8.09E-1 -3.87E-1 8.41E-1 -3.26E-1 1.92E-2 
0.200 5.45 2.55E+0 8.19E-1 -3.86E-1 8.43E-1 -2.87E-1 1.38E-2 
0.250 5.60 2.52E+0 8.67E-1 -3.77E-1 8.78E-1 -2.43E-1 9.21E-3 
0.300 5.85 2.63E+0 8.47E-1 -3.63E-1 8.76E-1 -2.12E-1 5.16E-3 
0.400 6.15 2.67E+0 8.50E-1 -3.47E-1 8.97E-1 -1.93E-1 4.85E-3 
0.500 6.25 2.54E+0 8.86E-1 -3.49E-1 9.18E-1 -2.08E-1 8.54E-3 
0.650 6.60 2.62E+0 8.76E-1 -3.16E-1 9.25E-1 -2.28E-1 1.37E-2 
0.800 6.85 2.66E+0 9.05E-1 -2.89E-1 8.94E-1 -2.52E-1 1.91E-2 
1.000 6.45 1.99E+0 1.34E+0 -2.46E-1 9.83E-1 -2.97E-1 2.76E-2 
1.300 6.75 2.01E+0 1.39E+0 -2.06E-1 1.00E+0 -3.50E-1 3.78E-2 
1.600 6.75 1.75E+0 1.56E+0 -1.68E-1 1.05E+0 -3.85E-1 4.43E-2 
2.000 6.65 1.25E+0 1.75E+0 -1.32E-1 1.19E+0 -4.35E-1 5.36E-2 
2.500 6.70 9.31E-1 1.82E+0 -1.09E-1 1.29E+0 -4.79E-1 6.14E-2 
3.000 6.65 5.16E-1 1.91E+0 -8.98E-2 1.42E+0 -5.13E-1 6.76E-2 
4.000 6.85 3.44E-1 1.93E+0 -7.47E-2 1.51E+0 -5.51E-1 7.43E-2 
5.000 6.85 -7.92E-2 1.98E+0 -6.21E-2 1.59E+0 -5.80E-1 7.90E-2 
6.500 7.15 -6.67E-3 1.97E+0 -5.45E-2 1.63E+0 -5.96E-1 8.12E-2 
8.000 7.50 2.56E-1 1.94E+0 -5.23E-2 1.59E+0 -6.09E-1 8.30E-2 
10.000 7.45 -2.76E-1 1.97E+0 -4.63E-2 1.72E+0 -6.20E-1 8.42E-2 
PGA 5.85 2.22E+0 6.86E-1 -1.39E-1 7.66E-1 -6.19E-1 6.03E-2 
PGV 5.90 5.96E+0 1.03E+0 -1.65E-1 1.08E+0 -5.79E-1 5.74E-2 

 

We generate another set of simulations to calculate the stress adjustment factor. In this new set, we simulate 
ground motions for the same magnitude range (M3-M8) but for a fixed distance Drup = 1 km and variable stress 
parameters (10 bar ≤ Δσ ≤ 1000 bar). Similar to the first set, 100 synthetic motions are generated for each 
combination of M, Drup and Δσ, and the geometric mean of the peak motions and response spectra are 
calculated. 

The stress adjustment factor, FΔσ, models the expected change in amplitudes when Δσ is different than 100 bars. 
We determine FΔσ using simulations obtained at Drup = 1 km, as: 

𝐹𝐹∆𝜎𝜎 = ln𝑌𝑌sim,1km(𝐌𝐌,∆𝜎𝜎) −  ln𝑌𝑌sim,1km(𝐌𝐌, 100bar)                              (16) 

where Ysim,1km(M,Δσ) is the ground motion simulated at Drup = 1 km for a given magnitude and stress, and 
Ysim,1km(M,100bar) represents the ground motion simulated at Drup = 1 km for the same magnitude, but for the 
reference stress (Δσ = 100 bar). Figure 4 shows the required stress adjustment factors as a function of Δσ, for 
various magnitudes and periods. This factor has an increasing trend with the stress, where FΔσ = 0 at Δσ = 100 
bar, by definition. The slope of FΔσ, which is defined by coefficient eΔσ in Equation 4, represents the strength of 
the ground-motion scaling with the stress parameter. The steeper the slope, the larger the influence of stress on 
ground motions. As seen in Figure 4, Δσ has significant influence at short periods (T < 0.2 s), regardless of 
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magnitude. However, its effects weaken with increasing period, particularly for small-to-moderate magnitude 
events (M < 6). For large magnitudes, the Δσ-effects extend to longer periods due to the shifting of the two 
corner frequencies with magnitude. 

We regress the values of eΔσ (calculated for each magnitude and period from the values of FΔσ using Equation 4) 
to the functional form:  

𝑒𝑒∆𝜎𝜎 = � 𝑠𝑠0 + 𝑠𝑠1𝐌𝐌 + 𝑠𝑠2𝐌𝐌2 + 𝑠𝑠3𝐌𝐌3 + 𝑠𝑠4𝐌𝐌4        ∆𝜎𝜎 ≤ 100 bar
 𝑠𝑠5 + 𝑠𝑠6𝐌𝐌 + 𝑠𝑠7𝐌𝐌2 + 𝑠𝑠8𝐌𝐌3 + 𝑠𝑠9𝐌𝐌4        ∆𝜎𝜎 > 100 bar

                     (17) 

where s0 to s9 are period-dependent model coefficients. We use two polynomials, because we require a different 
shape for the eΔσ values for Δσ ≤ 100 bar and Δσ > 100 bar; we constrain the regressions to attain FΔσ = 0 at Δσ 
= 100 bar. Figure 5 shows how the values of eΔσ vary with magnitude and period. The net effect of the stress 
parameter is complicated because of interactions between scaling of the high-frequency source amplitudes, 
shifting of the two corner frequencies, and changes in spectral sag between the corner frequencies. Additionally, 
the stress parameter affects the source duration, which in turn influences the response spectral amplitudes. 
Coupling of all these factors in the response spectrum domain requires a high-order polynomial to satisfactorily 
model Δσ-scaling over a wide period range. The values of model coefficients for the stress adjustment factor are 
listed in Table 3. 

 

Figure 4. Stress adjustment factors (FΔσ) determined from simulations. 
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Figure 5. Stress-scaling coefficients (eΔσ) obtained from simulations (symbols) and the fitted model (Equation 
17). 

 

Table 3. Model coefficients of the stress adjustment factor (FΔσ) in the generic GMPE 

T (s) s0 s1 s2 s3 s4 

0.010 -2.05E+0 1.88E+0 -4.90E-1 5.67E-2 -2.43E-3 
0.013 -1.92E+0 1.80E+0 -4.71E-1 5.47E-2 -2.36E-3 
0.016 -1.71E+0 1.66E+0 -4.36E-1 5.09E-2 -2.20E-3 
0.020 -1.16E+0 1.27E+0 -3.34E-1 3.91E-2 -1.70E-3 
0.025 -1.54E+0 1.59E+0 -4.29E-1 5.10E-2 -2.24E-3 
0.030 -1.06E+0 1.20E+0 -3.13E-1 3.62E-2 -1.55E-3 
0.040 -8.57E-1 1.04E+0 -2.68E-1 3.08E-2 -1.33E-3 
0.050 -9.63E-1 9.83E-1 -2.16E-1 2.08E-2 -7.42E-4 
0.065 -2.23E+0 1.95E+0 -4.90E-1 5.49E-2 -2.29E-3 
0.080 -3.68E+0 2.96E+0 -7.51E-1 8.42E-2 -3.51E-3 
0.100 -4.05E+0 3.10E+0 -7.62E-1 8.33E-2 -3.39E-3 
0.130 -4.17E+0 3.09E+0 -7.44E-1 7.98E-2 -3.21E-3 
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0.160 -3.96E+0 2.82E+0 -6.50E-1 6.72E-2 -2.61E-3 
0.200 -2.71E+0 1.73E+0 -3.30E-1 2.82E-2 -9.06E-4 
0.250 -1.77E+0 9.83E-1 -1.31E-1 6.00E-3 -1.16E-5 
0.300 -3.18E-1 -1.39E-1 1.70E-1 -2.85E-2 1.42E-3 
0.400 2.02E+0 -1.86E+0 6.12E-1 -7.67E-2 3.34E-3 
0.500 3.96E+0 -3.29E+0 9.88E-1 -1.20E-1 5.14E-3 
0.650 3.65E+0 -2.82E+0 7.93E-1 -8.93E-2 3.55E-3 
0.800 2.40E+0 -1.65E+0 4.09E-1 -3.71E-2 1.05E-3 
1.000 1.07E+0 -4.55E-1 3.74E-2 1.03E-2 -1.08E-3 
1.300 -2.51E+0 2.52E+0 -8.45E-1 1.21E-1 -6.02E-3 
1.600 -5.26E+0 4.74E+0 -1.48E+0 1.96E-1 -9.28E-3 
2.000 -6.64E+0 5.77E+0 -1.74E+0 2.24E-1 -1.03E-2 
2.500 -8.08E+0 6.84E+0 -2.02E+0 2.54E-1 -1.14E-2 
3.000 -7.98E+0 6.64E+0 -1.92E+0 2.37E-1 -1.04E-2 
4.000 -7.12E+0 5.78E+0 -1.61E+0 1.90E-1 -7.98E-3 
5.000 -6.39E+0 5.08E+0 -1.38E+0 1.58E-1 -6.36E-3 
6.500 -4.80E+0 3.68E+0 -9.37E-1 9.76E-2 -3.47E-3 
8.000 -3.42E+0 2.51E+0 -5.80E-1 5.15E-2 -1.34E-3 
10.000 -2.19E+0 1.51E+0 -2.87E-1 1.53E-2 2.38E-4 
PGA -2.13E+0 1.94E+0 -5.04E-1 5.82E-2 -2.50E-3 
PGV -2.25E+0 1.95E+0 -5.18E-1 6.14E-2 -2.73E-3 

 

Table 3. (cont’d) 

T (s) s5 s6 s7 s8 s9 

0.010 -1.44E+0 1.24E+0 -2.89E-1 3.09E-2 -1.25E-3 
0.013 -1.35E+0 1.20E+0 -2.80E-1 3.01E-2 -1.23E-3 
0.016 -1.08E+0 1.04E+0 -2.47E-1 2.69E-2 -1.11E-3 
0.020 -1.27E+0 1.25E+0 -3.17E-1 3.62E-2 -1.55E-3 
0.025 -1.45E+0 1.37E+0 -3.37E-1 3.73E-2 -1.54E-3 
0.030 -2.24E+0 1.98E+0 -5.09E-1 5.78E-2 -2.44E-3 
0.040 -3.31E+0 2.66E+0 -6.68E-1 7.42E-2 -3.06E-3 
0.050 -4.23E+0 3.29E+0 -8.32E-1 9.30E-2 -3.87E-3 
0.065 -3.96E+0 2.87E+0 -6.67E-1 6.88E-2 -2.65E-3 
0.080 -3.14E+0 2.18E+0 -4.67E-1 4.47E-2 -1.60E-3 
0.100 -2.45E+0 1.57E+0 -2.89E-1 2.30E-2 -6.57E-4 
0.130 -1.38E+0 6.26E-1 -1.16E-2 -1.09E-2 8.28E-4 
0.160 -2.00E-1 -3.37E-1 2.57E-1 -4.25E-2 2.18E-3 
0.200 8.20E-1 -1.08E+0 4.40E-1 -6.10E-2 2.85E-3 
0.250 1.78E+0 -1.77E+0 6.07E-1 -7.83E-2 3.50E-3 
0.300 2.25E+0 -2.00E+0 6.33E-1 -7.70E-2 3.27E-3 
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0.400 2.42E+0 -1.94E+0 5.56E-1 -6.17E-2 2.39E-3 
0.500 8.56E-1 -4.53E-1 6.46E-2 5.22E-3 -8.30E-4 
0.650 -6.67E-1 9.28E-1 -3.71E-1 6.18E-2 -3.43E-3 
0.800 -2.12E+0 2.15E+0 -7.30E-1 1.05E-1 -5.29E-3 
1.000 -4.47E+0 4.05E+0 -1.27E+0 1.71E-1 -8.14E-3 
1.300 -5.49E+0 4.77E+0 -1.44E+0 1.85E-1 -8.46E-3 
1.600 -5.88E+0 4.98E+0 -1.46E+0 1.83E-1 -8.16E-3 
2.000 -6.01E+0 4.99E+0 -1.43E+0 1.75E-1 -7.59E-3 
2.500 -4.88E+0 3.95E+0 -1.09E+0 1.26E-1 -5.17E-3 
3.000 -4.18E+0 3.32E+0 -8.86E-1 9.89E-2 -3.85E-3 
4.000 -2.63E+0 1.96E+0 -4.62E-1 4.24E-2 -1.18E-3 
5.000 -1.38E+0 9.09E-1 -1.42E-1 1.32E-3 7.11E-4 
6.500 -3.93E-1 9.83E-2 9.53E-2 -2.78E-2 1.96E-3 
8.000 -6.87E-3 -1.89E-1 1.69E-1 -3.53E-2 2.20E-3 
10.000 2.68E-1 -3.86E-1 2.17E-1 -3.97E-2 2.30E-3 
PGA -1.44E+0 1.24E+0 -2.85E-1 3.02E-2 -1.22E-3 
PGV -1.76E+0 1.38E+0 -3.26E-1 3.50E-2 -1.42E-3 

 

Adjustment of the generic model to a specific region includes any required modifications to the source and 
attenuation parameters, as well as determination of an empirical calibration factor that accounts for residual 
effects that are missing and/or different in the simulations compared to the observed motions. In this study, we 
assume that the magnitude (FM) and saturation (h) effects determined from simulations are transferable to other 
regions. However, the stress parameter may vary regionally;  the generic GMPE is directly adjusted for this 
effect when the regional value of stress parameter is plugged into FΔσ. The required modifications for regional 
attenuation can be done by means of Z and γ. We recommend keeping the presumed Z model (geometric 
spreading) as it is defined in the generic model, unless there is compelling evidence for its modification. The 
anelastic attenuation coefficient, γ, is determined using empirical data at regional distances for the region of 
interest;  such data can be obtained from weak-motion studies. The calibration factor, C, is calculated through 
the analysis of residuals between observed motions in the target region and the GMPE, after application of the 
regional values of Δσ, Z and γ.  Table 4 provides the values of the calibration and anelastic terms for California 
that match the simulations to the model described by Yenier and Atkinson (2014b), as determined using the 
methodology described in the next section.  This enables comparisons of the California model with the adjusted 
model for CENA, which we now describe. 

Table 4. Anelastic attenuation and calibration coefficients to adjust the generic GMPE for CENA.  The 
corresponding values for California are also shown. 

T (s) γCalifornia Ce,California γCENA Ce,CENA Δb3 (CENA) 

0.010 -1.44E-2 2.41E-2 -4.66E-3 -3.98E-2 3.81E-2 
0.013 -1.45E-2 2.99E-2 -4.69E-3 -3.86E-2 3.45E-2 
0.016 -1.44E-2 1.77E-2 -4.69E-3 -8.94E-2 3.35E-2 
0.020 -1.44E-2 -1.20E-2 -4.67E-3 -1.82E-1 3.51E-2 
0.025 -1.51E-2 -5.99E-2 -4.88E-3 -2.09E-1 1.97E-2 
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0.030 -1.58E-2 -9.15E-2 -5.11E-3 -2.64E-1 1.74E-2 
0.040 -1.62E-2 -1.07E-1 -5.27E-3 -4.59E-1 1.18E-2 
0.050 -1.69E-2 -9.20E-2 -5.47E-3 -4.91E-1 2.07E-2 
0.065 -1.76E-2 -5.97E-2 -5.71E-3 -2.99E-1 2.49E-2 
0.080 -1.79E-2 -4.59E-2 -5.79E-3 -1.95E-1 4.82E-2 
0.100 -1.74E-2 2.41E-2 -5.64E-3 -1.72E-1 7.27E-2 
0.130 -1.61E-2 2.99E-2 -5.24E-3 -5.85E-2 9.53E-2 
0.160 -1.47E-2 1.77E-2 -4.77E-3 -7.95E-2 9.84E-2 
0.200 -1.30E-2 -1.20E-2 -4.20E-3 -1.05E-1 1.15E-1 
0.250 -1.12E-2 -5.99E-2 -3.65E-3 -1.69E-1 1.16E-1 
0.300 -9.62E-3 -9.15E-2 -3.12E-3 -2.48E-1 1.20E-1 
0.400 -7.51E-3 -1.07E-1 -2.44E-3 -3.34E-1 8.92E-2 
0.500 -6.29E-3 -9.20E-2 -2.04E-3 -3.66E-1 8.08E-2 
0.650 -5.05E-3 -5.97E-2 -1.64E-3 -3.88E-1 6.09E-2 
0.800 -4.40E-3 -4.59E-2 -1.43E-3 -3.85E-1 6.55E-2 
1.000 -3.88E-3 -5.93E-3 -1.26E-3 -3.73E-1 7.37E-2 
1.300 -3.28E-3 3.66E-2 -1.06E-3 -3.70E-1 9.31E-2 
1.600 -3.61E-3 5.19E-2 -1.17E-3 -3.03E-1 1.17E-1 
2.000 -3.13E-3 8.44E-2 -1.02E-3 -3.01E-1 1.11E-1 
2.500 -3.27E-3 1.42E-1 -1.06E-3 -2.09E-1 8.87E-2 
3.000 -2.83E-3 2.19E-1 -1.09E-3 -6.05E-2 9.73E-2 
4.000 -2.12E-3 3.04E-1 -1.30E-3 5.03E-2 1.00E-1 
5.000 -1.70E-3 4.36E-1 -9.35E-4 1.75E-2 1.00E-1 
6.500 -1.31E-3 5.49E-1 -7.87E-4 4.18E-1 1.00E-1 
8.000 -1.06E-3 6.29E-1 -6.43E-4 1.66E-1 1.00E-1 
10.000 -8.49E-4 7.17E-1 -3.65E-4 3.72E-1 1.00E-1 
PGA -1.44E-2 2.41E-2 -4.67E-3 -1.96E-2 3.78E-2 
PGV -8.61E-3 8.44E-2 -2.79E-3 -2.10E-1 5.18E-2 

 

An Example Application:  Adjustment of the Generic GMPE for CENA 

As an example implementation of the method, we adjust the generic GMPE for the central and eastern North 
America (CENA) using ground motions obtained in the region. We use the database of PGA, PGV and 5%-
damped PSA from the NGA-East flatfile (see Data and Resources), for CENA earthquakes of M ≥ 3.0 that were 
recorded by at least three stations within 600 km. We consider both natural and induced earthquakes in the 
region. However, ground motions recorded in the Gulf Coast regions are excluded due to considerably different 
attenuation attributes in this region (EPRI, 2004). We use the average orientation-independent horizontal-
component ground motions calculated based on the RotD50 measure (Boore, 2010), as provided in NGA-East 
flatfile;  this is approximately equivalent to geometric mean motions as provided in the simulations. Figure 6 
shows a map of the epicenters of the study events and Figure 7 is a map of stations and their site condition. 
Figure 8 shows the magnitude-distance distribution of the selected records. 
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Figure 6. Epicenters of study events in central and eastern North America (CENA). Circles show epicenter 
locations of naturally-occurring earthquakes and squares indicate events that have been flagged as potentially 
induced in the NGA-East flatfile. Dashed line marks the Gulf Coast region. 

 

Figure 7. Locations of recording stations and their NEHRP (National Earthquake Hazards Reduction 
Program) site classification: A: VS30 > 1500 m/s, B: 760 m/s < VS30 ≤ 1500 m/s, C: 360 m/s < VS30 ≤ 760 
m/s, D: 180 m/s < VS30 ≤ 360 m/s and E: VS30 ≤ 180 m/s (NEHRP, 2000). We excluded stations located in the 
Gulf Coast region (dashed line). 
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Figure 8. Magnitude-distance distribution of the selected ground motions in CENA. Ground motions recorded 
beyond 600 km are not considered. 

In the analysis, we consider response spectra up to a maximum usable period to reduce the impact of long-
period noise on the adjusted GMPE. For a given ground-motion record, the maximum usable period, Tmax, is 
defined as 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 =
1

max[(1.25𝑓𝑓𝑙𝑙𝑐𝑐), (𝑓𝑓𝑚𝑚𝑙𝑙𝑙𝑙)]                                                      (18) 

where flc is the low-cut filter frequency of the record reported in the NGA-East flatfile and fmin is the limiting 
frequency below which spectral amplitudes are assumed to be noise-dominated. We describe fmin as  

𝑓𝑓𝑚𝑚𝑙𝑙𝑙𝑙 = 𝑘𝑘𝑚𝑚𝑚𝑚�(0.1), �10 0.75−𝐌𝐌 3⁄ ��                                               (19) 

Equation 19 is defined such that it provides an overall agreement with the geometric mean of the factored filter 
frequencies (i.e., 1.25flc), as seen in Figure 9. For M < 6, the fmin model given for CENA is relatively less 
conservative than that was used for California by Yenier and Atkinson (2014b) because ground motions 
attenuate more slowly in CENA, providing useable signal to greater distances. 

We correct the recorded ground-motion amplitudes to the equivalent values for NEHRP B/C site conditions 
(VS30 = 760 m/s) using the FS function adopted from BSSA14. This function is based on the values of VS30 and 
PGAr for each record, where the VS30 values are given in the NGA-East flatfile, and we assume that PGAr can 
be reasonably estimated from BSSA14 as an approximation. We deliberately use BSSA14 rather than a CENA 
GMPE for this purpose, as we do not wish the higher frequency content in CENA to impose greater 
nonlinearity. 
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Figure 9. Minimum usable frequency (fmin) model considered for records in CENA (solid line). Squares indicate 
the geometric mean of the factored low-cut filter frequencies (i.e., 1.25flc) determined for evenly-spaced 
magnitude bins. The error bars represent one standard deviation about the mean values. The dashed line 
indicates the fmin model used for California by Yenier and Atkinson (2014b). The dotted line shows the corner 
frequency of the Brune (1970) source model for Δσ = 100 bar. 

 

Regional Attenuation 

Empirical studies suggest that the geometrical spreading of Fourier amplitudes in CENA can be adequately 
described as R-1.3 within 50 km and R-0.5 at further distances (Atkinson and Boore, 2014; Babaie Mahani and 
Atkinson, 2012). We therefore use the generic bilinear Z model (b1 = -1.3, b2 = -0.5 and Rt = 50 km) without 
modification.  The only attenuation adjustment needed is for the regional anelastic attenuation.  As described in 
the methodology presented earlier, we determine the regional anelastic attenuation (γCENA) from the empirical 
data using: 

ln𝑌𝑌𝐵𝐵/𝐶𝐶,𝑙𝑙𝑖𝑖 − �𝐹𝐹𝑀𝑀,𝑙𝑙 + 𝐹𝐹𝑍𝑍,𝑙𝑙𝑖𝑖� = 𝐸𝐸𝑙𝑙 + 𝛾𝛾𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟,𝑙𝑙𝑖𝑖                                   (20) 

where YB/C,ij represents the B/C-corrected motion for event i and station j. FM,i and FZ,ij are the magnitude and 
geometrical spreading functions evaluated for the known magnitude and distance (Drup,ij) of the record, 
respectively. The Ei term is an event term, which provides the average adjustment required to match observed 
amplitudes from event i. Its value can be attributed to two main factors: (i) the difference between the reference 
stress implicitly carried by the FM function (100 bars) and its true value for the ith event (modeled by FΔσ), and 
(ii) the overall difference between synthetics and observed motions in CENA (modeled by C). We calculate the 
regional anelastic attenuation coefficient (γCENA) and event terms (Ei) for each oscillator period and ground 
motion parameter; the values of the γCENA term are listed Table 4. 

Regional Stress Parameter 

The stress parameter is often determined by matching the predicted and observed spectral amplitudes at short 
periods for the specified moment. However, this approach results in a non-unique solution for Δσ due to the 
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trade-off between earthquake source and attenuation (Boore et al., 2010; Yenier and Atkinson, 2014a). 
Moreover, Δσ has little effect on the response spectrum at long periods (Figures 4), especially for small-to-
moderate events, restricting our ability to calibrate the response spectral amplitudes at long periods. To ensure a 
model calibration that is consistent over a wide period range, we determine the stress parameter by matching the 
observed spectral shape for the known moment (i.e. the corner frequency), rather than spectral amplitudes. This 
breaks the trade-off between source and attenuation parameters, transferring the overall amplitude difference to 
the calibration factor C (Yenier and Atkinson, 2014b). Following this technique, we use a grid search to 
determine Δσ for each event separately. We select the best-fitting Δσ based on the minimum standard deviation 
of residuals between Ei and FΔσ, over a wide period range (0.01 s ≤ T ≤ 10 s);  by minimizing the standard 
deviation of residuals, we are effectively finding the best shape, rather than the best level. 

Figure 10 shows the shape-based Δσ values obtained from CENA events as a function of focal depth (d). The 
mean stress determined for evenly-spaced focal depth bins shows an increasing trend from Δσ ≈ 30 bar at d = 
2.5 km to Δσ ≈ 250 bar at d = 10 km; it remains relatively constant at greater depths. Figure 11 shows the best-
fitting Δσ as a function of magnitude. For M < 5, the stress parameter shows large variability. Despite the large 
variation of Δσ values at small magnitudes, the depth effect is clearly visible by the distinct separation of depth-
clustered stresses. For M > 5, the stress parameter attains a value of Δσ ≈ 300 bars, on average;  we note that 
this is about three times the corresponding value of 100 bars for California events. 

 

Figure 10. Best-fitting stress parameters (Δσ) determined for CENA events as a function of focal depth (d). Δσ 
values are clustered into different magnitude bins as shown in the legend. Hatched symbols indicate Δσ values 
obtained from the induced events. Diamonds represent the mean Δσ calculated for evenly-spaced focal depth 
bins over all magnitudes, and the error bars show standard error about the mean stress. Lines indicate the 
derived Δσ model (Equation 21) evaluated for M3 (solid) and M5 (dashed). 
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Figure 11. Best-fitting stress parameters (Δσ) determined based on matching the observed response spectral 
shape for CENA events, as a function of magnitude. Δσ values are clustered into different focal depth (d) bins as 
shown in the legend. Hatched symbols show Δσ values obtained from the induced events. Lines indicate the 
derived Δσ model (Equation 21) evaluated for d = 2.5 km (dotted) d = 7.5 km (dashed) and d ≥ 10 km (solid). 

 

We regress the best-fitting Δσ values to develop a regional stress model for CENA. Based on the observations 
made in Figures 10 and 11, we constrain the model to attain Δσ = 300 bar for M ≥ 5 and d ≥ 10 km. The mean 
value of the stress parameter for earthquakes in CENA is expressed as:  

ln∆𝜎𝜎𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶 = 5.704 + min[0,   0.29(𝑑𝑑 − 10)] + min [0,   0.229(𝐌𝐌− 5)]                 (21) 

The estimates of Equation 21 for different magnitudes and depths are shown in Figures 10 and 11. The mean 
residuals between the observed and predicted Δσ values attain values around zero, as illustrated in Figure 12. 
Overall, the proposed Δσ model provides a good agreement with the Δσ values determined from CENA events 
based on the inferred spectral shape.  

 

Figure 12. Residuals between the best-fitting Δσ values obtained from CENA events and the estimates of the Δσ 
model (Equation 21) evaluated for the known magnitudes and focal depths of the study events. 
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Calibration Factor 

An overall calibration factor is needed to reconcile the predictions with observed amplitudes in the target 
region, accounting for effects missing and/or different in simulations (e.g., discrepancies between the assumed 
and true values of crustal properties, site amplification, κ0 and path duration). We calculate the calibration factor 
based on the analysis of residuals: 

𝛿𝛿𝑙𝑙𝑖𝑖 = ln𝑌𝑌𝐵𝐵/𝐶𝐶,𝑙𝑙𝑖𝑖 − �𝐹𝐹𝑀𝑀,𝑙𝑙 + 𝐹𝐹∆𝜎𝜎𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶,𝑙𝑙 + 𝐹𝐹𝑍𝑍,𝑙𝑙𝑖𝑖 + 𝛾𝛾𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟,𝑙𝑙𝑖𝑖�                     (22) 

where δij represents the residual for the ground motion obtained from event i at station j, for a given spectral 
period or peak motion. FΔσCENA,i is the stress adjustment factor evaluated for Δσ from Equation 21 for the known 
magnitude and focal depth of event i. The last term accounts for the regional anelastic attenuation determined 
earlier. 

Figure 13 shows the event residuals (δi = ∑δij/ni, where ni is the number of records obtained from event i; ni ≥ 3 
at a given period) as a function of magnitude. δi generally attains negative values and appears to be randomly 
distributed, showing no distinct attributes for natural and induced events. The mean δi values determined at 
evenly-spaced magnitude bins shows no magnitude-dependent trends, in general. This suggests that the 
magnitude scaling of ground motions in CENA is well captured by the FM function, at least for the available 
data. Based on these observations, we calculate an event-based calibration factor (Ce) as the average of δi values 
over all magnitudes, for each spectral period/peak motion, as listed in Table 4. The Ce term fluctuates with 
period between 0 and -0.5 (ln units) for periods T < 3 s and attains positive values with an increasing trend at 
larger periods, as shown in Figure 14. This increasing trend at long periods may be due to the fact that 
stochastic simulations are inherently limited in their ability to generate the coherent motions seen at long 
periods.  
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Figure 13. Average of residuals determined for each event that have at least 3 observations at a given period 
(δi, circles). Diamonds show mean of δi values determined for evenly-spaced magnitude bins, and error bars 
represent the standard error about the mean. Dashed lines indicate the event-based calibration factors (Ce) that 
is defined as the average of δi values over all magnitudes, at a given period. 

 

Figure 14. Event-based calibration factor (Ce, solid line) for CENA events. Shaded area represents the 
standard error about Ce. 
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We subtract the event-based δi term from the individual residuals to calculate the average residual at each 
station (i.e., δj =∑(δij – δi)/nj, where nj is the number of observations at station j; nj ≥ 3 at a given period). Figure 
15 illustrates the variation of δj as a function of VS30. The mean δj determined at NEHRP B and C sites attain 
values near zero, in general, suggesting that the BSSA14 site amplification model is reasonable for these sites. 
However, ground motions on NEHRP A sites are underpredicted by ~15% and ground motions at NEHRP D 
sites are overpredicted by ~20%, on average. This might be related to the uneven spatial distribution of NEHRP 
A and D stations in the region, as shown in Figure 7. Anelastic attenuation to the north (Canadian sites) might 
be slightly lower than the average anelastic attenuation determined from the entire region. This may result in 
underprediction of observed motions for the Canadian stations, which are mostly on NEHRP A sites. Similarly, 
low Q characteristics nearer to the Gulf Coast may lead to overprediction of ground motions in the Mississippi 
region, which are mostly located on NEHRP D sites. 

 

Figure 15. Event-corrected average residuals for each station (δj, circles) as a function of VS30. Mean of δj 
values for NEHRP site classes are shown by squares (standard errors for the mean values are smaller than the 
symbols). 

 

Finally, we correct the individual residuals for the event and station terms (i.e., δ'ij = δij – δi – δj) to assess the 
performance of the assumed geometrical spreading function. Figure 16 compares the δ'ij values as a function of 
rupture distance. The mean δ'ij determined for log-spaced distance bins attains near zero values at Drup > 150 
km, suggesting that γCENA parameter can successfully represent the overall attenuation at far distances. However, 
the mean δ'ij deviates from the horizontal zero-line and decreases with distance for Drup < 150 km, as shown in 
the figure. This discrepancy might be attributable to the path-duration model. In the simulations, we used a 
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path-duration model derived primarily from observed motions in WNA. Boore and Thompson (2015) recently 
reported that the path duration in ENA is much longer than that in WNA, particularly at distances less than 150 
km. This difference could result in some overestimation of CENA motions for Drup < 150 km because the 
presumed WNA path-duration model is implicitly carried via the FZ function to CENA. 

 

Figure 16. Event- and site-corrected residuals (δ’ij) as a function of distance, for ground motions obtained from 
natural and induced events. Squares show the mean δ’ij values determined for logarithmically-spaced distance 
bins and error bars indicate the standard error about the mean. Solid line represents the fitted path-related 
calibration model (Cp). 

 

We consider an additional minor calibration term for regional differences in the path duration. We describe this 
path-related calibration (Cp) as: 

𝐶𝐶𝑟𝑟 = � ∆𝑏𝑏3 ln(𝑅𝑅 150⁄ )             𝑅𝑅 ≤ 150 𝑘𝑘𝑘𝑘
 0                                       𝑅𝑅 > 150 𝑘𝑘𝑘𝑘

                                           (23) 

where Δb3 represents a calibration for the geometrical attenuation rate in response spectrum domain. We 
determine the Δb3 term from the regression of δ'ij based on Equation 23 at each period and peak motion 
separately. Its value could be determined only up to T = 3 s due to the limited data at Drup < 100 km for longer 
periods. For periods T > 3 s, we recommend an average value of Δb3 = 0.1 obtained from T > 1 s. Table 4 lists 
the values of Δb3 for all periods and peak motions. 
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The total calibration needed for the adjusted GMPE is the summation of Ce and Cp terms. This closes the 
systematic gaps between simulation-based predictions and observed motions in CENA. The resultant CENA-
adjusted prediction equation is given as: 

ln𝑌𝑌𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶 = 𝐹𝐹𝑀𝑀 + 𝐹𝐹∆𝜎𝜎𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶 + 𝐹𝐹𝑍𝑍 + 𝛾𝛾𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 +  𝐹𝐹𝑆𝑆 + 𝐶𝐶𝑟𝑟 + 𝐶𝐶𝑟𝑟                            (24) 

Figure 17 illustrates PSA values predicted from Equation 24 for magnitudes M4 to M8 as a function of rupture 
distance, for NEHRP B/C site condition (VS30 = 760 m/s). The B/C-corrected ground motions obtained from 
earthquakes in CENA are also shown in the figure, for two magnitude ranges: M3.5-M4.5 and M4.5-M5.5. The 
CENA-adjusted GMPE is in good agreement with the empirical data, where available, and provides 
seismologically-informed predictions of average ground motions for moderate-to-large magnitudes (M > 6). 

 

Figure 17. PSA predictions from the adjusted GMPE (Equation 24) for magnitudes M4 to M8, for VS30 = 760 m 
/s (lines). Circles represent the B/C-corrected ground motions obtained from earthquakes in CENA for two 
magnitude ranges: M3.5-M4.5 and M4.5-M5.5. 
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We conclude that the generic GMPE approach provides a calibrated model of predicted ground motions in 
CENA that agrees with average motions from the NGA-East database, and is constrained by simulation-based 
scaling principles that have been demonstrated to work in California over a wide range of magnitudes and 
distances. We have provided calibrated median predictions of ground motions in CENA for average horizontal-
component peak ground motions and 5%-damped response spectra (up to T = 10 s), for magnitudes M3 to M8 
and distances < 600 km.  The approach that we have taken, in casting our model into a framework that is 
parameterized by the basic seismological parameters of moment, stress, and attenuation, has both conceptual 
and practical advantages.  We can easily create understandable and documentable alternative GMPEs, by 
considering a range of possible parameter values that might be reasonable for the region (or a subset of the 
region).  For each parameter set, we may use the empirical data to derive a new calibration factor for each 
frequency, such that the overall residuals are minimized for the given model.  Analysis of the residual trends 
and their variability under the alternative models then provides information on the limitations of the alternative 
parameter sets. 

 

Data and Resources 

We compiled the response spectra of ground motions for CENA earthquakes from the NGA-East flatfile 
provided by Christine A. Goulet (written commun., 2014). Ground-motion simulations were performed using 
the SMSIM v3.8 software that is available at http://www.daveboore.com/software_online.html (last accessed in 
October 2014). All graphics were produced using CoPlot software (www.cohort.com, last accessed in October 
2014). 
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4 – Applications of Methodology to Rapid Determination of Moment and Stress, and to 
ShakeMap ground motions 

The generic simulation-based GMPE developed in Section 3 has a variety of applications.  Section 3 
highlighted the use of the methodology to determine attenuation and source parameters.  It was determined that 
events in CENA can be described by a bilinear attenuation form, with a geometric spreading of R-1.3 to 50 km, 
followed by R-0.5 at greater distances, with a frequency-dependent anelastic attenuation constant (γ as given in 
Table 3 of Section 3).   The best average stress parameter, to match the spectral shape of events, increases with 
magnitude to a constant value near 300 bars for events of M>4. It also increases with focal depth, as shown in 
the figures in Section 3.  Table 1 shows the individual source parameters for each of the events in the NGA-East 
database.  In this table, the moment magnitudes are as assigned in the NGA-East database, while the stress 
parameter is the value that provides the best match to the spectral shape of the source spectrum (as obtained by 
playing back regional attenuation effects), for the specified moment. 
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Table 1 - Source Parameters of events in the NGA-East Database (PIE=1 for potentially-induced). Note that 
stress is based on spectral shape, and a calibration constant is needed to match the observed ground-motion 
levels (as discussed in Section 3). 

 

EQID nRecs Earthquake Name Year Month Day Hour Mw(NGA-e) HypoLat (deg) HypoLong (deg)HypoDepth (km PIE BestStress (bar)
5 24 Saguenay QC 1988 11 25 23 5.8 48.10 -71.21 21.5 0 447
6 8 La Malbaie QC 1997 8 20 9 3.3 47.54 -70.29 7.5 0 56
7 9 La Malbaie QC 1997 10 28 11 4.3 47.67 -69.91 5.0 0 447
8 14 Cap-Rouge QC 1997 11 6 2 4.5 46.80 -71.42 22.0 0 891
9 9 Cote-Nord QC 1999 3 16 12 4.4 49.62 -66.34 20.0 0 708

10 5 Kipawa QC 2000 1 1 11 4.6 46.84 -78.93 13.0 0 398
11 10 La Malbaie QC 2000 6 15 9 3.3 47.67 -69.80 11.4 0 562
12 10 Laurentide QC 2000 7 12 15 3.7 47.55 -71.08 18.0 0 1000
13 6 Laurentide QC 2000 7 12 15 3.1 47.56 -71.06 18.0 0 794
14 12 Ashtabula OH 2001 1 26 3 3.9 41.87 -80.80 3.8 1 25
15 15 Enola AR 2001 5 4 6 4.4 35.21 -92.19 10.0 0 45
16 45 Au Sable Forks NY 2002 4 20 10 5.0 44.51 -73.70 11.0 0 316
18 16 Caborn IN 2002 6 18 17 4.6 37.98 -87.80 17.0 0 112
20 18 Charleston SC 2002 11 11 23 4.0 32.40 -79.94 9.0 0 1000
21 20 Ft Payne AL 2003 4 29 8 4.6 34.49 -85.63 12.0 0 447
22 11 Blytheville AR 2003 4 30 4 3.6 35.94 -89.92 23.0 0 18
23 10 Bardwell KY 2003 6 6 12 4.1 36.87 -88.98 2.0 0 10
24 25 La Malbaie QC 2003 6 13 11 3.6 47.70 -70.09 11.1 0 178
25 43 Bark Lake QC 2003 10 12 8 3.8 47.01 -76.36 18.0 0 794
26 19 Jefferson VA 2003 12 9 20 4.3 37.77 -78.10 10.0 0 1000
29 27 Prairie Center IL 2004 6 28 6 4.2 41.44 -88.94 7.0 0 316
30 35 Port Hope ON 2004 8 4 23 3.1 43.67 -78.23 4.0 0 89
31 17 Milligan Ridge AR 2005 2 10 14 4.1 35.75 -90.23 15.0 0 50
32 41 RiviereDuLoup QC 2005 3 6 6 4.6 47.75 -69.72 12.3 0 794
33 46 Shady Grove AR 2005 5 1 12 4.3 35.83 -90.15 8.0 0 56
34 40 Miston TN 2005 6 2 11 4.0 36.14 -89.46 15.0 0 100
35 66 Thurso ON 2006 2 25 1 3.8 45.65 -75.23 16.0 0 562
37 35 BaieSaintPaul QC 2006 4 7 8 3.8 47.37 -70.48 25.0 0 708
38 31 Ridgely TN 2006 9 7 13 3.4 36.27 -89.50 7.0 0 56
40 35 Acadia ME 2006 10 3 0 3.9 44.35 -68.15 2.0 0 20
41 19 Marston MO 2006 10 18 20 3.4 36.54 -89.64 8.2 0 10
46 58 Mt Carmel IL 2008 4 18 9 5.3 38.45 -87.89 14.0 0 282
47 55 Mt Carmel IL aftshk 2008 4 18 15 4.6 38.48 -87.89 14.0 0 178
48 52 Mt Carmel IL aftshk 2008 4 21 5 4.0 38.47 -87.82 15.0 0 141
49 47 Mt Carmel IL aftshk 2008 4 25 17 3.8 38.45 -87.87 13.0 0 100
50 25 Buckingham QC 2008 6 11 4 3.0 45.63 -75.38 18.0 0 282
51 30 RiviereDuLoup QC AS 2008 11 15 10 3.6 47.74 -69.74 13.3 0 224
56 119 Jones OK 2010 1 15 15 3.8 35.59 -97.26 8.0 1 16
57 114 Lincoln OK 2010 2 27 22 4.2 35.55 -96.75 4.0 1 45
58 57 Whiting MO 2010 3 2 19 3.4 36.79 -89.36 5.0 0 28
60 86 Val-des-Bois QC 2010 6 23 17 5.1 45.90 -75.50 22.0 0 447
61 31 St. Flavien QC 2010 7 23 17 3.5 46.58 -71.67 13.0 0 251
63 9 Mont Laurier QC 1990 10 19 7 4.5 46.47 -75.59 11.0 0 251
64 39 Montgomery MD 2010 7 16 4 3.4 39.17 -77.25 18.0 0 200
66 159 Slaughterville OK 2010 10 13 14 4.4 35.20 -97.31 14.0 1 141
67 79 Guy AR 2010 10 15 10 3.9 35.28 -92.32 5.0 0 28
68 42 Concord NH 2010 9 26 3 3.1 43.29 -71.66 3.4 0 20
73 126 Arcadia OK 2010 11 24 22 4.0 35.63 -97.25 3.0 1 28
74 119 Bethel Acres OK 2010 12 12 1 3.2 35.39 -97.00 4.0 1 10
75 46 Greentown IN 2010 12 30 12 3.9 40.43 -85.89 14.0 0 178
76 110 Guy AR 2010 11 20 19 3.9 35.32 -92.32 5.0 0 89
80 149 Greenbrier AR 2011 2 28 5 4.7 35.27 -92.34 4.0 1 63
81 169 Sullivan MO 2011 6 7 8 3.9 38.12 -90.93 27.0 0 141
82 36 Eagle Lake ME 2006 7 14 9 3.5 46.92 -68.68 17.0 0 50
85 68 Hawkesbury ON 2011 3 16 17 3.6 45.58 -74.55 7.0 0 355
86 8 CharlevoixSZ QC 2001 5 22 0 3.6 47.65 -69.92 11.4 0 1000
87 18 BaieSaintPaul QC 2002 8 17 5 3.2 47.33 -70.51 13.3 0 891
88 69 Mineral VA 2011 8 23 17 5.7 37.93 -77.98 5.8 0 178
89 60 Mineral VA aftshk 2011 8 25 5 4.0 37.94 -77.90 2.0 0 63
90 102 Sparks OK 2011 11 5 7 4.7 35.57 -96.70 3.0 1 35
91 88 Sparks OK 2011 11 6 3 5.7 35.54 -96.75 8.0 1 224

116 6 Saguenay FS 1988 11 23 9 4.2 48.13 -71.20 28.0 0 224
117 6 Saguenay AS 1988 11 26 3 3.5 48.14 -71.30 30.0 0 112
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We can readily use the magnitude formula of Section 2 to determine the moment for any event that occurs, 
based on the response spectrum at 1Hz.  Then we can use the GMPE of Section 3 to determine the implied 
value of stress from PSA at 10 Hz (a function of moment and stress parameter) - which is the value needed to 
correctly reproduce the observed amplitudes at higher frequencies.  The procedure is as follows, with an 
example being given for the 2005 Riviere de Loup, Quebec earthquake in Table 2.  Note that the vertical 
component is preferred, as described in Section 2, as it allows the initial approximation of negligible site 
response (i.e. we can assume 𝐹𝐹𝑆𝑆 = 0).  If only the horizontal component is available, an estimate of the value of 
the site response term 𝐹𝐹𝑆𝑆 should be made using an appropriate generic site response model (e.g. as in Atkinson 
and Boore, 2006, or Boore et al., 2014, for example; see Section 3).  It is recommended to consider only those 
records within 300 km to minimize the impact of attenuation on the estimated source parameters.   

1. Using the values of PSA at 1Hz, apply Equation 2 from Section 2 to determine the value of M for each 
station.  The event M is the average of these estimates.  

2. Evaluate the magnitude effect term for the event magnitude,  𝐹𝐹𝑀𝑀, for PSA at 10 Hz, using Equation 3 in 
Section 3.   

3. For each recorded value of 10-Hz PSA (using ln Y, in g), subtract the attenuation and calibration 
constant effects, in order to isolate the source term effect.  Specifically, from Equation 1 in Section 3, we 
can write:  𝐹𝐹𝐸𝐸 = ln Y – ( 𝐹𝐹𝑍𝑍 + 𝐹𝐹𝛾𝛾 + 𝐹𝐹𝑆𝑆 + 𝐶𝐶).  Thus we evaluate 𝐹𝐹𝐸𝐸 (for 10 Hz) at each station that 
recorded the event.  We take the average over all stations to get the 10-Hz event value of  𝐹𝐹𝐸𝐸 . 
[Notes: (a) if using the vertical component, we assume 𝐹𝐹𝑆𝑆 = 0; (𝑏𝑏) If the 10-Hz PSA is not available, 
the PGA could be used instead in this procedure, in which case we would evaluate the  𝐹𝐹𝑀𝑀,  𝐹𝐹𝑍𝑍,𝐹𝐹𝛾𝛾 ,𝐹𝐹𝑆𝑆,
and 𝐶𝐶 terms for PGA instead of 10 Hz; I prefer 10-Hz PSA as it is less sensitive to kappa effects.] 

4. From Equation 2 in Section 3, we calculate the stress-effect term for the event (in ln units):  𝐹𝐹∆𝜎𝜎 =
𝐹𝐹𝐸𝐸− 𝐹𝐹𝑀𝑀, where  𝐹𝐹𝑀𝑀 and 𝐹𝐹𝐸𝐸 have been evaluated for the average event M, in steps 2 and 3.   

5. Finally, we use Equation 4 from Section 3 (𝐹𝐹∆𝜎𝜎 = 𝑒𝑒∆𝜎𝜎ln(∆𝜎𝜎 100⁄ ) ) to compute the stress parameter, 
∆𝜎𝜎.  Note that the coefficient  𝑒𝑒∆𝜎𝜎  is given as a function of magnitude by Equation 17 in Section 3. To 
evaluate it, we need to know whether the stress parameter will be greater or less than the reference value 
of 100 bars.  This depends on the sign of  𝐹𝐹∆𝜎𝜎, which will be positive for stress >100 bars, and negative 
for stress <100 bars.  

6. Note that the value of M and stress could be refined if desired by iterating this procedure an additional 
time.  We could make an improved estimate of M, using the 1-Hz PSA to evaluate 𝐹𝐹𝐸𝐸  at 1 Hz, 
following the procedure that was used in Steps 2 and 3 for 10 Hz.   We could then obtain a revised value 
of  𝐹𝐹𝑀𝑀, at 1 Hz, as 𝐹𝐹𝐸𝐸  - 𝐹𝐹∆𝜎𝜎 (for our determined value of stress).  We would then find the value of M 
(trying values slightly larger or smaller than our initial estimate) that produces the correct value of  𝐹𝐹𝑀𝑀 .  
The advantage of this alternative would be to make the magnitude and stress estimates completely 
compatible.  However, this iteration should not be necessary in general, as long as the initial value of M 
is reasonably well determined. 
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Table 2 – Example Calculation of Moment and Stress, as obtained following Steps 1 to 5. 

 

 

It should be noted that the estimation procedure described in the foregoing is based on using the amplitude of 
PSA at 10 Hz to infer the stress that is compatible with the GMPE for the given moment, rather than using the 
spectral shape (as was done to derive the GMPE).  The rationale is to allow an estimation of source parameters 
directly from ShakeMap ground motion parameters and simple formulae.  The procedure will lead to values that 
should reproduce the average observed spectral amplitudes correctly, but may not match the corner-frequency-
based stress drop.  The reason is that the average value for the calibration constant is assumed in the generic 
GMPE (rather than an event-specific value being computed), and thus the stress parameter must take up any 
difference between event-specific and average calibration terms.  This is why the 10-Hz PSA estimate of stress 
for the 2005 Riviere de Loup event in the example calculation is 193 bars (Table 2), while the spectral-shape 
based estimate from Section 3 is 794 bars (Table 1).  The model moment magnitude (4.6) and stress (193bars), 

Example Calculation of Event Moment and Stress for 2005 Riviere de Loup Event s5 -2.45
heff 5 gamm -0.00564 s6 1.57
e0 2.78 b3 -0.377 C -0.172 s7 -0.289

obs. In cgs units e1 0.712 b4 0.0247 delb3 0.0727 s8 0.023
e2 -0.262 Fstress=FE-FM s9 -0.00066

avg.M FM-10hz FE=lnY-(C+Fg+FZ) egt100 0.598
(cgs units 4.57 1.95 C+ 2.34 0.39 193

Rhypo~Reff logZ 1hzPSAv M(AGY14)10HzPSAv FZ-10hz Fg-10hz FE-10hz Fstress10 STRESS
14.5 -1.51 3.72 4.55 151.67 -3.76 -0.25 2.15 0.20
19.9 -1.69 3.02 4.61 30.43 -4.25 -0.28 1.06 -0.89
21.7 -1.74 1.45 4.42 28.48 -4.39 -0.29 1.15 -0.80
28.8 -1.90 5.68 4.95 188.49 -4.83 -0.33 3.51 1.56
30.7 -1.93 3.87 4.86 46.24 -4.93 -0.35 2.22 0.27
35.9 -2.02 2.42 4.78 29.57 -5.17 -0.37 2.05 0.10
38.8 -2.07 1.34 4.64 41.76 -5.30 -0.39 2.53 0.58
40.0 -2.08 1.27 4.63 33.81 -5.34 -0.40 2.37 0.42
41.7 -2.11 0.53 4.39 7.19 -5.41 -0.41 0.90 -1.05
45.8 -2.16 0.22 4.16 12.59 -5.56 -0.43 1.63 -0.32
51.6 -2.22 1.20 4.71 28.52 -5.72 -0.46 2.64 0.69
62.1 -2.26 1.35 4.78 49.77 -5.86 -0.52 3.40 1.45
67.7 -2.27 0.57 4.54 19.22 -5.93 -0.55 2.55 0.60
68.8 -2.28 4.36 5.15 45.82 -5.94 -0.56 3.43 1.48

108.7 -2.38 0.41 4.53 15.17 -6.29 -0.79 2.90 0.95
115.0 -2.39 0.17 4.28 12.66 -6.33 -0.82 2.80 0.85
116.2 -2.39 0.47 4.58 4.24 -6.34 -0.83 1.72 -0.23
117.0 -2.39 0.33 4.48 13.75 -6.34 -0.83 2.91 0.96
159.5 -2.46 0.45 4.64 6.10 -6.58 -1.07 2.57 0.62
159.7 -2.46 0.49 4.66 6.14 -6.58 -1.07 2.58 0.63
190.7 -2.50 0.32 4.57 6.68 -6.72 -1.25 2.98 1.03
212.0 -2.52 0.11 4.29 1.91 -6.80 -1.37 1.93 -0.03
233.5 -2.54 0.11 4.30 1.37 -6.87 -1.49 1.79 -0.16
259.7 -2.57 0.23 4.56 2.48 -6.95 -1.64 2.61 0.66
267.9 -2.57 0.08 4.27 1.53 -6.98 -1.68 2.19 0.24
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when used in the generic GMPE model of Section 3, are the values which will correctly reproduce the average 
observed amplitudes, as illustrated in Figure 1. 

 

 

Figure 1 – Comparison of PSA observations (vertical component) at 1Hz and 10Hz for M4.6 2005 Riviere de 
Loup event with model predictions for moment (M=4.57) and stress (193 bars) as derived using procedure in 
Steps 1 to 5. 
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In conclusion, with the calibrated moment and stress values for the event determined, we can use the GMPE 
formulation in Section 3 to completely describe the ground motions for the event as a function of distance, for a 
reference ground condition.  This event-specific GMPE, coupled with a regional grid of site amplification 
factors,𝐹𝐹𝑆𝑆 (such as those computed using Vs30 or other site amplification measures), provide the ground 
motions needed for producing reliable, calibrated ShakeMaps. 
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