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ABSTRACT 

Current hazard mapping efforts for earthquake-induced landslides use sliding block 

displacements to evaluate the potential for earthquake-induced landslides.  In these procedures, 

slopes that are predicted to develop significant downslope displacements during an earthquake 

are deemed seismically unstable.  However, these procedures typically use a deterministic 

approach, in which the variability in the expected ground motion and the displacement prediction 

are ignored.  Additionally, these procures do not consider the epistemic uncertainty in the slope 

properties (i.e., soil shear strengths, ground water table location, and thickness of sliding blocks).  

Ignoring these variabilities and uncertainties can lead to poor estimates of the actual seismic 

landslide hazard.   

A probabilistic approach to seismic landslide hazard mapping is described that accounts for 

the assorted variabilities and uncertainties inherent in the analysis.  The approach uses a 

displacement hazard curve to account for the variability in the expected ground motion and the 

displacement prediction, and uses a logic-tree analysis to incorporate the epistemic uncertainties 

in the slope properties.  This report describes the probabilistic approach to seismic landslide 

hazard mapping and the incorporation of a logic-tree analysis to account for various sources of 

epistemic uncertainties.  An efficient computational scheme is described that allows the logic-

tree approach to be applied more easily to regional analysis.  The new probabilistic approach is 

used to develop a seismic landslide hazard map for Anchorage, Alaska.   

The results show that including the effects of variability and epistemic uncertainties identifies 

the area of high/very high hazard that is 3 times larger than identified through the deterministic 

approach.  The influence of the epistemic uncertainty in the sliding block properties is generally 

greater than the influence of the epistemic uncertainty in the shear strengths because the 

uncertainties in sliding block properties are larger than the uncertainties in shear strength.  

Comparison with a previous deterministic seismic landslide map developed by the USGS 

indicates that the seismic landslide hazard from the probabilistic analyses performed in this study 

is smaller because the deterministic map used very conservative assumptions with respect to the 

sliding block properties.  This comparison indicates that the logic-tree approach provides an 

alternative way to rigorously account for uncertainties in slope properties, and it can avoid using 

overly conservative input parameters to capture these uncertainties in a deterministic approach. 
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1.0 INTRODUCTION  

Seismic landslides have been responsible for a tremendous amount of economic losses in 

earthquakes.  For instance, the 2008 Sichuan Earthquake (Mw = 7.9) in China induced 

significant landslides and these landslides not only buried dozens of towns, but also blocked 

roads, which are the lifelines connecting those ruined towns and nearby large cities.  Knowledge 

of the locations and scale of potential seismic landslides is essential for reducing losses caused 

by earthquakes. 

Regional maps of potential seismic landslides are used in land-use planning and emergency-

response planning, and are used to identify zones that require detailed, site-specific studies.  

Current seismic landslide hazard mapping efforts utilize empirical predictions of sliding 

displacement based on the expected ground shaking and the general slope properties (e.g. Jibson 

el al. 2000).  The seismic landslide hazard is assigned qualitatively as high, medium, or low 

based on the different displacement thresholds.  However, these maps typically utilize a 

deterministic approach that does not consider the aleatory variability in predictions of ground 

shaking or sliding displacement; nor do they consider the epistemic uncertainty in the slope 

properties (i.e., soil shear strengths, ground water table and thickness of sliding blocks). 

A recently developed probabilistic approach uses a sliding displacement hazard curve to 

quantify the seismic landslide hazard (Rathje and Saygili 2008).  The displacement hazard curve 

incorporates aleatory variability to compute the annual frequency of exceedance (i.e., hazard) of 

different displacement levels, and it is used to identify the displacement associated with a 

specified hazard level (Saygili and Rathje 2009).  Using the displacements associated with the 

specified hazard level (typically 10% or 2% probability of exceedance in 50 years), a seismic 

landslide hazard map is produced using the same displacement thresholds used in deterministic 

approaches.  However, this probabilistic approach does not incorporate any epistemic uncertainty 

in the slope properties.  Yet, at a regional scale the uncertainties in the slope properties are 

significant and should be taken into account. 

This research uses a logic-tree analysis to incorporate the epistemic uncertainties in the slope 

properties into the probabilistic framework.  This report describes the probabilistic approach to 

seismic landslide hazard mapping and the incorporation of a logic-tree analysis to account for 

various sources of epistemic uncertainties.  An efficient computational scheme is described that 

allows the logic-tree approach to be applied more easily to regional analysis.  The new 

probabilistic approach is used to develop a seismic landslide hazard map for Anchorage, Alaska. 
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2.0 SEISMIC LANDSLIDE HAZARD MAPPING 

 

2.1 Sliding Block Displacement Analysis 

During an earthquake, the soil mass on a slope experiences inertial forces due to the ground 

shaking.  The seismic loading force can be represented by the mass of the soil (W/g) multiplied 

by a seismic coefficient (k), F =      .  The yield acceleration (ky), or yield seismic 

coefficient, represents the seismic loading that initiates instability and is equal to the seismic 

coefficient that produces a factor of safety equal to 1.0.   

In natural slopes, a common failure mode for seismic landslides is a thin, veneer slope failure 

(Keefer 2002).  In this case, the depth of the failure surface (typically several meters) is much 

smaller than the length of the slope failure (dozens of meters to hundreds of meters) and an 

infinite slope model can be used to assess the stability of the slope.  The infinite slope 

assumption commonly is used for seismic landslide hazard mapping to estimate ky.  Figure 

Error! No text of specified style in document..1 shows an infinite slope model for static 

conditions.  W is the weight of the failure block, σ and τ are the normal and shear stresses on the 

failure surface, c’ is the effective cohesion, ϕ’ is the effective friction angle, γ is the material unit 

weight, γw is the unit weight of water, α is the slope angle, t is the slope-normal thickness of the 

rigid block, and m is the proportion of the block thickness that is saturated and thus represents 

pore water pressure.  The static factor of safety can be expressed as: 

 

         
   (      )            

        
 

  

        
 

     

    
(    

  

 
)         (Error! No 

text of specified style in document..1) 

 

Assuming ground shaking parallel to the slope, the yield acceleration that produces           
    can be calculated as:   

 

   (          )                          (Error! No text of specified 

style in document..2) 

 

where g is the acceleration of gravity.  The ground shaking can also be assumed as horizontal, 

but in most cases the resulting yield acceleration only has a small difference (Saygili, 2008). 
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Figure Error! No text of specified style in document..1  Infinite Slope Model under Static 

Condition 

 

Sliding block displacements are computed for a given yield acceleration (ky) and earthquake 

ground motion (Newmark 1965).  For rigid sliding block analysis, the slope is considered a rigid 

block sitting on a base (i.e. failure surface).  Given an acceleration-time history, sliding starts 

when the acceleration-time history exceeds the yield acceleration and it continues until the 

relative velocity between the sliding block and base drops back to zero.  Figure Error! No text 

of specified style in document..2 shows a schematic of the rigid sliding block analysis.  At point 

X, where the ground acceleration reaches the level of the yield acceleration, sliding starts.  The 

relative acceleration between the base and ky is numerically integrated to obtain the relative 

velocity, and the relative velocity is numerically integrated to obtain the relative sliding 

displacement.  At point Y, the ground acceleration decreases to the ky level, but the sliding does 

not stop due to non-zero relative velocity.  At point Z, the relative velocity becomes zero and 

sliding stops.  Sliding is triggered each time the ground acceleration exceeds the ky level.  To 

calculate the relative displacement between the sliding block and base for the entire time history, 

the relative acceleration-time is integrated twice with respect to time in the ranges when sliding 

occurs. 
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Figure Error! No text of specified style in document..2  Illustration of rigid sliding block 

analysis (adapted from Wilson and Keefer 1983 by Jibson et al. 2000)  

 

Instead of directly using acceleration-time histories to predict rigid sliding block 

displacements, many empirical models have been proposed in the past decades for computing 

sliding block displacements based on various characteristics of ground shaking and the yield 

acceleration.  Theses empirical displacement models are from the regression analysis of 

thousands of cases in which the complete sliding block analysis was conducted.  Ground motion 

parameters (GMs), such as Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), 

mean period of ground motion (Tm) and Arias Intensity (Ia), have been used individually or in 

combination to represent the level of ground shaking in empirical displacement models.  The 

general form of an empirical displacement model is expressed as: 

 

ln(D) = f(ky, GMs)                           (Error! No text of specified 

style in document..3) 

 

Here, the natural logarithm of the predicted sliding displacement (D) is a function of the yield 

acceleration and the ground motion parameters (GMs).  The most commonly available ground 

motion parameters for seismic hazard predictions are PGA, response spectral acceleration, and 

PGV.  The key to estimating the displacement is an estimate of ky for the slope and the expected 

ground motion parameters at the site. 

Bray and Travasarou (2007), Jibson (2007), and Rathje and Saygili (2009) have proposed 

empirical displacement models for rigid sliding masses that use PGA to represent the level of 

ground shaking and earthquake magnitude (M) to provide an indirect measure of frequency 

content.  Because only one ground motion parameter is used in these models, they are considered 

scalar models.  If more than one ground motion parameter is included in an empirical model, the 

standard deviation (i.e., variability) of the predicted sliding displacement can be significantly 

reduced (Saygili and Rathje 2008).  Saygili and Rathje (2008) proposed a rigid sliding block 

model using PGA and PGV as the ground motion parameters, and such a model is a vector 

model 

 

2.2 Input Parameters 

To produce a seismic landslide hazard map, displacements must be predicted across a 

regional area containing hundreds of thousands to millions of sites.  The input parameters for the 

analysis (e.g., slope angle, shear strength) take on different values at different locations.  In a 

Geographic Information System (GIS), such location-dependent data is stored as raster data 

(Figure 2.3), which is made of small square grid cells (typical cell sizes are the scale of meters).  

An entire study area can be divided into millions of grid cells, each storing a single value.  The 

resolution of a raster data describes the detail level of the data.  Finer resolution means smaller 

grid cells, more detail and larger storage space.   

The spatial distribution of the yield acceleration ky, which represents the sliding resistance of 

a slope, is the critical slope parameter for predicting sliding displacement and needs to be 

computed for each grid cell in the study area.  As noted above, the most common type of 

earthquake-induced landslide is a thin, veneer slope failure, so the infinite slope model can be 

used to calculate ky (Equations 2.1 and 2.2).  This approach allows the ky of each grid cell to be 

computed easily.  Each grid cell is treated as an independent infinite slope, which may not be 
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realistic for all types of landslides but it is the most practical way to perform a regional analysis.  

Slope stability analysis of finite slopes using circular or non-circular failure surfaces would be 

too difficult to be applied for seismic landslide hazard mapping, because 1) it requires much 

more site information (e.g. soil profiles), 2) the geometry of slopes are different from one 

location to another, and 3) the number of slopes is incredibly large in a region.  However, slope 

stability analysis of detailed geometries of finite slopes can be used in site-specific analysis of 

the slopes that are identified by the seismic landslide hazard mapping. 

 

 
Figure 2.3  Raster and vector data for a region (http://www.sfu.ca/rdl/GIS/tour/gis_wrk.html) 

 

The infinite slope model requires slope angle, shear strength and ground water condition for 

the computation of ky.  Each of these input parameters are stored in raster format so that ky can 

be computed for each grid cell.  The calculation of the input parameters within the GIS is 

described below.  A region within Niigata Prefecture, Japan is used to demonstrate the process. 

A Digital Elevation Model (DEM), which contains the elevation at the center of each grid 

cell (e.g. Figure 2.4), is used to compute the slope angle of each grid cell.  The slope angle is 

computed for a center grid cell by using its elevation data and its eight adjacent grid cells.  A 

slope map (e.g. Figure 5) can be created using this slope algorithm as incorporated within the 

Slope tool in the ArcGIS© software developed by the Environmental Systems Research Institute 

(ESRI).   

The shear strength data required for the ky calculation are usually derived from a geologic 

map.  A geologic map (Figure a) is made of polygons, and each polygon represents a single 

geologic unit.  Polygons are vector data in the GIS framework (Figure 2.3), and they need to be 

converted into raster data for further computation.  The conversion divides polygons into raster 

grid cells, and each grid cell obtains a single value from the polygon to which it belongs.  Shear 

strengths are assigned to each geologic unit prior to the conversion.  Because there are two shear 
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strength parameters (c and ϕ), a separate cohesion map and friction angle map are developed 

from the geologic map (Figure  2.6b and c). 

 

 

 
Figure 2.4  Hillshade DEM in Niigata Prefecture, Japan 
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Figure 2.5  Slope map in Niigata Prefecture, Japan 

 

 

 
(a) 
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(b)                                  (c) 

Figure 2.6  (a) Geologic map, (b) cohesion map, and (c) friction angle map for Niigata 

Prefecture, Japan 
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Figure 2.7  Yield acceleration map of Niigata, Japan 

 

The other inputs for the calculation of ky are t (slope normal thickness), m (proportion of 

block thickness that is saturated), and γ (unit weight of soil).  These values commonly are 

assigned as constant values across the study area in the deterministic approach.  The t value, 

which represents the failure depth of shallow landslides, is typically up to several meters (e.g., 

Kieffer et al. 2006, Keefer 2002, Jibson et al. 2000, Parise and Jibson 2000, Harp and Jibson 

1996).  The value of t can be determined from the thickness of surficial weak soils underlain by 

stiff soil or rock layer, or from observations of local shallow failures.  The m value, which 

represents the pore water pressure on the failure surface, depends on the ground water table and 

may fluctuate due to seasonal change and precipitation.  In deterministic analysis, the selected m 

value often is selected to represent the most unfavorable conditions for seismic landslides, so that 
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seismic landslide hazard map is conservative.  The unit weight of soil γ can be assigned 

differently to each geologic unit if there are available testing results.  However the difference in γ 

values is usually small, so that using a constant γ value across the study area is convenient for the 

ky computation.  Jibson el al. (2000) used t = 2.4 m, m = 0 and γ = 15.7 kN/m
3
 for the Oak 

Mountain quadrangle in southern California, because such values are representative for local 

conditions.  With all above-mentioned input data, a yield acceleration map (e.g. Figure ) is 

created by applying Equations 2.1 and 2.2 to each grid cell.  Combined with ground motion 

parameters, the sliding displacement in each grid cell is predicted by empirical models. 

For ground motion parameters, it is not practical to obtain a ground motion hazard curve for 

each grid cell due to the heavy computation required; additionally there will be almost no 

difference in the hazard curves for adjacent cells and little difference within a study area 

(typically smaller than 25 km by 25 km).  The seismic hazard curves provided by USGS are 

based on the NSHM 2008 Gridded Data, which has 0.05 degree increments in longitude and 

latitude.  It means that the seismic hazard curve is assumed to be the same within a distance 

range of several kilometers.  Using the same seismic hazard across a study area may not be 

rigorous, but it simplifies the analysis without introducing large errors.  Therefore, ground 

motion hazard curves are selected at a representative location within the study area and the same 

curves are used for the entire study area.  Of course, if the area to be analyzed is too large to have 

a consistent seismic hazard, such area should be divided into several smaller areas and one set of 

ground motion hazard curves assigned to each smaller area. 

 

2.3 Deterministic Seismic Landslide Hazard Map 

A deterministic seismic landslide hazard map is created for ground shaking associated 

with a given seismic hazard level.  To develop this type of map, a sliding displacement map is 

computed by applying an empirical displacement model to the yield acceleration map along with 

the ground shaking level.  Such computation can be carried out by the Map Algebra tool in the 

ArcGIS© software.   

The ground motion parameters required by empirical models are obtained from ground 

motion hazard curves at a given seismic hazard level.  Only one set of ground motion hazard 

curves is used for the entire study area.  Figure 2.8 is a PGA hazard curve that provides the 

seismic hazard level (i.e., annual frequency of exceedance) for different values of PGA at a 

location of interest.  The two most commonly used hazard levels are 0.0021 1/yr (i.e., 10% 

probability of exceedance in 50 years) and 0.0004 1/yr (i.e., 2% probability of exceedance in 50 

years).  These hazard levels represent 475-year and 2475-year return periods for a motion, 

respectively.  For the PGA hazard curve in Error! Reference source not found., the 10% in 50 

year motion is 0.54 g and the 2% in 50 year motion is 0.88 g. 

A deterministic seismic landslide hazard map is produced by computing displacements at 

each grid cell using the ground motion level and ky, and comparing the predicted sliding 

displacement map with the displacement thresholds that define the seismic hazard categories 

(Table Error! No text of specified style in document..1).  An example of a deterministic 

seismic landslide hazard map is given in Figure  for the Anchorage, Alaska area. This map uses 

ground motions with a 2% probability of exceedance in 50 years (e.g. PGA=0.69 g for 

Anchorage). 
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Figure 2.8  PGA Hazard Curve for a site in northern California (Rathje and Saygili 2011) 

 

   

Table Error! No text of specified style in document..1 Seismic Hazard Categories based on 

Sliding Displacement  

(Jibson and Michael 2009) 

Hazard 

Category 

Sliding 

Displacement (cm) 

Probability of 

Landslide (%) 

Low 0 - 1 0 - 2 

Moderate 1 - 5 2 - 15 

High 5 - 15 15 - 32 

Very High > 15 > 32 
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Figure 2.9  Deterministic Seismic Landslide Hazard Map for 2% probability of exceedance in 50 

years in Anchorage, Alaska (Jibson and Michael 2009) 
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3.0 PROBABILISTIC APPROACH TO SEISMIC LANDSLIDE HAZARD MAPPING 

 

3.1 Displacement Hazard Curves 

The probabilistic approach to seismic landslide hazard mapping is based on the calculation of 

a sliding displacement hazard curve.  A displacement hazard curve is similar to a ground motion 

hazard curve (e.g. Error! Reference source not found.), but it provides the seismic hazard level 

(i.e. mean annual rate of exceedance) for different levels of sliding displacement.  Rathje and 

Saygili (2008) proposed a scalar approach, which utilizes an empirical displacement model with 

only one (i.e., a scalar) ground motion parameter (typically PGA), to compute a displacement 

hazard curve from a ground motion hazard curve.  The standard deviation      of the empirical 

displacement model is included in the computation of the displacement hazard curve.  Later, 

Saygili and Rathje (2009) modified their scalar approach by adding earthquake magnitude (M), 

because the scalar empirical model without magnitude did not provide unbiased estimates of the 

sliding displacement relative to magnitude. 

In the scalar approach, the mean annual rate of exceedance (λD) for a displacement level x is 

defined as: 

 

         ( )  ∑ ∑      |               |                      (Error! No 

text of specified style in document..4) 

 

where D is sliding displacement,      |         is the probability of D > x given the 

occurrence of acceleration level PGAi and earthquake magnitude Mk,     |      is the 

conditional probability of Mk given PGAi, and         is the mean annual probability of 

occurrence of ground motion level PGAi.  The double summation represents numerical 

integration over bins for PGA and M, and it represents the combined application of the total 

probability theorem and conditional probability. 

For a given PGAi and Mk, the empirical model provides a lognormal distribution of the 

displacement with mean      (or median D = exp (    )) and standard deviation     .  Given a 

displacement level x, the probability of D > x can be calculated by using the cumulative 

distribution function for the normal distribution as: 

 

       |            (
      

    
)                    (Error! No text of specified 

style in document..5) 

 

        is the annual probability of occurrence of acceleration level PGAi and it can be 

approximated from the annual probability of exceedance as: 
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 (Error! No text of specified style in document..6) 

where  [            ] and  [            ] represent the annual probability of 

exceedance associated with PGA values halfway between adjacent PGA values (i.e. PGAi−1, 

PGAi and PGAi+1).  Assuming that the annual probability and annual rate of exceedance are 

approximately the same for rare events, the hazard values λi-1, λi and λi+1 from the PGA hazard 

curve can represent the annual probability of exceedance of PGAi−1, PGAi and PGAi+1.  

    |      can be derived from the seismic hazard deaggregation for PGA, which is 

available on the USGS website or is commonly provided with a site-specific PSHA.  The seismic 

hazard deaggregation describes the contributions of all combinations of earthquake magnitude 

(Mk) and source-to-site distance (Rl) given a PGA level.  The sum of all contributions to a given 

PGA hazard level is equal to 1.0.  The expression of a hazard deaggregation is        |    
     .  Therefore, the conditional probability     |      can be obtained from the total 

probability theorem as (Bradley 2010): 

 

       |      ∑        |                             

(Error! No text of specified style in document..4) 

 

       |      
 [                  ]   [                  ]

       
 

(Error! No text of specified style in document..5) 

 

 [                  ]  
                                     

 
 

(Error! No text of specified style in document..6) 

 

                         |                                                
(Error! No text of specified style in document..7) 

 

The two terms in the numerator of Equation 3.5 can be computed via Equation 3.6.  Equation 3.7 

is used to compute the two terms on the right side of Equation 3.6.   

A displacement hazard curve is created by using Equation 3.1.  Figure Error! No text of 

specified style in document.. shows a displacement hazard curve for a site in northern 

California (Figure 2.8) and deterministic displacement values from the same PGA hazard curve 

used for the displacement hazard curve.  The scalar probabilistic approach results in larger 

displacements (67 cm and 208 cm) than the deterministic approach (43 cm and 113 cm) due to 

the consideration of aleatory variability. 
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Figure Error! No text of specified style in document..1  Displacement hazard curve for a site in 

northern California using the scalar approach 

 

If more than one ground motion parameter is included in an empirical model, the aleatory 

variability in the sliding displacement predictions can be significantly reduced (Saygili and 

Rathje 2008).  Saygili and Rathje (2008) proposed several vector empirical displacement models 

(i.e., models that use a vector of ground motion parameters), and the model that includes both 

intensity (PGA) and frequency content (PGV) parameters was preferred to use for the vector 

probabilistic approach (Rathje and Saygili 2008).  Similar to the scalar approach, for the vector 

approach the mean annual rate of exceedance (λD) for a displacement level x is defined as: 

 

          ( )  ∑ ∑      |              [         ]           (Error! No 

text of specified style in document..8) 

 

where  [   |         ] is the probability of D > x given ground motion levels PGAi and 

PGVj, and  [         ] is the joint annual probability of occurrence of ground motion levels 

PGAi and PGVj.   

For given values of PGAi and PGVj, a vector predictive model provides a lognormal 

distribution of the sliding displacement with mean μlnD and standard deviation σlnD.  Given a 

displacement level x, the probability of D > x can be calculated by using Equation 3.2.  

 [         ] can be computed using a vector PSHA computer code (VPSHA, Bazzurro and 



 18 

Cornell 2002).  Alternatively, the joint probability  [         ] can be derived from the scalar 

hazard information for PGA along with the seismic hazard deaggregation, GMPEs for PGA and 

PGV, and the correlation coefficient between PGA and PGV.  See Bazzurro (1998) and Rathje 

and Saygili (2009) for more details. 

Figure Error! No text of specified style in document.. shows hazard curves for 

displacement computed using the scalar and vector approaches for the same site as Figure Error! 

No text of specified style in document...  As shown in Figure Error! No text of specified style 

in document.., the vector approach predicts smaller displacements than the scalar approach at all 

seismic hazard levels.  These reductions occur because more ground motion information is 

utilized in the vector approach (i.e., PGA and PGV vs. only PGA), so that the vector empirical 

displacement model predicts a smaller median displacement and a smaller standard deviation 

than the scalar empirical displacement model. 

 

 
Figure Error! No text of specified style in document..2  Displacement hazard curves for a site 

in northern California using both scalar and vector approaches 

 

The probabilistic approach incorporating aleatory variability utilizes a displacement hazard 

curve to define the displacement associated with a given hazard level.  This approach utilizes 

only one representative set of ground motion hazard curves for an entire region and ignores 

epistemic uncertainties in the slope properties.  Ignoring epistemic uncertainties allows the 

probabilistic approach to be applied through the use of yield acceleration thresholds that 

correspond with the displacement thresholds associated with each seismic landslide hazard 

category.   

In the deterministic approach, the ky value that produces each of the displacement thresholds 

associated with a seismic landslide hazard category (Table 2.1) is determined from the empirical 
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displacement model and the deterministic ground motion.  These ky values are defined as ky 

thresholds, and they are equivalent to the displacement thresholds.  These ky thresholds are used 

with a yield acceleration map, in which ky is computed for each grid cell, to identify the seismic 

landslide hazard category for each grid cell.  This approach provides the same result as 

computing the deterministic displacement for each grid cell and applying the displacement 

thresholds. 

When epistemic uncertainty is not taken into account, the ky-threshold approach can also be 

applied to the probabilistic framework (Saygili and Rathje 2009).  In the probabilistic case, 

displacement hazard curves are computed for a range of ky values using the representative 

ground motions hazard curves for the study area.  The displacement hazard curves are used to 

identify the ky values that produce a given displacement threshold (e.g. 15 cm) for a specified 

seismic hazard level (e.g. 10% probability of exceedance in 50 years).  These ky values are 

defined as the ky thresholds.  For example, Figure  shows displacement hazard curves for three ky 

values (0.21 g, 0.16 g and 0.12 g), which exactly produce the displacement thresholds of 5 cm, 

15 cm and 30 cm associated with a 10% probability of exceedance in 50 years.  These ky 

thresholds are applied to the yield acceleration map to create a probabilistic seismic landslide 

hazard map.  For example, grid cells with ky between 0.16 g and 0.21 g will have predicted 

sliding displacements between 5 cm and 15 cm, and they assigned a high seismic landslide 

hazard.  Since only hazard categories, not the exact predictions of sliding displacements, are 

shown on a seismic landslide hazard map, the ky-threshold approach is equivalent to the 

displacement-threshold approach.  

The ky-threshold approach avoids the computation of displacement hazard curves for each 

grid cell, thus it saves huge computational efforts in the probabilistic seismic landslide hazard 

mapping.  However, the epistemic uncertainties in slope properties cannot be taken into account 

in this approach.   
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Figure 3.3  Displacement hazard curves for determining ky thresholds (Saygili and Rathje 2009) 

 

 

 

3.2 Logic-Tree Approach 

Uncertainties always exist when characterizing the slope properties (e.g., soil shear strengths, 

ground water conditions, and sliding block thickness) for stability analysis.  Ignoring these 

epistemic uncertainties and assuming a single set of slope properties leads to a single value of ky, 

which simplifies the computation of the sliding response of the slope, but it may lead to an 

inaccurate assessment of the seismic slope performance during earthquakes.   

 

3.2.1 Background 

A logic tree analysis can be used to account for epistemic uncertainties in the assessment of 

the seismic slope stability hazard (Saygili 2008).  A logic tree is made of nodes and branches, as 

illustrated in Figure Error! No text of specified style in document...  Nodes represent the input 

parameters under consideration and the branches associated with a node represent discrete, 

possible values for that parameter.  Each branch is associated with a weight, and the weights 

from all branches from one node must equal 1.0.  Following branches through each node defines 

the input parameters for a single ky value and the product of the weights of the branches 

represents the weight associated with that ky.  

 

 
Figure Error! No text of specified style in document..4  Example logic tree for the assessment 

of yield acceleration 
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For the logic tree shown in Figure Error! No text of specified style in document.., three 

discrete values are assumed for both c and  resulting in nine possible values of ky computed for 

an infinite slope analysis.  The other parameters in the infinite slope analysis (i.e., slope angle, 

thickness, saturation ratio, and unit weight) are held constant.  To incorporate the multiple values 

of ky into the seismic displacement analysis, a displacement hazard curve is computed for each ky 

given the ground motion hazard curve and these curves are averaged to generate a mean hazard 

curve.  Considering a logic tree with n values of ky, the mean hazard for displacement x can be 

computed as: 

 

               
̅̅ ̅( )    ∑      ( )  

 
                                (3.9) 

 

where   
̅̅ ̅( ) is the weighted mean annual rate of exceedance for displacement x,   ( )  is the 

displacement hazard from the i
th

 branch of the logic tree for displacement x, and wi is the weight 

associated the i
th

 branch of the logic tree. 

Figure 3.5 demonstrates the calculation of the mean displacement hazard curve for the logic 

tree in Figure 3.4.  The displacement hazard curves for the nine ky values in the logic tree are 

shown by the gray curves in Figure Error! No text of specified style in document.. and the 

mean displacement hazard curve is shown by the solid black line.  The displacement hazard 

curve for the best estimate ky = 0.15 g (c = 24kPa,  = 30
o
 in Figure 3.4) is also shown in Figure 

Error! No text of specified style in document...  The mean displacement hazard curve from the 

logic tree analysis is higher than the hazard curve using the best estimate ky, indicating that 

incorporating the epistemic uncertainty in the soil properties increases the displacement hazard.  

Less uncertainty in the soil properties would result in the mean hazard curve becoming more 

similar to the hazard curve for ky = 0.15 g. 
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Figure Error! No text of specified style in document..5 Rigid Displacement Hazard Curves for 

Logic Tree 

 

3.2.2 Development of a Logic Tree 

The epistemic uncertainties in the shear strengths, m value and t value should be considered 

in the logic-tree analysis, because such parameters are used to determine the ky value of each grid 

cell.  Additionally, the epistemic uncertainty among empirical displacement models should also 

be considered in the logic-tree analysis. 

The uncertainty in shear strengths can be estimated from lab and field testing results.  

However, at a regional scale the most practical way to assign uncertainty may be through 

published uncertainty estimates or, if available, through the variability in in situ test parameters, 

such as SPT blow count, across a geologic unit.  As an example of published uncertainty 

estimates, Phoon and Kulhawy (1999) summarized that the coefficient of variance is about 10 to 

50% for undrained shear strength and 5 to 15% for effective friction angle.  If enough testing 

results are not available to evaluate the uncertainty in shear strengths, one may refer to the above 

coefficients of variance and use engineering judgment to develop specific values to be used in 

the logic-tree analysis.  The weights of branches can be determined based on three-point 

estimation of a normal distribution.   

The thickness of sliding block t is typically several meters for shallow failures.  It depends on 

the thickness of surficial weak soil, and it is also correlated with the shear strengths of 

underlying soil layers.  If the underlying soil layers are strong enough, the failure will be 

restrained in the surficial weak layer.  Smaller shear strengths of underlying layers may lead to 

deeper landslides.  Slope stability analysis may be necessary to determine the critical failure 

depth for complicated slope geometries.  Nevertheless, the shallow-failure assumption is 
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generally valid and convenient for regional mapping.  The selection of representative t values 

should be based on the knowledge of local geology and engineering observations.  In the logic 

tree, three branches can be used to represent a typical range of t values, and a uniform 

distribution should be used to assign weights unless there is specific information indicating that 

some depths are more likely than others. 

The m value, defined as the proportion of the block thickness that is saturated, is calculated 

by the ground water table and the t value.  The ground water table will fluctuate due to seasonal 

changes and precipitation.  Topography, seepage, and artesian water can cause complicated 

spatial variations of the ground water table in a region.  The estimation of the ground water table 

relies on survey records and precipitation forecasts.  Because of these complications, a uniform 

distribution is most likely applied to the ground water table levels. The selected ground water 

table levels, and corresponding m values, should represent the likely range of values indicated by 

observations.  If one wants to incorporate the most unfavorable location of the ground water 

table, it can be included in the logic tree with a corresponding weight that indicates its likelihood 

of occurrence.  

The unit weight of soil γ generally has a small variation in the same soil and a small 

difference between different soils.  The coefficient of variance in γ is less than 10% according to 

Phoon and Kulhawy’s study (1999).  Therefore, using a constant γ value across the study area is 

acceptable.   

Several empirical displacement models should be adopted, rather than only one model, to 

incorporate the epistemic uncertainty among the different models.  All empirical models should 

be equally weighted unless some models are believed to be more accurate than others.  For 

instance, a vector model (e.g. SR08) may be assigned a higher weight than scalar models because 

the vector model takes more ground motion information in the calculation and, theoretically, 

should provide a more accurate prediction of displacement. 

Figure 3.6 shows an example logic-tree with the logic-tree components associated with shear 

strength, sliding block properties, and empirical models separated. 
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Figure 3.6  Example logic tree for probabilistic seismic landslide hazard mapping 

 

 

3.2.3 Applying Logic-Tree Analysis to Seismic Landslide Hazard Mapping 

When logic-tree analysis is applied to seismic landslide hazard mapping, each grid cell has 

dozens of possible ky values with associated weights.  Therefore, the approach of using ky 

thresholds to define seismic landslide hazard categories is no longer applicable.  A mean 

displacement hazard curve could be computed for each grid cell across an entire region but this 

would require a large amount of computation and is not practical.  To address this issue, an 

efficient computational scheme is developed which does not sacrifice any accuracy. 

The approach to applying the logic tree to regional analysis is based on computing the 

weighted mean annual rate of exceedance   
̅̅ ̅( ) at each grid cell for the displacement thresholds 

associated with the seismic landslide hazard categories.  This approach is called the Mean λD 

Threshold approach. Comparing   
̅̅ ̅( ) of each grid cell and displacement threshold with the 

hazard level under consideration (target hazard level λ*) allows each grid cell to be assigned to 

an appropriate seismic landslide hazard category.  The Mean λD Threshold approach is illustrated 

using the mean displacement hazard curve shown in Figure .  At λ* = 0.0021 1/yr, the mean 

displacement hazard curve indicates a sliding displacement is 8 cm for the grid cell, and this grid 

cell should be categorized as high seismic landslide hazard (5 cm < D < 15 cm).  Alternatively, 

comparing λ* with   
̅̅ ̅(   ) and   

̅̅ ̅(    ) can also provide the same result.  If   
̅̅ ̅(   ) for a 
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grid cell is greater than λ* = 0.0021 1/yr, then the sliding displacement for that grid cell 

associated with λ* = 0.0021 1/yr is greater than 5 cm.  If   
̅̅ ̅(    ) is less than λ* = 0.0021 1/yr 

for the same cell, then the sliding displacement for that cell associated with λ* = 0.0021 1/yr is 

smaller than 15 cm.  Therefore, this grid cell is placed in the 5 to 15 cm bin, which corresponds 

with the high seismic landslide hazard category.  Similar to the ky-threshold approach, only 

hazard categories, not exact predictions of sliding displacements, are assigned to grid cells to 

create a seismic landslide hazard map.  The Mean λD Threshold approach is equivalent to the 

displacement-threshold approach. 

 

 
Figure 3.7  Illustration of Mean λD Threshold approach 

 

The key to applying the Mean λD Threshold approach to each cell is the efficient computation 

of   
̅̅ ̅( ) from Equation 5.1 for each displacement threshold so that it can be compared with λ*.  

Equation 3.9 requires the λD(x) values associated with each ky value.  An interpolation 

relationship between ky and λD(x) is used to efficiently compute the λD(x) values for Equation 

3.9.  The development of this interpolation relationship is described below.   

For a single empirical displacement model (e.g. Rathje and Saygili 2009) and a single ground 

motion hazard curve, one ky value leads to one displacement hazard curve.  At a displacement 

threshold of x cm (e.g. x = 5 cm), one ky value corresponds to one λD(x) value.  This concept is 

demonstrated in Figure  for x = 5 cm.  To establish a relationship between ky and λD(5cm) for 

this case, λD(5cm) is compiled for a range of ky values from the associated displacement hazard 

curves, and the data are fit with a 4
th

 order polynomial regression model in log-log space (Figure 

).  This relationship can then be used to quickly calculate λD(5cm) for a given ky value.  
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Figure 3.8 Displacement hazard curves for ky values between 0.1 and 0.2 g 

 

 
Figure 3.9 λD(x) vs. ky for x= 5 cm and 54 ky values between 0.01 and 0.7 g. 

 

The typical range of ky values of slopes that are potentially unstable during earthquakes is 

from 0.01 to 0.70 g.  Any slope with ky below 0.01 g is essentially statically unstable (FS ≤ 1.0) 

and slopes with ky larger than 0.70 g are either very flat or are made of strong soils/rocks, 

meaning that such slopes can be assumed as seismically stable.  Using small ky increments (e.g. 

RS09 Model 
x = 5 cm threshold 
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0.01 g) and assuming all ky values are between 0.01 to 0.70 g, there are only several dozens of 

possible ky values to consider within a study area, despite the presence of millions of grid cells.  

Additionally, the difference between two displacement hazard curves is very small for a small 

change in ky.  Figure  shows a series of displacement hazard curves for ky values between 0.1 and 

0.2 g using an increment of 0.01 g, and these curves change gradually.  Therefore several dozens 

of displacement hazard curves and interpolation between these hazard curves can be used to 

approximate all possible displacement curves in a region. 

Relationships between λD(x) and ky can be derived for each empirical displacement model 

and each displacement threshold given the ground motion hazard curve for a region.  The general 

form of the regression relationships is expressed as: 

 

  (  ( ))    (   (  ))
    (   (  ))

    (   (  ))
       (  )       (3.10) 

 

where a1 to a5 are coefficients of the regression model.  Using the regression relationships, the 

multiple ky values associated with each grid cell can be quickly related to the associated λD(x) 

values needed for Equation 3.9 and the   
̅̅ ̅( ) of each grid cell calculated.  By comparing   

̅̅ ̅( ) 

values for the displacement thresholds of x = 1, 5 and 15 cm with the target hazard level (λ*), the 

seismic landslide hazard category can be determined for each grid cell. 

 

3.2.4 Screening Analysis 

To further reduce the computation time for the regional analysis incorporating epistemic 

uncertainties, a screening analysis using the worst-case scenario of the logic tree is carried out.  

The worst-case scenario is associated with the minimum ky, and is represented by the smallest 

shear strength and the largest m and t values.  This analysis can highlight the grid cells that have 

low seismic landslide potential because if the displacement hazard for 1 cm (i.e., the lower bound 

displacement threshold for the moderate landslide hazard category) is less than λ* for the 

minimum ky, then the displacement hazard computed using the full logic tree will also be less 

than λ*.  Therefore, the full logic-tree analysis does not need to be performed for these grid cells. 

The screening analysis can be performed for all displacement thresholds.  For larger 

displacement thresholds, more grid cells are excluded from the full logic-tree analysis.  The 

screening analysis may remove as many as 70% to 90% (or even more) of the grid cells from the 

full logic-tree analysis.   
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4.0 APPLICATION OF PROBABILISTIC SEISMIC LANDSLIDE HAZARD MAPPING: 

ANCHORAGE, ALASKA 

 

4.1 Study Area 

To implement the approach developed for probabilistic landslide hazard mapping, 

Anchorage, Alaska is selected as the study area.  This location was selected based on the history 

and occurrence frequency of earthquakes, the availability of the required data in GIS format, 

access to databases of soil properties in the study area, and the availability of PGV ground 

motion prediction models for the tectonic region.   

Anchorage has experienced several large earthquakes in the past, such as the 1964 Alaska 

earthquake (Mw = 9.2).  Seismic landslides caused most of the deaths and economic losses 

during the 1964 earthquake in Anchorage (Keefer, 1984).  Since then, many studies have been 

conducted to identify areas susceptible to potential landslides in future earthquakes.  Jibson and 

Michael (2009) recently created seismic landslide hazard maps for Anchorage using the 

deterministic approach, and thus this is an ideal study area because the data required for analysis 

are available. 

The Anchorage, Alaska study area is about 24 km by 25 km (Area = 301 km
2
, Figure 4.2) 

and represents the extent of the seismic landslide hazard map developed by Jibson and Michael 

(2009).  The northern, western and central areas are mostly plains, and downtown Anchorage is 

located at the northwestern corner.  The study area boundaries along the northwest to southwest 

are mostly coastlines.  The Chugach Mountains cover the eastern and southern parts and extend 

beyond the boundaries of the study area.   

 

 
Figure 4.2  Overview of the study area in Anchorage, Alaska (based on National Geographic, 

ESRI) 

 

Jibson and Michael (2009) produced seismic landslide hazard maps for Anchorage using 

sliding displacements predicted from a deterministic approach.  The maps are based on ground 

motions associated with two different seismic hazard levels, 2% probability of exceedance in 50 

years and 10% probability of exceedance in 50 years, which correspond to PGA values of 0.69 g 

and 0.43 g respectively (Wesson et al. 2007).  In defining the slope properties for the calculation 

of the infinite slope ky, the slab thickness (t) was assumed to be 15 m (50 ft), which is the upper 
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bound of commonly observed landslides in Anchorage (personal communication with Dr. 

Randall W. Jibson).  By assuming a groundwater table at 3 m (10 ft) depth, the saturation factor 

(m) is relatively large at 0.8.  The combination of the large slab thickness and high groundwater 

level is very conservative and results in small values of ky.  The unit weight of soil was held 

constant at 18.8 kN/m
3
 (120 lb/ft

3
) and used for the entire study area.  The friction angle and 

cohesion intercept were assigned across the study area based on geologic units.  Displacements 

were computed across the study area using yield acceleration values determined at 6-m (20 ft) 

intervals, and the empirical displacement model of Jibson (2007) that uses only PGA, without 

magnitude, to calculate displacement. 

Figure 4.3 shows the Jibson and Michael (2009) seismic landslide hazard map given a PGA 

with a 2% probability of exceedance in 50 years.  The landslide hazard categories are assigned 

from displacements using the displacement thresholds previously described in Table 2.1.  For 

this map, about 1.5% and 2.7% of the study area are classified as high hazard (5 cm < D < 15 

cm) and very high hazard (D > 15 cm), respectively.  Another 5.5% of the study area was 

defined as moderate hazard (1 cm < D < 5 cm).  Most areas with high or very high hazard are 

within colluvium units along the coastal bluffs and stream valleys in the lowland, colluvium 

units within the inland Chugach Mountains, and alluvium units along abandoned or modern 

stream-banks.  A similar hazard map with 10% probability of exceedance in 50 years was also 

produced through the deterministic approach, and the results are summarized in Table 4.2.  The 

smaller ground motions associated with this hazard level results in less of the study area assigned 

to the moderate, high, and very high hazard categories. 

 

Table 4.2 Percentage of study area in each seismic landslide hazard category  

from deterministic map (Jibson and Michael 2009) 

Hazard 

Category 

Sliding 

Displacement 

(cm) 

Percentage of Study Area 

2% in 50 years 10% in 50 years 

Low 0 - 1 90.31% 95.69% 

Moderate 1 - 5 5.53% 1.63% 

High 5 - 15 1.48% 0.75% 

Very High > 15 2.68% 1.93% 
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Figure 4.3  Deterministic seismic landslide hazard map at 2% probability of exceedance in 50 

years of Anchorage, Alaska (Jibson and Michael 2009) 
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4.2 Input Data for Seismic Landslide Hazard Map 

A seismic landslide hazard map requires information regarding topography, geology/shear 

strength, and the sliding block properties.  The data used to develop this information for the 

study area are described below. 

Figure 4.4 is a shaded relief map of the study area derived from a DEM.  The entire study 

area is about 301 km
2
 (8,370,622 grid cells), with a width of 24 km and a length of 25 km.  The 

highest elevation is 1,026 m (3,363 feet) and the largest slope angle is 77
o
.  The DEM was 

derived from Light Detection and Ranging (LIDAR) data produced by the Municipality of 

Anchorage in 2004.  The original LIDAR DEM was at 1.5 m (5 ft) resolution and the vegetation 

and buildings had been removed.  Jibson and Michael (2009) resampled the LIDAR data to a 6-

m (20 ft) resolution DEM and used this DEM to generate a slope map (Figure 4.5).   

The 6-m resolution DEM is used to develop the slope map (Figure 4.5) required to compute 

the yield acceleration information across the study area.  Most of the steep terrain is along the 

coastal bluffs, stream valleys, and in the southern and eastern mountain areas.  These locations of 

steep terrain are, of course, more susceptible to seismic landslides than other areas, as also seen 

in the deterministic seismic landslide hazard map (Figure 4.3).   

Jibson and Michael (2009) used digitized versions of the surficial geologic maps of Schmoll and 

Dobrovolny (1972) and Yehle et al. (1992) to assign shear strengths across the study area.  There 

are 17 geologic units across the study area: a map of these units is shown in Figure  and the shear 

strength properties from Jibson and Michael (2009) are listed in   
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Table 4.3. 

The famous Bootlegger Cove Clay (bc unit) is related to the deeper landslides from the 1964 

earthquake, because at depth it is weak with the potential for cyclic degradation of shear 

strength.  However, the Bootlegger Cove Clay was assigned relatively larger shear strength when 

exposed at the ground surface based on the relatively larger values of SPT blowcount indicated 

near the surface as compared to at depth.  Although the Bootlegger Cove Clay is not widely 

shown on the surficial geologic map, it is the main underlying soil layer of man-made fills and 

sand deposits.  

Silt deposits (s) are along the coastal lines.  The units af, al and an are alluvium on plains and 

along stream channels with similar shear strengths, and the glacial alluvium (ga) on irregular-

shaped hills has higher shear strength.  Glacial material units (gm, m and mg) all have high shear 

strength, and they form the underlying soil layer of most surficial geologic units in Anchorage.  

Sand deposits (sl and sh) cover the central west part of the study area.  The colluvium unit c-bl 

mostly covers coastal bluffs and valley walls in the lowland.  The other colluvium unit c-br is 

distributed in the eastern area on the slopes of the Chugach Mountains.   

Sands and gravels were characterized using effective (drained) shear strengths.  Clays and 

silts were characterized as total (undrained) shear strengths with zero friction angle.  The shear 

strengths in   
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Table 4.3 are considered best estimates and were compiled by Jibson and Michael (2009) 

using triaxial test, direct shear, vane shear and standard penetration test (SPT) results.   

 

 

 
Figure 4.4  Shaded relief map of Anchorage, Alaska 

 

 

Chugach 

Mountains 
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Figure 4.5  Slope map of Anchorage, Alaska 
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Figure 4.5  Surficial Geologic Map of Anchorage, Alaska 
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Table 4.3 Geologic Units and Shear Strengths (Jibson and Michael 2009) 

units 
Friction 

Angle (deg) 

Cohesion 

(kPa) 
Compositions 

af 36 24 
Deposits in alluvial fans, alluvial cones, and emerged 

deltas 

al 36 19 
Alluvium in abandoned stream channels and in terraces 

along modern streams 

an 36 24 Coarse-grained surficial deposits 

b 40 192 Bedrock 

bc 0 120 Bootlegger Cove Clay 

c-br 38 38 
Colluvium derived from bedrock on slopes of the 

Chugach Mountains 

c-bl 0 38 
Colluvium derived from glacial materials along coastal 

bluffs 

f 34 48 Manmade fill 

ga 32 38 
Glacial alluvium in irregular-shaped hills (including 

kames, eskers, and kame terraces) 

gm 38 48 
Glacial and (or) marine deposits, typically in elongate 

hills 

l 0 144 Lake and pond deposits 

ls 30 24 Landslide deposits, similar to an unit 

m 38 43 
Morainal deposits, generally in long ridges marking the 

margins of former glaciers 

mg 37 38 Marine, glacial, and (or) lacustrine deposits 

s 0 72 Silt 

sh 34 24 
Sand deposits in broad, low hills, and windblown sand 

deposits in cliffhead dunes near Point Campbell 

sl 34 19 
Sand deposits in a wide low-lying belt around Connors 

Lake 
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The variability in shear strengths can be estimated from the study of Phoon and Kulhawy 

(1999).  They summarized that the coefficient of variation (COV, equal to the standard deviation 

divided by the mean) is about 10 to 50% for undrained shear strength and 5 to 15% for effective 

friction angle.  For this study, the COV for the undrained shear strength is taken as 30%, and for 

the effective friction angle it is taken as 10%.  The COV for the effective cohesion is taken as 

20%, so that the total uncertainty in the drained shear strength is similar to the undrained shear 

strength.  Dr. Randall W. Jibson from the USGS (personal communication) also suggested 

similar levels of uncertainty for shear strength based practical experience and engineering 

judgment in Anchorage, Alaska. 

Assuming that shear strengths follow a normal distribution, the weights of the logic tree 

branches assigned to the high, mean and low shear strengths are determined based on a three-

point estimation of the normal distribution.  To approximate a standard normal distribution the 

three points are taken at 10%, 50%, and 90% (i.e.,  - 1.3, ,  + 1.3), the corresponding 

weights are 0.3, 0.4, and 0.3. The weights of the logic tree branches for shear strengths are 

summarized in Table 4.4. 

 

Table 4.4 Weights of logic tree branches for shear strengths 

Shear Strength No. of σ CDF Weight 

High 1.3 90% 0.3 

Mean 0 50% 0.4 

Low -1.3 10% 0.3 

 

The typical thickness and the underlying soil layers of the different surficial geologic units 

are summarized from the studies of Schmoll and Dobrovolny (1972) and Combellick (1999), as 

shown in Table 4.5.  The underlying units are listed in order of their predominance across the 

main geologic unit.  Such information will be used to estimate the sliding block properties (i.e., 

depth of failure surface) for each geologic unit. 

 

Table 4.5 Thickness and underlying soil layers of surficial geologic units 

Units Thickness (m) Underlying Soil Layers 

al 3 ~ 9 m, gm, mg, ga, bc 

an, af, ga 6 ~ 15 m, gm, mg, bc 

bc 
up to 18 in the sea bluffs 

up to 60 in the central part of lowland area 
m, gm, mg 

c-bl  up to 3  m, gm, mg, ga, bc 

c-br up to 3  b 

f 3 ~ 6 bc, l, an, af, ga, al 

l 6 ~ 20 m, gm, mg 

ls 6 ~ 9 bc 

m, gm, mg 
mostly > 30  

6 ~ 15 on mountains 
b 

sl, sh 6 ~ 18 m, gm, mg, bc, l 
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As discussed previously, the thickness of seismic landslides is typically shallow, on the order 

of several meters.  Jibson and Michael (2009) used t = 15 m (50 ft) for the seismic landslide 

hazard maps in Anchorage, Alaska.  Such a large thickness was used because t ≤ 15 m is the 

typical range of landslide depths observed in Anchorage and it was decided to use the larger 

value because it leads to smaller ky and thus is conservative (personal communication, Dr. 

Randall W. Jibson).  In this study, instead of using a large and conservative t value, the epistemic 

uncertainty in t values is considered.   

Shallow landslides usually occur within the surficial weak soils or on the contact surface 

between the surficial soil and underlying stiff soil/rock.  Table 4.5 lists the general thickness of 

surficial geologic units, and these values are used to estimate reasonable values of t values for 

the calculation of ky.  The values in Table 4.4 are based on limited information, such that the 

actual surficial soils may be thinner or thicker across the study area, but these values are the best 

estimates available and appropriate for regional analysis.  Generally, the surficial soil layers are 

thicker in flat terrain, and thinner in steep terrain.  Based on this information and the thicknesses 

in Table 4.5, the thickness of surficial soils in the landslide-prone units can range from between 3 

to 15 m.  Thicknesses between 3 to 9 m are considered the most representative for moderate 

steep to steep slopes because the soil layers should be thinned on steeper slopes.  Such estimates 

are consistent with the engineering observation that landslide depths in Anchorage can extend to 

a depth of 15 m (Jibson and Michael 2009).  The colluvium units (c-br and c-bl) are treated 

differently based on the thickness estimates shown in Table 4.5.  These units are assigned a 

thickness of 3 m with no uncertainty.  The resulting logic-tree for t values is summarized in 

Table 4.5. 

 

Table 4.5 t values and associated weights in logic-tree analysis 

t value 

(m) 

weights for 

c-br and c-bl 

weights for 

other units 

3 1 0.3 

6 0 0.4 

9 0 0.3 

 

The m value, which is the proportion of the block thickness that is saturated, depends on the 

groundwater conditions, subsurface hydraulic conductivity, and precipitation, as these 

parameters influence the groundwater table location.  Topography and artesian conditions can 

cause complicated spatial variations in the ground water table across a region.  The estimation of 

ground water table relies on survey records and average annual precipitation.  Jibson et al. (2000) 

used m = 0 to characterize the pore water pressure for slopes in the Oat Mountain quadrangle 

during the 1994 Northridge earthquake.  This value was selected because the coarse-grained 

surficial slope material was very dry due to no rainfall over the preceding several months, and 

therefore the groundwater table was below the defined failure depth (t = 2.4 m).   
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Figure 4.6 Conceptual models of the aquifer systems in Anchorage area (updated by Moran and 

Galloway, 2006) 

 

The groundwater in Anchorage mostly comes from the Chugach Mountains as illustrated in 

Figure .  In the eastern study area in the foothills of the mountains, the groundwater table should 

be high because this area is the so-called “Principal recharge area” which is close to the Chugach 

Mountains.  In the central and western study area, slopes along stream valleys and coastal bluffs 

should also have relatively high groundwater table.  Some groundwater data, collected from 

wells or borings in or around the downtown area, show that the groundwater table is tens of 

meters below the ground surface, but these data cannot represent the groundwater condition 

outside the urban area, in which groundwater table is significantly reduced by heavy pumping 

(Moran and Galloway 2006).  

The most commonly observed groundwater table in the Anchorage area is about 3 to 6 m 

(personal communication, Dr. Randall W. Jibson), and Jibson and Michael (2009) used a 3-m 

deep groundwater table to calculate their m value.  For this study, a uniform distribution is used 

to simply describe the uncertainty in the groundwater table between 3 and 6 m.  We assign 50% 

probability to the 3-m depth, and another 50% probability to the 6-m depth.  The logic tree 

branches for t and m values are shown in Figure .  The two m values associated with each t value 

represent 3-m depth and 6-m depth groundwater table, respectively.  For colluvium units (c-bl 

and c-br), a constant t = 3 m is used, and m is set equal to 0 with the shallowest ground water 

table at 3 m.  Thus, there are not logic tree branches for the colluvium units. 
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Figure 4.7 Logic tree branches for t and m values for all geologic units except for colluvium units 

(t = 3 m and m = 0 for colluvium) 

 

 

4.3 Ground Motion Characterization for Seismic Landslide Hazard Map 

The PGA seismic hazard for Anchorage is obtained from the 2008 National Seismic Hazard 

Mapping (NSHM) project (http://geohazards.usgs.gov/hazardtool/, Petersen et al. 2008).  USGS 

provides a NSHM application through which a PGA hazard curve can be calculated at any 

location within the United States.  Figure  shows the PGA hazard curve (solid line) from the 

2008 NSHM project for Anchorage (N61.22, W149.90). 

The seismic hazard deaggregation data required by Equations 3.4 through 3.7 can also be 

downloaded from the USGS website.  As seen in Figure , the geographic seismic hazard 

deaggregation presents the spatial distribution of all earthquake sources, providing a more 

intuitive representation of the seismic hazard deaggregation.  The yellow dot, representing the 

location for which seismic hazard deaggregation is created, is downtown Anchorage.  The red 

line north of Anchorage is the Castle Mountain Fault.  The areas enclosed by orange lines at the 

southeast are megathrust subduction zones, where the northwestward-moving Pacific plate is 

subducting beneath the North American plate.   

These maps show that the deaggregation contributions generally come from two major 

sources.  Much of the hazard comes from earthquake events close to Anchorage, which are 

shallow crustal events with magnitude generally less than 7.0.  Subduction zone events further 

away also have significant contributions.  

 

http://geohazards.usgs.gov/hazardtool/
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Figure 4.8 PGA Hazard Curve and deaggregation hazard levels for Anchorage (N61.22, 

W149.90) 

 

The PGA values from the deaggregation are 0.61 g and 0.37 g at 2% and 10% probabilities 

of exceedance in 50 years, respectively.  These PGA levels are smaller than the values used by 

Jibson and Michael (2009) (i.e., 0.690 g and 0.433g), because the seismic hazard deaggregation 

for Alaska was published by the USGS in 1998 while Wessen et al. (2007, 2008) updated the 

PGA seismic hazard in Alaska a decade later without updating the deaggregation.  Because the 

deaggregation information is required to compute the displacement hazard curves, the PGA 

hazard curve used in the analyses is derived from the PGA values reported in the deaggregation.  

This maintains consistency between the ground motion values and the deaggregation. 

Figure  shows the same deaggregation information in terms of percent contribution to the 

hazard for discrete magnitude and distance bins.  The percent contribution represents 

       |         , as used in Equations 3.4 through 3.7. Similar to Figure , this 

deaggregation shows that significant contributions from the hazard come from smaller/closer 

events and larger/farther events.  The binning process sums the contributions of sources within 

each bin, and assigns the average M and R to that bin.  For example, all sources with M = 6 ~ 6.5 

and R = 10 ~ 20 km are combined and their contributions are summed together for this bin.  This 

bin is then assigned a mean magnitude (Mk = 6.25) and a mean distance (Rl = 15 km).  The mean 

magnitude and distance are 6.74 and 36.7 km for 2% probability of exceedance in 50 years, and 

6.66 and 41.7 km for 10% probability of exceedance in 50 years.  However, these mean M, R 

combinations contribute almost nothing to the hazard.  The identification of mean M, R scenarios 

that contribute little hazard occurs when the deaggregation is bi-modal, which is the case in 

Figure .  Because the probabilistic approaches developed in this work incorporate the entire 

deaggregation, this issue will not be a problem for our analyses. 
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(a) 

 

 
(b) 

Figure 4.9 Geographic seismic hazard deaggregation in Alaska at (a) 10% in 50 years and (b) 2% 

in 50 years 
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(a) 

 

 
(b) 

Figure 4.10 Seismic hazard deaggregation bins in Anchorage at (a) 10% in 50 years and (b) 2% 

in 50 years 

 

The USGS published seismic hazard deaggregation data in 1996 for the continental 48 states.  

In the following decade, two updated versions were published in 2002 and 2008.  The 2008 

version provides deaggregation data for dozens of seismic hazard levels, but the previous 

versions only provided deaggregation data for 6 seismic hazard levels.  For the State of Alaska, 

seismic hazard deaggregation data was only published in 1998 and it represents an extension of 

the 1996 analysis for the continental 48 states.  The seismic hazard deaggregation for Alaska was 
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never updated in 2002 or 2008.  Therefore, as shown in Figure , the 1998 Alaska deaggregation 

only covers a range of hazard levels from 1% probability of exceedance in 50 years (λ = 0.0002 

1/yr and PGA = 0.73 g) to 50% probability of exceedance in 75 years (λ = 0.009 1/yr and PGA = 

0.21 g).  This range does not represent the entire seismic hazard curve.   

The deaggregation information is used to compute        |      for use in the calculation 

of the sliding displacement.  To deal with the limited amount of deaggregation information, the 

       |      for hazard values outside the range available is assumed to be the same as for the 

closest hazard level.  For example, the        |      for λ < 0.0002 1/yr is assigned the values 

from λ = 0.0002 1/yr and the        |      for λ > 0.009 1/yr is assigned the values from λ = 

0.009 1/yr.  Such assumption ignores the tendency that shallow crustal events close to Anchorage 

have more contributions at smaller λ, while subduction zone events contribute more to the 

seismic hazard at larger λ.  Nonetheless, the associated errors should be small. 

As discussed earlier, the vector approach requires the computation of       |     .  This 

calculation requires ground motion prediction equations (GMPEs) for PGA and PGV.  When 

selecting appropriate GMPEs, the most important issue to consider is the tectonic environment 

(e.g., active crustal earthquakes vs. subduction earthquakes).  The Anchorage study area is 

complicated by the fact that active crustal events occur close to Anchorage, yet there is also a 

large subduction zone located as close as 60 to 70 km southeast of the city (Figure ).  Therefore, 

GMPEs for both active crustal and subduction events must be used and these two types of 

earthquakes must be distinguished from each other in the seismic hazard deaggregation data.  

The distinction of these events and the GMPEs used to model them are described below.   

The shallow crustal events around Anchorage typically have magnitudes smaller than 7.0 

(Wesson et al. 1999 and 2007) and are mostly within 50 km of the city.  Thus, all events closer 

than 50 km are considered shallow crustal events and all events at distances larger than 50 km 

are considered subduction events.  Subduction events are generally distinguished between 

intraslab and interface events using the focal depth (Youngs et al. 1997, Kanno et al. 2006).  

Youngs et al. (1997) summarized that: (1) interface earthquakes are typically shallow (focal 

depth < 50 km) and occur at the interface between the subducting oceanic plate and overriding 

continental plate (Error! Reference source not found.), and (2) intraslab earthquakes are 

relatively deeper (focal depth > 50 km) and occur within the subducting oceanic plate.  Similarly, 

Wesson et al. (1999 and 2007) classified subduction zone events with focal depth greater than 50 

km as intraslab events, which typically have magnitude smaller than 7.0.  They also classified 

earthquakes with M > 7.0 as interface events.  There is no focal depth information provided with 

the deaggregation data, therefore magnitude is used distinguish between intraslab and interface 

events.  Events with magnitudes less than 7.0 and distances greater than 50 km are considered 

intraslab events and events with magnitudes greater than 7.0 and distances greater than 50 km are 

considered interface events. 

The GMPEs for PGA were selected based on the GMPEs used in the hazard calculations.  

The USGS open-file report by Wesson et al. (1999) listed the GMPEs used in the 1998 hazard 

and deaggregation analysis and we selected one shallow crustal GMPE (Boore et al. 1997) and 

one subduction GMPE (Youngs et al. 1997) from that list for use in this study (Table ).  The 

GMPEs for PGV was selected based on the currently availability relationships.  The Boore and 

Atkinson (2008) GMPE for PGV was selected for shallow crustal events because it is the most 

simply of the Next Generation Attenuation (NGA) relationships.  The availability of a PGV 

GMPEs for subduction zone events is very limited, because PGV was not considered an 

important ground motion parameter until relatively recently.  The most recent GMPE for PGV 
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for subduction zone events was developed by Kanno et al. (2006) using ground motion data in 

Japan and this relationship is used in this study (Table ). 

 

Table 4.6 GMPEs for PGA and PGV in Anchorage 

Seismic event  

categories 

PGA  

GMPEs 

PGV  

GMPEs 

Distance  

metrics 

R<50 km  

Shallow Crustal Events 
BJF97 BA08 RJB 

R>50 km, M<7 

Subduction Intraslab Events 
Youngs97 Kanno06 Rrup 

R>50 km, M>7  

Subduction Interface Events 
Youngs97 Kanno06 Rrup 

 

The correlation coefficient between PGA and PGV also is required in the vector hazard 

calculation.  The correlation coefficient between PGA and PGV has been estimated as 0.6 

(Rathje and Saygili 2008, Baker 2007).  Thus, the joint probability              can be 

calculated for the vector approach, as shown in Figure .  Generally, pairs of larger PGA and PGV 

have smaller annual probabilities of occurrence, while pairs of smaller PGA and PGV have 

larger probabilities.  In addition, the probability of a small PGA occurring with a large PGV is 

very small, and vice versa. 

 

 

Figure 4.11 Joint annual probabilities of occurrence for (PGA, PGV) pairs 
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4.4 Logic Tree 

To incorporate the epistemic uncertainties into the seismic landslide hazard mapping, a logic-

tree analysis is applied to the various sources of uncertainties.  The logic tree is separated into 

three parts, representing epistemic uncertainties in shear strength, slope properties, and 

displacement prediction models.  The logic tree is shown in Figure  and its components are 

explained below.  

Part 1 of the logic tree shows possible combinations of shear strengths and associated weights.  

Best estimate properties (cbest and φbest) as well as high (c
+
 and φ

+
) and low (c

-
 and φ

-
) values 

were assigned to each geologic unit based on the discussion in Section 4.2.  The best estimates of 

shear strength for all geologic units are shown in   
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Table 4.3.  The undrained shear strength has a coefficient of variation (COV) equal to 30%, 

and the effective friction angle has a COV equal to 10%.  The COV for effective cohesion is 

assumed to be 20% so that the total uncertainty in drained shear strength is similar to undrained 

shear strength.  Therefore, for those geologic units with  = 0, the cohesion assigned as an 

undrained shear strength varies +/-39% (i.e., +/-1.3COV) above/below (c
+
/c

-
) the best estimate 

value.  For those units with drained shear strengths, the effective friction angle is varied +/-13% 

based on its COV, and the effective cohesion has is varied +/-26% based on its COV.  The 

weights are assigned first to friction angle as: (1) 0.4 to the best estimate and (2) 0.3 to the values 

above/below the best estimates as shown in Table 4.4.  When assigning weights to the associated 

cohesion values, it is considered that the combinations of (c
+
, φ

+
) or (c

-
, φ

-
) are less likely than 

(c
+
, φ

-
) or (c

-
, φ

+
).  Therefore, the weights for cohesion values associated with (c

+
, φ

+
) or (c

-
, φ

-
) 

are taken as 0.25 and the weights for cohesion values associated with (c
+
, φ

-
) or (c

-
, φ

+
) are taken 

as 0.35.  The weight for the cohesion values associated with (cbest, φbest) is equal to 0.4. 

The epistemic uncertainties for the t and m values are presented in Part 2 of the logic tree.  

The best estimate t value is 6 m for all geologic units except the collvium units of c-br and c-bl.  

Additional values of 3 m and 9 m are selected to represent the potential range of landslide depths 

across Anchorage, and the associated weights are 0.3, 0.4 and 0.3 as noted in Section 4.2.  

Because the colluvium units (c-br and c-bl units) exist on the surface of slopes as a thin layer, 

their depths were assumed as 3 m, and no variability was considered in the logic-tree analysis.  

Two groundwater depths (i.e. 3 m and 6 m) are selected to calculate m values for each of the t 

values.  For example, if the t value is 6 m, the two corresponding m values are 0 and 0.5 for the 

different groundwater depths.  The two m values for each t value are equally weighted. 

The first two parts of the logic tree are related to the calculation of the yield acceleration 

using the infinite slope model.  The different branches result in 56 different values of ky and 

corresponding weights associated with each grid cell.  These 56 values of ky will be used to 

define the mean displacement hazard curve. 
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(a)  

(b)  

Figure 4.12 Logic tree with weights for (a) geologic units (except colluvium units), and (b) 

colluvium units (c-bl and c-br)  



 49 

Finally, the epistemic uncertainty associated with the different empirical displacement 

models is incorporated in Part 3 of the logic tree.  Three scalar models that use PGA and 

earthquake magnitude are selected for use (Rathje and Saygili 2009, Jibson 2007, Bray and 

Travasarou 2007), as well as one vector model that uses PGA and PGV (Saygili and Rathje 

2008).  These models are labeled RS09, J07, BT07, and SR08.  Figure  shows the predicted 

sliding displacements as a function of ky/PGA for the four empirical models for M = 6.74, PGA 

= 0.61 g, and PGV = 34 cm/s.  The PGA and M values come directly from the hazard 

information for Anchorage, while the PGV represents the conditional value given PGA = 0.61 g 

and correlation coefficient             .  The four empirical models in Figure  predict 

displacements that vary by a factor of about 4 for this scenario.  For other scenarios there may be 

more or less difference between these models.  Such difference is the epistemic uncertainty to be 

captured.  To assign the weights, the scalar models are equally weighted at 0.22 and the vector 

model is weighted at 0.34.  The vector model is more heavily weighted because the use of a 

second ground motion parameter provides a better estimate of sliding displacement.   

 

 
Figure 4.13 Comparison of Predictive Models for a scenario of M = 6.74, PGA = 0.61 g and 

PGV = 34 cm/s 
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4.5 Regression Models and Screening Analysis 

The Mean λD Threshold approach to applying the logic tree analysis on a regional scale 

requires an interpolation relationship between ky and λD(x), which can be expressed as a 4
th

 order 

polynomial regression model in the form of: 

 

  (  ( ))    (   (  ))
    (   (  ))

    (   (  ))
       (  )          (4.7) 

 

The regression relationship is specific to a specified ground motion hazard, a specified level of 

displacement x, and a specified empirical displacement model.  The coefficients used in 

Equation 4.1 are provided in Table  for the Anchorage ground motion hazard, three displacement 

thresholds, and the four empirical displacement models considered.  The three displacement 

thresholds (1 cm, 5 cm and 15 cm) represent moderate, high and very high seismic landslide 

hazard categories (Table Error! No text of specified style in document..1). 

With these regression models and Equation 4.1, the mean annual rate of exceedance for a 

specific displacement threshold (  
̅̅ ̅( ), where x is the displacement threshold) at each grid cell 

can be computed from the 216 branches in the logic tree and the associated weights.  After 

comparing the computed   
̅̅ ̅( ) with the hazard level under consideration (λ*), the seismic 

landslide hazard category of each grid cell can be determined. 

 

Table 4.7 Coefficients of regression models  

Displacement 

Threshold 

Empirical 

Displacement Models 
a1 a2 a3 a4 a5 

1 cm 
Scalar 

RS09 0.0067 0.0673 -0.2122 -3.5961 -10.7348 

J07 0.0089 0.1051 -0.0672 -3.7699 -11.8035 

BT07 0.0116 0.1377 0.0984 -3.2727 -11.0939 

Vector SR08 -0.0024 -0.0088 -0.3859 -3.7557 -11.4605 

5 cm 
Scalar 

RS09 0.0044 0.0529 -0.1717 -3.4082 -11.3582 

J07 -0.0013 0.0061 -0.3379 -4.1157 -13.0937 

BT07 -0.0036 -0.0161 -0.3892 -3.9692 -12.2431 

Vector SR08 -0.0139 -0.1396 -0.8389 -4.3842 -12.7071 

15 cm 
Scalar 

RS09 -0.0029 -0.0212 -0.3917 -3.6514 -12.1558 

J07 -0.0224 -0.2211 -1.1387 -5.3158 -14.6797 

BT07 -0.0512 -0.5404 -2.35 -7.037 -15.0673 

Vector SR08 -0.0397 -0.4348 -2.0095 -6.3164 -14.6476 

 

To further reduce the computation time, a screening analysis is performed first using the 

worse-case scenario of the logic tree.  The lowest shear strengths (c
-
 and φ

-
) and the largest m 

and t values (0.67 and 9 m for drained units, 0 and 3 m for undrained units) are used to compute 

the minimum factor of safety for each grid cell.  The RS09 scalar model is selected for the 

screening analysis because it generally predicts the largest sliding displacement relative to the 

other three models, as seen in Figure .  All grid cells in which λD(5cm) is greater than λ* = 

0.0004 1/yr (i.e., 2% probability of exceedance in 50 years) are colored red in Figure .  All non-
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red grid cells are excluded from the full logic-tree analysis for a hazard level greater than 2% in 

50 years, because these grid cells do not have landslide potential for the 5-cm threshold even 

under the worst-case condition.  Similar screening analysis is carried out for the 1-cm and 15-cm 

thresholds.   

For the 5-cm threshold, only 9.0% of grid cells in the study area are colored red, which 

means that about 91% of the study area is removed from the full logic-tree analysis.  For the 1-

cm and 15-cm thresholds, about 73% and 95% of study area is removed from analysis by 

applying the screening analysis first.  Therefore, the full logic-tree analysis for a specified 

displacement threshold performed using Python codes in ArcGIS® can be completed within an 

hour for the Anchorage study area. 

 

 

Figure 4.14 Cells with λD(5cm) > 0.0004 1/yr for worst-case condition (5-cm threshold, 2% in 50 

years) 
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4.6 Results 

Using the procedures described above, a probabilistic seismic landslide hazard map was 

created by running Python codes in ArcGIS®.  Error! Reference source not found. plots such 

a hazard map of the Anchorage study area for a 2% probability of exceedance in 50 years (λ* = 

0.0004 1/yr) and the three seismic landslide categories (moderate, high, and very high).  The area 

with moderate hazard (1 cm < D < 5 cm, colored orange) and high hazard (5 cm < D < 15 cm, 

colored red) are about 0.85% and 0.33% of the entire study area respectively, and the area with 

very high hazard (D > 15 cm, colored blue) covers 0.96% of the entire study area.  These results 

cannot be compared directly with the current deterministic map developed by Jibson and 

Michael (2009) because the deterministic map assumed a worst-case scenario (t = 15 m and m = 

0.8). 

As seen on the map, most areas with high or very high hazard are along coastal bluffs, stream 

valleys or in mountainous areas.  More detailed landslide predictions are shown on Error! 

Reference source not found. for downtown Anchorage, located between Ship Creek to the 

north and Chester Creek on the south.  Colluvium and landslide deposits on slopes along coastal 

bluffs and stream valleys are most susceptible to seismic landslides around the downtown area.  

Error! Reference source not found. plots the seismic landslide hazard for a 10% probability of 

exceedance in 50 years (λ* = 0.0021 1/yr).  The area with moderate, high and very high hazard 

are about 0.18%, 0.14% and 0.60% of the entire study area, respectively.  The seismic landslide 

hazard at this smaller hazard level is significantly reduced across the study area, except for the c-

bl unit along coastal bluffs and stream valleys. 

To investigate the influence of each part of the logic tree on the seismic landslide hazard, a 

series of displacement maps were created by implementing different parts of the logic tree (i.e., 

epistemic uncertainty).  Also analyzed is the deterministic approach in which the 2% in 50 year 

PGA was used to compute sliding displacements.  This deterministic approach is essentially the 

approach used by Jibson and Michael (2009), although with different assumed slope properties.   
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Error! Reference source not found.  Probabilistic seismic landslide hazard map of Anchorage 

study area at 2% probability of exceedance in 50 years 
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Error! Reference source not found.  Probabilistic seismic landslide hazard map of downtown 

Anchorage at 2% probability of exceedance in 50 years 
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Error! Reference source not found.  Probabilistic seismic landslide hazard map of Anchorage 

study area at 10% probability of exceedance in 50 years 
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Error! Reference source not found.  Probabilistic seismic landslide hazard map of downtown 

Anchorage at 10% probability of exceedance in 50 years 
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The percentage of the study area exceeding different displacement thresholds when 

incorporating different parts of the logic tree is summarized in Table .  Ten different cases are 

shown.  Cases 1 to 5 only use one empirical displacement model (RS09 scalar model), while all 

four models are applied to Cases 6 to 10.  The deterministic cases (Cases 1 and 6) use the best 

estimates of all slope properties for the ky computation.  The probabilistic cases (Cases 2-5, 7-10) 

all incorporate aleatory variability but different components of epistemic uncertainty. 

The results in Table  are summarized in Figure  for the RS09 model.  The area of high/very 

high hazard (i.e., D > 5 cm) increases by 33% when aleatory variability is included (i.e., 0.72% 

for Case 2 vs. 0.54% for Case 1), and increases by more than a factor of 3 when all of the sources 

of epistemic uncertainty in ky are included (i.e., 1.69% for Case 5 vs. 0.54% for Case 1).  The 

influence of the epistemic uncertainty in the sliding block properties (Case 4) is generally greater 

than the influence of the epistemic uncertainty in the shear strengths (Case 3) because the 

uncertainties in m and t are larger than the uncertainties in c and ϕ (Figure ).  However, the 

difference between these two sources of uncertainty is smaller at larger displacement thresholds.  

The reason is that the c-bl unit is not assigned uncertainties in t and m values (Figure ) and this 

geologic unit contributes significantly to the landslide hazard in the very high hazard category. 

The combined influence of the epistemic uncertainties in the shear strength and sliding block 

properties (Case 5) is slightly greater than the simple summation of individual influences (Cases 

3 and 4), indicating that the combined effect of uncertainties may amplify the increase in the 

seismic landslide hazard.  The same trend is observed for 1 cm and 15 cm thresholds.   

The analyses using all four empirical displacement models (Figure 4.19b) always predict less 

area within each seismic landslide hazard level than the corresponding analyses using the RS09 

model (Figure 4.19a).  This difference is a result of the RS09 model generally predicting the 

largest sliding displacements among all four models (Figure ). 

 

Table 4.8 Implementing different parts of the logic tree (2% in 50 years) 

Case 
Aleatory 

Variability 

Epistemic 

Uncertainty 

% of Study Area 

D > 1 cm D > 5 cm D > 15 cm 

R
S

0
9

 s
ca

la
r 

m
o
d
el

 

1 No No 1.22% 0.54% 0.30% 

2 Yes No 1.33% 0.72% 0.43% 

3 Yes Shear Strength 1.90% 1.09% 0.73% 

4 Yes Sliding Block 2.13% 1.16% 0.74% 

5 Yes 
Shear Strength 

and Sliding Block 
2.96% 1.69% 1.13% 

A
ll

 f
o

u
r 

m
o

d
el

s 6 No No 0.82% 0.37% 0.21% 

7 Yes No 0.91% 0.49% 0.32% 

8 Yes Shear Strength 1.35% 0.81% 0.59% 

9 Yes Sliding Block 1.52% 0.84% 0.55% 

10 Yes 
Shear Strength 

and Sliding Block 
2.14% 1.29% 0.96% 
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    (a) 

 

 

    (b) 

Figure 4.19 The influence of different parts of the logic tree on the computed seismic landslide 

hazard at 2% probability of exceedance in 50 years using (a) RS09 scalar model and (b) all four 

empirical displacement models 
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To investigate the hazard distribution among geologic units, the number of grid cells with 

high/very high hazard (D > 5 cm) in each geologic unit is summarized and shown in Table .  

Landslide Cells are grid cells with predicted displacements greater than the 5-cm threshold, the 

% of Study Area represents the percentage of the study area covered by each geologic unit, the % 

of Geo Unit is the percentage of grid cells with D > 5 cm for each geologic unit, and the % of 

Landslide Cells is the contribution of each geologic unit to all landslide cells in the study area.  

Also shown in Table 4.9 are the corresponding values from the Jibson and Michael (2009) map. 

With 35% of its area predicted as high/very high hazard, the colluvium unit c-bl is most 

susceptible to landslides, because this unit has low undrained shear strength and mostly covers 

steep coastal bluffs and valley walls (Figure  4.5).  Landslide deposits (ls), mostly distributed on 

coastal bluffs, valley walls and the Chugach Mountains, also has a large portion of its area (about 

15%) classified as high/very high hazard.  Glacial alluvium (ga) and sand deposits (sh) in low 

hills, both having more than 2.5% of their area with D > 5 cm, also contribute to the landslide 

hazard.  Although the alluvium units, af and al, contribute more than 20% of all landslide cells 

(each about 10%), they are relatively stable because only 1.1% and 0.6% of these units are 

classified as high/very high hazard.  The only reason these units contribute so much to the 

overall landslide hazard is because they cover a large percentage of the study area.  The other 

geologic units, which either have high shear strength underlain by stiff soil/rock (e.g. m, gm and 

mg) or exist mostly on flat terrain (e.g. an, f and l), do not represent a significant seismic 

landslide risk.  

Table 4.9 also summarizes the results from the Jibson and Michael (2009) deterministic map 

that uses the 2% in 50 year ground motions.  The colluvium unit in the mountainous area (c-br) 

was predicted as one of the most landslide-susceptible unit in the Jibson and Michael (2009) 

deterministic map, but it has almost no seismic landslide hazard according to the probabilistic 

analysis.  The use of conservative sliding block properties in the deterministic map leads to an 

over-prediction in the landslide hazard for this unit.  In fact, the conservative sliding block 

properties used by Jobson and Michael (2009) resulted in a much larger area of seismic landslide 

hazard than predicted in this study.  This result demonstrates that is may be more useful to use a 

logic-tree approach to assign a range of possible model parameters rather than using conservative 

parameters. 
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Table 4.9 Distribution of predicted landslides across geologic units (5 cm threshold, 2% 

probability of exceedance in 50 years) 

 This Study Jibson and Michael (2009) 

Geo Units 
Landslide  

Cells 

% of  

Study Area 

% of 

Geo Unit 

% of 

Landslide Cells 

% of 

Geo Unit 

% of 

Landslide Cells 

af 10486 11.4% 1.1% 9.7% 2.2% 6.1% 

al 11327 22.0% 0.6% 10.5% 1.3% 7.0% 

an 2536 9.8% 0.3% 2.3% 0.6% 1.4% 

b 18 2.2% 0.0% 0.0% 0.4% 0.2% 

bc 3071 2.8% 1.3% 2.8% 1.9% 1.2% 

c-br 65 6.1% <0.1% 0.1% 18.9% 27.4% 

c-bl 36796 1.3% 34.7% 34.0% 93.0% 28.2% 

f 362 3.0% 0.1% 0.3% 0.7% 0.5% 

ga 11535 5.3% 2.6% 10.7% 7.7% 9.6% 

gm 491 3.9% 0.2% 0.5% 0.9% 0.8% 

l 471 1.8% 0.3% 0.4% 0.7% 0.3% 

ls 13061 1.0% 15.0% 12.1% 22.4% 5.6% 

m 3262 6.0% 0.7% 3.0% 3.0% 4.2% 

mg 1666 9.5% 0.2% 1.5% 0.8% 1.8% 

s 2966 2.0% 1.8% 2.7% 2.8% 1.4% 

sh 7404 2.1% 4.2% 6.8% 5.8% 3.0% 

sl 2626 10.0% 0.3% 2.4% 0.5% 1.3% 

Total 108143 100.0% 
 

100.0%   
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5.0 CONCLUSIONS 

Current practice uses a deterministic approach to predict the seismic sliding displacement of 

slopes and to develop seismic landslide hazard maps.  The deterministic approach ignores the 

aleatory variability in the predictions of ground shaking and displacements, as well as the 

epistemic uncertainties in the slope properties.  A probabilistic framework was described that 

computes a displacement hazard curve using: (1) a ground motion hazard curve from a 

probabilistic seismic hazard analysis, (2) a model for predicting the sliding displacement of the 

sliding mass, and (3) a logic tree analysis that incorporates the uncertainties in the various input 

parameters.  This probabilistic framework was applied to regional analysis for seismic landslide 

mapping around the Anchorage, Alaska area.  For this application, the ground motion hazard was 

derived from the seismic hazard data from the USGS and the logic-tree was derived from 

available field/laboratory data and engineering judgment. 

The resulting seismic landslide hazard maps for Anchorage indicated that 1.29% of the study 

area has high or very high seismic landslide hazard (i.e., displacements greater than 5 cm) at 2% 

probability of exceedance in 50 years.  At 10% probability of exceedance in 50 years the 

high/very high seismic landslide hazard areas represents 0.74% of the study area.  Most of the 

areas with high or very high hazard are along coastal bluffs, stream valleys or in mountainous 

areas.  The probabilistic map that includes aleatory variability and epistemic uncertainties 

identified the area with high/very high hazard that is 3 times larger than identified through the 

deterministic approach.  The influence of the epistemic uncertainty in the sliding block properties 

on the computed displacements is generally greater than the influence of the epistemic 

uncertainty in the shear strengths because the uncertainties in sliding block properties are larger 

than the uncertainties in shear strength.  The combined influence of the epistemic uncertainties in 

the shear strength and sliding block properties is slightly greater than the simple summation of 

individual influences, indicating that the combined effect of uncertainties may amplify the 

increase in the seismic landslide hazard.  Finally, comparison with a previous deterministic 

seismic landslide map developed by the USGS indicates that the seismic landslide hazard from 

the probabilistic analyses is smaller because the deterministic map used very conservative 

assumptions with respect to the sliding block properties.  This comparison indicates that the 

logic-tree approach provides an alternative way to rigorously account for uncertainties in slope 

properties, and it can avoid using overly conservative input parameters to capture these 

uncertainties in a deterministic approach. 
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