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ABSTRACT 
Surface deformation produced by large continental earthquakes can be measured from 
correlation of optical satellite and aerial images. The technique provides information about the 
location and the motion of surface ruptures, for both strike-parallel and strike-perpendicular 
components of the surface slip. This information can be produced early on after an earthquake 
and can be used to constrain source models. It also provides a way to characterize surface 
ruptures of past earthquakes and revisit the empirical laws relating to earthquake magnitude, 
rupture length, mean and peak slip, which are commonly used in paleoseismology.  
The technical advances which have enabled the technique have been implemented in the COSI-
Corr software package. This proposal seeks support for application of the technique to upcoming 
earthquakes; the construction of a database to disseminate the results obtained on past 
earthquakes, and to enhance the technique so as to facilitate rapid application and extension to 
the use of LiDAR data. 
 
RESULTS 
While the amount of remote sensing data is rapidly increasing, methods to exploit them and 
provide objective information about the impact of environmental changes and natural disasters 
are lagging behind. Under this proposal, we developed a rigorous and versatile framework to 
measure 3D changes at the Earth’s surface. 
 

The tracking of 3D surfaces 

 Time series of DEMs extracted from stereogrammetry or LiDAR have been used in a 
number of studies to monitor changes over time due to a variety of processes, e.g., lava flow 
[Favalli et al., 2010], glacier thinning [Abermann et al., 2010; Gardelle et al., 2012], coastal 
erosion [Mitasova et al., 2009; White and Wang, 2003; Woolard and Colby, 2002]. In these 
studies, changes of elevation over time were determined from DEM differences. Provided that 
the DEM are perfectly registered and sampled on the same grid, this approach indeed readily 
quantifies erosion and deposition processes. In situations where a horizontal displacement is also 
involved (due to ice flow, landsliding, or co-seismic deformation for example), DEM 
differentiation yields an information about horizontal displacement as well as changes of the 
affected topography. For instance, let us consider that a point at location x is displaced by dz 
vertically and by dx horizontally. Let e be the change of elevation at that point due to erosion or 
sedimentation. Then, the elevation after the displacement h2

 and the initial elevation are linked 
by: 

h2(x) = h1(x+dx(x)) + dz (x+dx(x)) – e(x+dx(x)),             (1) 
This equation can also be expressed as: 

h2(x-dx) = h1(x) + dz (x) – e(x)   (2) 
Then, using a first order approximation, we can linearize equation (1). The elevation difference 
depends on the local topographic gradient according to: 

h2(x) - h1(x) ≈ h1’(x). dx(x) + dz (x+dx(x)) – e(x+dx(x)),             (3) 
where h1’(x) is the derivative of h1 along Ox-plane at ground location x.  
As the ground structures have moved horizontally, they are not physically aligned anymore in 
the DEM, and their morphologic evolution cannot be recovered by simply differentiating the 
DEM. In the case where topographic changes due to erosion and sedimentation can be neglected, 
e(x)=0, it would be more appropriate to determine the 3D displacement field from matching the 
two surfaces in three dimensions. 



Examples of application to the El-Mayor Cucapah Earthquake, April 2010 

In the wake of the El Mayor-Cucapah earthquake of April 4, 2010, we have collaborated with 
the USGS and JPL to analyze ground deformations. The first rupture map was obtained from 
correlating pre and post-earthquake SPOT images.  These results revealed a prominent fault trace 
running through the Sierra Cucapah that the aerial survey carried on the day after the earthquake 
had mostly missed due to its unexpected location within the core of the Sierra (USGS - Ken 
Hudnut, personal communications). These results were posted on the UNAVCO web site 
(http://supersites.unavco.org/baja.php#Sun3), as well as the subsequent refined measurements 
(figure 1). These measurements have been combined with measurements obtained from 
correlating SAR amplitude images following a similar procedure to the one used to correlate the 
optical images. These measurements reveal a continuous fault trace of about 120 km with an 
average surface slip of about 2m. We have next determined a detailed earthquake source model 
using this information together with  inSAR results (collaboration with Eric Fielding at JPL) and  
teleseismic waveforms modeling following the same approach as in some of our previous studies 
[e.g.,Wei et al., 2011]. This study demonstrates the interest of image matching to early analysis 
of large earthquakes.   
  

 
Figure 1. Composition image showing N-S surface displacements (positive northward) induced 
by the El Mayor-Cucapah earthquake obtained from correlating SPOT and SAR amplitude 
images. The star indicates the location of the epicenter. 
 

The El-Mayor Cucapah earthquake is the first event for which pre and post-earthquake 
LiDAR data is available. Analysis of pre- and post-earthquake topographic data provides an 
opportunity to deliver the full 3D displacement field of the ground’s surface. However, as 
explained previously, direct differencing of a pre- and post-earthquake digital topography model 



(DEM) generally leads to biased estimation of the vertical component of the deformation, 
especially if the earthquake also produced significant horizontal motion. To overcome this 
limitation, we used a non-regularized two-dimensional sub-pixel correlation algorithm to 
estimate the relative horizontal offset between the pre- and post- 2010 El Mayor – Cucapah 
earthquake LiDAR acquisitions. This analysis shows an unbiased view of the vertical slip 
component of the rupture induced by the Mw 7.2 2010 El Mayor – Cucapah earthquake (Figure 
2). 

 

 
Figure 2. Pre and post earthquake LiDAR difference around the Puerta Accomodation zone. 
Top-right: before 2D image matching correction. The fault rupture cannot be seen and signal is 
overwhelmed by topographic artifacts. Lower-left: Pre and post-earthquake LiDAR difference 
once 2D image matching is applied to compensate for lateral offsets. The en-echelon pattern is 
clearly visible and surface rupture can be quantified from the corresponding profiles (upper-left 
and lower-right). 
 
The previous examples show how 2D image matching can be applied to recover surface ruptures 
induced by large earthquakes using time-series of remote sensing data. However, one drawback 
of the previous technique is that it only relies on 2D image matching where the horizontal 



component of the deformation is first deduced, and then the vertical component is derived by 
subtraction of the data shifted by the horizontal deformation. It therefore assumes that the 
deformation to be measured has separable horizontal and vertical components. Ideally, we are 
seeking an algorithm that can produce true 3D matching of topographic surfaces. Another strong 
limitation of the above example is that applying non-regularized image matching to recover the 
horizontal component of the deformation fails in areas of smooth or noisy topography, making it 
a technique that can only be applied opportunistically. For instance, when this technique was 
applied to smooth topography data such as over sand dunes surfaces, the motion of sand dunes 
could not be recovered (Figure 2).  
 

 
 
This example highlights the difficulty of reliably retrieving the horizontal motion on smooth 
surfaces using standard correlation techniques. 
 
We therefore set our efforts to derive an original 1D-2D-3D regularized image matching 
framework, which could be versatile enough to extract topography using 1D matching of stereo 
imagery (if we assume matching along epipolar lines), but also produce horizontal offset fields 
from 2D matching of passive optical data, and also delivers a rigorous 3D matching of DEM 
surfaces. We developed a single framework for these three tasks, which is possible if we 
consider that topography acquisitions (e.g., LiDAR point cloud) can be carefully transformed 
into images where the intensity defines the height. Hence, we addressed all three matching 
problems in a single image-matching framework. The advantages are two-folds: we design only 
one algorithm to solve three different problems, and we take advantage of the regular structure of 
pixels to speed up computation. 
 
Image matching frameworks can be divided into two main categories: Heuristics driven methods 
and Optimization driven methods.  
 
Heuristics methods rely on individually matching each point of the reference image. This 
matching can either be: (1) Sparse, a few points with strong features are matched, while the 
others are matched through a diffusion process that propagates the matching [23]; (2) Dense, all 
points are matched by finding the most probable correspondent in a search area, and then the 
results are filtered to remove outliers [13]. Heuristics methods are known to be sensitive to noise 
and outliers. They sometimes dramatically fail because of that. 

Figure 3: Horizontal offset map 
obtained from 2-D correlation of 
LiDAR DEM from the White Sand 
Dunes acquired in 2009 and 2010 
[Ewing and Kocurek, 2010; Jerolmack 
et al., 2012; Reitz et al., 2010]. The 
correlation fails due to the smoothness 
of the dunes and produces noisy 
results near the dunes crests, which 
exhibits high contrast. A new 
matching technique is required to 
densely pair smooth 3D surfaces 
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Optimization driven methods transform the matching problem into a functional to minimize. 
This functional encodes: (1) a similarity term that locally forces the solution to be a tight 
matching, (2) a regularization term that enforces some user-defined properties of the solution 
such as smoothness or consistency with some physics-based properties. These methods are 
named global matching methods [12] as they process the problem globally, but they are 
generally too slow and too complex to be used with large images such as produced by remotely 
sensed instruments. Hence, for large images, the functional is typically decomposed into a set of 
smaller functionals that are optimized independently, to the detriment of quality. These last 
methods are referred to as semi-global matching methods and they represent the state of the art in 
satellite and aerial stereo-imaging [14]. 
 
Despite their promising performances, optimization driven methods exhibit two significant 
drawbacks: the functional is usually arbitrarily designed and the two terms, similarity and 
regularization, can be expressed in different metric space, and the optimization process is 
difficult as the functional is often non-linear and non-convex. We found that the functional can 
be derived from a probability leading to a mathematically sound metric space, and that the state 
of the art discrete optimization solvers can be employed to achieve reasonable computational 
time while using a true global matching formulation. 
 
Given reference and target images, we want to find the most probable matching. This naturally 
lead us to work within the Bayesian framework. With no loss of generality we can relate 
probabilities to energies thanks to the Gibbs measure, and ensure that the functional lives in a 
well defined metric space. Our functional is sound to optimize, but it is still non linear and non 
convex. Hence, we slightly approximate our problem by discretizing the space of possible 
matches to optimize a discrete Markov Random Field. While this problem remains NP-Hard, it 
can be efficiently addressed with state of the art solvers. Particularly, we use the fastest solver 
available [15] based on the primal-dual scheme [16]. 
 
We produced two main contributions where we detail this new framework. These contributions 
only used 1D matching (image matching long epiplar lines) to introduce the framework in its 
most simple version: 
 
 

1- In this first publication, we defined a global matching framework based on energy 
pyramid, the Global Matching via Energy Pyramid (GM-EP) algorithm, which estimates 
the disparity map by globally optimizing a coarse to fine sequence of sparse Conditional 
Random Fields (CRF) directly defined on the energy. This global discrete optimization 
approach guarantees that at each scale we obtain a near optimal solution, and we 
demonstrate its superiority over state of the art image pyramid approaches through 
application to real stereo-pairs. We conclude that multiscale approaches should be build 
on energy pyramids rather than on the traditional image pyramids. 

 
B.Conejo, S. Leprince, F. Ayoub, and J.P Avouac “Fast Global Stereo Matching via 
Energy Pyramid Minimization”, Photogrammetric Computer Vision Symposium - 
PCV2014, 2014.  

 



2- In this second publication, we proposed a framework that significantly speeds-up 
graphical model optimization while maintaining an excellent solution accuracy. The 
proposed approach relies on a multi-scale pruning scheme that is able to progressively 
reduce the solution space by use of a strategy based on a coarse-to-fine cascade of learnt 
classifiers. Our framework constantly yields a significant time speed-up (with respect to 
the most efficient inference methods) and obtains a more accurate solution than directly 
optimizing the MRF. 
 
B.Conejo, N. Komodakis, S. Leprince, and J.P Avouac. Speeding-up Graphical Model 
Optimization via a Coarse-to-fine Cascade of Pruning Classifiers. Advances in Neural 
Information Processing Systems 27, 2014. 

 
Thus far, we have mostly focused on deriving the theoretical framework, and in the publications 
our benchmarks focused on urban scenes because these are typically the most challenging cases 
with the highest discontinuities in topography around buildings. It’s also usually in urban areas 
that ground truths are easier to find. Future work will focus on deriving 3D models for natural 
scenes, and the same framework will be used. 
 
To prove that the extension of the framework to 3D topography matching indeed performs as 
expected, we also reconducted the failed experiment from Figure 3 (see Figure 4). We see that 
the global regularization of the algorithm allows it to behave as expected. 
 

 
 
 
 
 

Figure 4: Dunes migration recovered 
from 2009-2010 LiDAR acquisition 
using our MRF framework. The 
framework minimizes a matching 
energy between LiDAR point clouds 
over patches defined by the network 
of control points (yellow dots). 
Although not yet validated, this early 
result shows the potential of our 
framework to the comparison of 
LiDAR data. The comparison with 
correlation methods is striking 
(Figure 2). The direction and 
magnitude of the recovered 
deformation seem consistent with 
visual inspection 

100 m 



We show two other applications of the framework using 3D matching of surfaces to look at both 
volume change, and 3D displacements. This work was presented at the AGU meeting fall 2013: 
 
B.Conejo, S. Leprince, F. Ayoub, and J.P Avouac “A 2D and 3D registration framework for 
remote-sensing data,” Abstract G33A-0971 presented at 2013, Fall Meeting, AGU, San 
Francisco, CA, 9-13 December..  
 
 

 
Figure 5: (Top row) The matching framework was used to compare changes between two urban 
Lidar acquired above the city of Christchurch before and after the 2011 earthquake that produced 
damages to buildings. Differencing the LiDAR bring out many artifacts, in particular at the edges 
of the building, where the LiDAR data may not align very well, or might be noisy due to 
shadowing. After applying the 3D matching framework and solving for local displacement of 
each LiDAR point in x,y,z, the z component represents the regularized elevation change and is 
robust against detection errors. (Bottom row) We simulated an earthquake using a simple Okada 
dislocation model and applied it to a piece of LiDAR from the USGS B4 data. The 3D matching 
was able to nicely recover the deformation field applied in the three dimensions with good 
accuracy despite the L1 norm gradient regularization of the algorithm. 
 
 
 
 



CONCLUSION AND FUTURE WORK 
 
We developed a new framework that is versatile enough to accommodate 1D, 2D, and 3D image 
matching. We put the emphasis on quality of matching, versatility of data, and computational 
speed. Although we report in the publications ways to speed up the computation by up to 80%, 
the complexity of the algorithm still makes it hard to apply to large high dimensional problems, 
such as 3D LiDAR matching. Further efforts are needed to gain further computational speed 
increase. Nevertheless, we have opened new ways to quantitatively exploit a wide variety of 
remote sensing data and further work will include the proposed algorithm in the COSI-Corr 
toolbox released on the Caltech website[1]. 
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