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Abstract

The importance of inelastic soil behavior on ground motion during strong earthquakes has been increasingly

recognized in recent years. These effects are now customarily incorporated into the analysis of ground motion

through one-dimensional nonlinear soil models subjected to vertically incident seismic waves. Despite the

progress to date, three-dimensional (3D) effects of soil nonlinearity on the spatial and temporal distribution of

ground shaking are still far from being well understood. The main objective of this project was to incorporate

nonlinear soil behavior into Hercules, our finite element tool for modeling ground motion in large basins, and

to demonstrate the new implementation, for studying the earthquake ground motion in the San Fernando

Valley, an area that exhibited significant nonlinear soil behavior during the 1994 Northridge earthquake.

In an earlier USGS-supported project, we incorporated two material models (von Mises and Drucker-Prager)

into Hercules, and used the von Mises model to simulate earthquake ground motion in a small basin. The

results served to highlight the significance of the inelastic soil behavior. However, we also discovered that

our implementation increased by a factor of ten the computational cost of each simulation with respect to

that of the corresponding linear simulation. In this project, we have reformulated completely the theory and

our computer implementation, with the result that Hercules is now able to perform simulations with both

the von Mises and the Drucker-Prager models at essentially the same cost as a linear simulation. We have

used the new Hercules implementation to perform a set of full 3D simulations of the 1994 Mw 6.7 Northridge

earthquake, for the three material models considered. The linear velocity model used in the simulations was

constructed from a discrete (etree) version of the SCECs Community Velocity Model (CVM-S, version 4.0),

tailor-built to satisfy a minimum shear wave velocity of 200 m/s and a maximum simulation frequency of

2 Hz. Our results are qualitatively consistent with observations from past earthquakes. They indicate that

nonlinear soil behavior affects significantly the spatial variability of the ground motion, causes permanent

displacements, and reduces peak ground velocities and accelerations by a factor of up to one half. They also

indicate that nonlinearity is influenced by 3D effects that cannot be represented by alternative hybrid or

pseudo-nonlinear approaches commonly used in seismic hazard analyses.

As part of this project, we also explored the possibility of including the effects of pore pressure for small

deformations in order to eventually estimate incipient liquefaction. To this end, we introduced into Hercules

a mixed elastodynamic formulation that uses displacements and pressure as the primary field variables, and

verified, through examples, that this formulation is capable of representing the full range of behavior, from

a solid to an acoustic medium. This is discussed in detail in the second part of this report. With these

capabilities in place, we are ready to adopt Biots poroelastic theory into Hercules and combine it with

nonlinear elastoplastic models, in order to include the effects of pore pressure in future simulations.



Part I
Implementation of inelastic material models in Hercules with an ap-
plication to the 1994 Northridge earthquake

1. Introduction

A significant amount of theoretical as well as experimental data have largely demonstrated the important

role that local site conditions play over the seismic ground motion registered at a specific location. Initially

related mainly to conditions associated directly to soil characteristics e.g., resonance of the shallow layers,

soil liquefaction, attenuation of high frequencies, etc., soil nonlinear effects have gained increased interest

on their own due to the evident changes in ground motions and damage patterns recorded after moderate

to strong ground shaking in seismic-prone areas and the inability for linking those outcomes to conventional

local-site effects. In addition, when compared with classical concepts of linear elasticity, nonlinear material

theory appears to be the natural step forward towards a much better numerical representation of the complex

nature of soil deposits.

Early research in nonlinear earthquake response dates back to the lates 60’s where most of the work was

devoted to horizontally layered systems under vertically incident waves by one-dimensional (1D) equivalent

linear methods (Idriss and Seed, 1968). 1D Equivalent linear methods compute the nonlinear response by

means of linear iterative methods. Based upon the idea that a horizontally layered half-space can be treated

as a conventional lumped-mass system, the goal is to determine the values of the shear modulus µ and the

equivalent damping ratio ξ consistent with the level of strain induced in each layer (Kramer, 1996). Initial

values for the iteration procedure and convergence criteria are usually determined in accordance with the

so called stress-strain backbone curves or modulus reduction curves. Despite the apparent accuracy and

satisfactory results, the method is incapable of representing the actual change in soil stiffness that occurs

during the ground motion (Kramer, 1996) as well as the permanent deformations present at the end of

the earthquake event. Nevertheless, the simplicity of the approach and the fact that the parameters in

the stress-strain curves can be determined from experimental results have made the method to be widely

accepted.

The first attempts to improve the nonlinear characterization of soils date back to the mid-1970s. Joyner

(1975) and Joyner and Chen (1975), using the rheological material model proposed by Iwan (1967), did a

comprehensive analysis and studied the nonlinear seismic response of two-dimensional 2D soil configurations

and confirmed the importance of nonlinear behavior on site response. Other 2D studies have also helped

corroborate observations and quantify the potential effects of nonlinear soil effects (Marsh et al., 1995; Elga-

mal, 1991; Zhang et al., 2008). Three-dimensional simulations on the other hand, have not been performed

so actively as their 2D counterparts. To our knowledge, due to the computational complexity involved in the

incorporation of full 3D nonlinear soil behavior in earthquake simulations, the number of nonlinear studies

at a regional scale is still limited (Xu et al., 2003; Taborda, 2010; Taborda and Bielak, 2011; Restrepo et al.,

2011; Fabrice et al., 2010).
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For general situations, the ideas behind equivalent linear strategies are no longer useful and cannot be

easily extrapolated to multidimensional conditions. For instance, it is not possible to find an analogous

representation for the backbone curves for general three-dimensional (3D) situations. As a result, researchers

have resorted to classical theory of plasticity to meet such challenges. Originally formulated for metals,

plasticity theory concepts have been successfully used in geotechnical problems in such a way that, currently,

plasticity theory of geomaterials as a new field, has reached a very wide scope and significant scientific

credibility as a consistent framework for the prediction of soil behavior.

Plasticity in geomaterials adopts the basic elements of flow plasticity theory: existence of an initial yield

surface or yielding criterion , evolution of subsequent loading surfaces hardening rule, and the existence of

an appropriate flow rule (Chen and Mizuno, 1990). The definition of the onset of plasticity is governed by

the yielding criterion. Certainly, the best known yielding model for soils is the Coulomb’s failure criterion,

an irregular hexagonal pyramid in the principal stress space. Even when the Coulomb criterion is generally

simple, and depends on physical parameters readily obtained from conventional laboratory results, it gives

rise to numerical difficulties regarding the plastic flow at the corners of the yielding surface. Drucker and

Prager (Drucker and Prager, 1952) aimed at representing a more appealing model computational-wise, and

presented a smooth function that approximates the Coulomb model. In the Drucker-Prager model, the

yielding surface is expressed in terms of the first invariant of the stress tensor I1, the second invariant

of the deviatoric stress tensor J2 and two material constants α and k. The advantages and limitations

of the Drucker-Prager model can be seen in (Chen and Mizuno, 1990). Flow rules are usually expressed

in accordance with associative or non-associative concepts. In associative rules, the plastic flow potential

function shares the same definition as the yield surface function, in non-associative rules on the other hand,

the flow rule and yielding functions differ. Although the use of associative flow rules may appear as a

simple convenient mathematical device, there are much more profound mathematical reasons for its usage.

For instance, it ensures well-posed boundary value problems, uniqueness of the solution and preserves the

validity of the so called stability postulates (Chen and Mizuno, 1990; Yu, 2006).

In this work, we present initial results from a set of full three-dimensional (3D) simulations that incorporate

nonlinear soil behaviour in the soft-soil deposits (Vs≤ 500 m/s) in the greater Los Angeles basin using the

main shock of 1994 Northridge earthquake for frequencies up to 2 Hz in a domain size of 85 km × 85 km

× 42.5 km. Simulations are performed using Hercules, the finite-element octree-based parallel earthquake

simulator developed by the Quake Group at Carnegie Mellon University. We incorporated in Hercules a

rate-independent approach to simulate the nonlinear behaviour of soil materials using the Drucker-Prager

failure model with associated flow rule plus isotropic linear hardening rule. A rate-independent approach

combined with a backward-implicit integration scheme for the material update algorithm at the local level,

appears to be highly efficient computational-wise when compared with other types of material nonlinearity.

We recognize the idealized nature of the Drucker-Prager constitutive model and all the possible caveats

inherent to it for representing realistic geotechnical environments. We also recognize that even more modern

and elaborated constitutive models are no guarantee for predicting the real behaviour of soils under dynamic

loading or to fully recover all the physical characteristics seen from laboratory tests. This study can be seen

as a natural step towards a better qualitative understanding of the effects which soil deposits that exhibit a

mechanical behaviour different from the highly idealized linear elastic characterization have over the ground

motion registered in highly populated regions.
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2. Methodology

The equations of motion for a continuous body are governed by the laws of balance of linear momentum and

angular momentum. In component form, the equations of motion for small displacements, take the form given

by (1) where σij , ρ and bi are the Cauchy’s stress tensor, material density and the ith component of the body

forces vector respectively. Traditionally, a discrete version of (1) can be achieved by means of conventional

weak formulation strategies after considering that the computational domain Ω can be discretized into non-

overlapping regions Ωe in which, over each sub-domain, the displacement field is represented by the matrix

of shape functions Ne(x), and the vector of physical displacements ue(t) at the nodes of the element (2).

σij,j + bi = ρüi (1)

u(x, t) = Ne(x)ue(t) (2)

Such approximation leads to a system of ordinary differential equations (ODEs) (3), where M and K denote

mass and stiffness matrices of the system assembled from the elemental matrices ke, me (4), f is the vector

of equivalent body forces representing e.g., seismic sources, and u is the nodal vector of total displacements.

(Material intrinsic damping and absorbing boundaries can easily be taken into consideration, although they

were not included in these expressions for convenience).

Mü + Ku = f (3)

K =
∑
e

ke M =
∑
e

me (4)

Equation (1) does not depend on the type of constitutive model chosen; therefore, it is still valid under

nonlinear material behavior. Its discrete representation (3), however, must be re-arranged because in general,

it is not possible to guarantee any longer constant elemental stiffness matrices ke during the whole dynamic

process. Keeping in mind that under classical plastic theory the yield condition and the flow rule are

formulated in stress space i.e., stress space formulation (Simo and Hughes, 1998), one can easily show that

after keeping the stresses as the main variables, equation (3) takes the form given in (5). Here, B is the

matrix differential operator and σ represents the current stress state inside the sub-region Ωe.

Mü +
∑

e

∫
Ωe

Bᵀσ dΩe = f (5)

The nonlinear nature of (5) forces the problem to be solved incrementally. The main goal is to find the set of

updated global displacements and updated strain and stress variables such that: a) equation (5) is satisfied

at each time-step 4t, i.e., the global equilibrium equation must be satisfied all the time, and b) the specified

equations for the constitutive model hold at specified discrete points in Ω, i.e, material update.

Global time-stepping algorithms and material update schemes are usually divided into two well-known in-

tegrative schemes i.e., explicit and implicit integration methods. At a global scale, we followed an explicit

time-marching scheme in which only previous known values of the displacements, velocities and external

loads are required for the computation of similar quantities at a subsequent time step. In addition, our

explicit integration scheme avoids the need for solving the coupled system of equations after considering M

lumped. Writing down explicitly the expression for the displacements of the node i corresponding to the
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next time-step uit+1 one obtains:

uit+1 =
4t2

mi
f it +

(
2uit − uit−1

)
− 4t

2

mi

∑
e

∫
Ωe

(Bᵀσ)
i
t dΩe (6)

In (6) and thereafter, quantities at the current time step are defined with the subindex t, while those before

and after the current time with subindexes t − 1 and t + 1 respectively. With this in mind, f it and mi

correspond to the current force vector and associated lumped-mass value of the node i. The summation in

the right-hand side of (6) keeps the coupling between neighbouring nodes by running over all the elements

associated with the node i.

At the element level, we implemented a backward-implicit integration method for the updating procedure

of the internal strain and stress variables at each Gauss point of the element. Keeping in mind that under

implicit schemes, updated unknown variables are expressed in terms of updated quantities that also need to

be determined, iterative Newton-Raphson-like procedures are usually required. However, in the following,

it will be shown that for the constitutive model chosen, no iterative strategies are needed, therefore, the

updated values of the internal variables are obtained directly. This approach makes this particular failure

criterion extremely convenient computationally.

2.1. Drucker-Prager Material model with Isotropic Linear Hardening - Material Up-
date

Under classical plasticity theory postulates, it is customary to assume valid the additive decomposition of

the strain tensor, in which the total strain εij can be divided into an elastic and plastic part denoted by εeij
and εpij respectively according to (7).

εij = εeij + εpij (7)

It is also assumed that an admissible elastic stress field (8) where Dijkl is the elastic stiffness tensor, exists,

and is limited by a potential function F (σij ,A) in such a way that any admissible stress must satisfy the

constraint (9), i.e., an elastic stress exist only for stress states inside F .

σij = Dijklε
e
kl (8)

F (σij ,A) < 0 (9)

In (9) A represents hardening parameters that for general situations can be high-order tensors. In this work,

however, the hardening parameters will be represented by scalar functions in terms of material constants

and the equivalent plastic strain ep, (10).

F (σij , ep) (10)

The yield function and the onset of plasticity on the other hand, are determined by F (σij , ep) = 0. This

implies that under increasing loading and plastic behavior, the stress state must stay on the failure surface,

although the yield surface can change in shape and position according with variations of ep. For a Drucker-

Prager failure criterion with isotropic linear hardening rule, the yield function takes the well-known expression

in terms of the second invariant of the deviatoric stress tensor J2, the first invariant of the stress tensor I1,
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and the material constant α. The hardening rule is defined by the cohesive strength function H(ep) (12),

where s and k are positive material constants. The equivalent plastic strain rate ėp is represented by (14).

F =
√
J2 + αI1 −H(ep) = 0 (11)

H(ep) = k + sep (12)

Like the yield function F , one assumes the existence of a potential function g(σij , ep) that defines the plastic

flow ε̇pij as:

ε̇pij = λ̇
∂g

∂σij
(13)

ėp =
√
ε̇pij ε̇

p
ij (14)

According to (13), the rate of plastic strain deformation is in the same direction as the gradient of g, while

the plastic multiplier λ̇ sets its magnitude. We assume g as in (15). By making the material constant β 6= α

in (15), we are implicitly assuming a non-associative flow rule. This is done merely to keep generality in our

future expressions, although as it was mentioned before, we will adopt an associative rule for our simulations

i.e., β = α in order to assure uniqueness in our results.

g =
√
J2 + βI1 (15)

Although we previously mentioned the conditions for an admissible stress state, a broader set of rules

regarding criteria for the loading-unloading conditions and constraints between the plastic multiplier and

the stress state still need to be addressed. These are frequently known as the Kunh-Tucker complementary

conditions and the consistency condition. The Kunh-Tucker conditions specify the rules for admissible

stress states and the fact that nonzero plastic strain rate can take place only on the yield surface (16). The

consistency conditions on the other hand, determines that during yield, the stress point must always remain

on the yield surface (17).

F (σij , ep) ≤ 0, λ̇ ≥ 0, λ̇F (σij , ep) = 0 (16)

λ̇Ḟ (σij , ep) = 0 (if F (σij , ep) = 0) (17)

Equations (7) to (17) comprise the fundamental equations in the general theory of plasticity. These equations

are complete in the sense that no other expressions are needed to represent the plastic state at a specific

location inside the body, although suitable modifications must be done for computational purposes.

As previously mentioned, our problem is local in nature and can be stated as follows (Simo and Hughes,

1998): Assuming that all the local state variables (18) at point x are completely defined at the current time,

and therefore the stress state is also known (19), suppose that the total strain experiences an increment

εijt+1
which drives the state to time t+ 1, the problem to address is to update the local variables in (18) in

a manner consistent with the constitutive model in (7) to (15).

εijt , ept , ε
p
ijt

(18)

σijt = Dijkl

(
εijt − ε

p
ijt

)
(19)
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In the following, we will focus on the framework needed for the implementation of the Backward Euler

material update algorithm. In our derivations, we will leave out subindexes t+1 in all our updated variables,

that is, quantities with no time subindex refer to the same quantities at t = t+ 1.

Writing down explicitly the updated elastic stress tensor in terms of the bulk modulus κ, the shear modulus

µ, and the deviatoric elastic stress tensor σijd , (8) becomes (20). Here εijd is the total strain deviatoric

strain tensor and δij the Kronecker delta.

σij = κεekkδij + σijd (20)

σijd = 2µ
(
εijd − ε

p
ijd

)
(21)

Doing the same with (13) and (14) yields

ε̇pij = λ̇

(
1√
2
Nij + βδij

)
(22)

ėp = λ̇

√(
1

2
+ 3β2

)
(23)

In (22), Nij is the deviatoric unitary tensor defined as:

Nij =
σijd√

σmnd
σmnd

(24)

Following one-parameter class integration algorithms (Simo and Hughes, 1998), equations (22) and (23)

become

εpij = εpijt +4λ
(

1√
2
Nij + βδij

)
(25)

ep = ept + φ4λ; φ =

√(
1

2
+ 3β2

)
(26)

4λ = λ̇4t (27)

The implicit nature of (25) and (26) it is worth mentioning. For instance in (25) the plastic strain tensor εpij
at t = t+ 1 (no temporal subindex) is written down in terms of the same quantity at the current time which

has a known value according with (18), plus another variable Nij at t = t+ 1 whose value is also still to be

determined.

Substituting the previous equations into (21) yields

σijd = 2µ
(
εij − εpijt

)
d
−
√

2µ4λNij (28)

= σpr
ijd
−
√

2µ4λNij

As can be seen, we introduced the auxiliary variable σpr
ijd

known as the predictor deviatoric stress tensor.

It has the important characteristic that it is completely defined in terms of known quantities. In the same

sense, it will be useful for future calculations to define a second auxiliary predictor variable σpr
kk, which allows
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us to express the trace of the stress tensor σkk as:

σpr
kk = 3κ

(
εkk − εpkkt

)
(29)

σkk = σpr
kk − 9κβ4λ (30)

It is straightforward to see that (28) can be rearranged as:

σpr
ijd

=

(
1 +

µ√
J2

4λ
)
σijd (31)

Notice that σijd and σpr
ijd

differ only by a scale factor, which as a result implies that the generalized direction

of both tensors must be the same (32) . This remarkable result allows us to re-write (28) in terms of two

known predictor quantities, leaving 4λ as the only unknown term to be determined (33).

Nij = Npr
ij (32)

σijd = σpr
ijd
−
√

2µNpr
ij 4λ (33)

Up until now the yield function has not entered into our derivations. If we now make use of it by substituting

σijd and σkk from (33) and (30) into the standard definitions of J2 and I1, and in addition we substitute ep

from (26) into the cohesive function H(ep) from (12), the Drucker-Prager yield function (11) reduces to:√
Jpr

2 − µ4λ+ α (Ipr1 − 9κβ4λ)− k − s (ept + φ4λ) = 0 (34)

Jpr
2 =

1

2
σpr
ijd
σpr
ijd

(35)

Ipr1 = σpr
kk (36)

In equation (34) the only unknown term corresponds to the plastic multiplier increment 4λ. This equation

is a conventional linear equation in one unknown that can be solved directly. The fact that for a Drucker-

Prager-type constitutive model, the material update algorithm can be reduced to a simple expression in

terms of one single local state variable, makes the integration procedure a highly efficient method from a

computational point of view and one of the main reasons why we adopted this particular failure criterion as

our starting material model.

4λ =

√
Jpr

2 + αIpr1 − k − se
p
t

µ+ 9αβκ+ sφ
(37)

Introducing the Heavyside function 〈·〉 in (37) defined as: 〈Γ〉 = Γ for Γ > 0 and 〈Γ〉 = 0 for Γ ≤ 0, the

material update algorithm reduces to the following single-step procedure:

Find 4λ from (38), then update the state variables from (25) and (26)

4λ =
〈
√
Jpr

2 + αIpr1 − k − se
p
t 〉

µ+ 9αβκ+ sφ
(38)

εpijt+1
= εpijt +4λ

(
1√
2
Npr
ij + βδij

)
(39)
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ept+1
= ept + φ4λ; φ =

√(
1

2
+ 3β2

)
(40)

Finally, the updates stress state can be found by

σijt+1
= Dijkl

(
εijt+1

− εpijt+1

)
(41)

Notice that the introduction of the Heavyside function takes into consideration implicitly both Kuhn-Tucker

conditions. According to the Kuhn-Tucker conditions (16), a negative value in the numerator of (38) can

only exist for stress states inside the yield surface. Therefore, the predictor state is the correct updated state

and as a result 4λ must be equal to 0. On the other hand if the numerator of (38) is > 0 then, a plastic

state exists and (37) must hold.

A rate-independent approach combined with a backward-implicit integration scheme for the material update

algorithm at the local level, appears to be a highly efficient method computational-wise when compared

with other types of material nonlinearity. For instance, Restrepo et al. (2011) and Taborda (2010) reported

a time step 10 times smaller than that required for a linear system in order to ensure the so-called CFL

stability condition when considered the soil as a visco-plastic Perzyna-type material (Perzyna, 1963), and

rate-dependant plasticity. They reported also a series of special treatments over the elements at and near

the kinematic source in order to ensure numerical stability. In our new approach on the other hand, the

CFL condition is of the same order as for elastodynamics, and no especial treatment is needed in any region

of the domain. This reduces dramatically the use of computer time and other computational resources.

2.2. Apex Zone

Now, from (33) and (30) it follows that any predictor stress σpr
ijd

outside the elastic zone is mapped back

onto the yielding surface following a straight line of slope:

tan (ψ) =
µ

9κβ
(42)

As a result, the straight line that crosses the I1 axis at the apex of the Drucker-Prager failure criterion and

has a slope given by (42), divides the region where the stress predictor may lie into two distinct regions

(Bićanić and Pearce, 1996; Anandarajah, 2010): a Regular zone where the plastic potential is defined for

both the predictor and the final stress state, and, therefore, the updated local variables can be found from

(38) to (41), and an Apex zone ( ξ < ψ ) where a normal tensor to the yielding function does not exist

unequivocally and any trial stress must be returned to the apex Fig. 1.

For mapping back the trial stress onto the yielding surface, we recognize that the second invariant vanishes

at the apex i.e.
√
J2 = 0, therefore, the updated stress tensor must necessarily be a hydrostatic tensor which

is fully described in terms of its first invariant. The particular form of the updated stress state (43) can

easily be found after solving the reduced form of (37) as in (44).

σijt+1
= poδij ; po =

(Ipr1 − 9κβ4λ)

3
(43)
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I1

√J2

k

ψ

Apex zone

σpr

Regular zone

ξ

α
1

Figure 1: Regular and Apex zones in the meridional plane for a Drucker-Prager yield criterion with zero
hardening coefficient s

4λ =
αIpr1 − k − se

p
t

9αβκ+ sφ
(44)

Notice that for the particular case where s = 0 i.e. zero hardening modulus, the pressure value in (43)

reduces to the maximum positive pressure allowed by the failure criterion po = k
α .

Finally, making use one more time of (43) and the strain decomposition assumption (7), it is easy to show

that the updated plastic strain is given by

εpijt+1
= εijt+1

− po
3κ
δij (45)

3. Numerical Results

We now focus on presenting results from a set of full three-dimensional (3D) simulations that incorporate

the previously mentioned nonlinear constitutive model in the soft-soil deposits of our targeted domain.

Our simulations are performed using Hercules, the finite element octree-based parallel earthquake simulator

developed by the Quake Group at Carnegie Mellon University.

3.1. Region of Interest and Earthquake Scenario

The selected domain covers a volume of the crustal structure in the Southern California region of size 81.9 km

× 81.9 km × 40.9 km that includes the main urban metropolitan areas in the Great Los Angeles Basin Fig. 2.

Topography is not explicitly considered in our numerical domain, we follow instead a traditional approach

and make topography and bathymetry a flat top surface by squashing the surface of the earth — this method

usually preserves the shallow velocity gradients of the superficial layers although distort the geometry of the

internal geologic structures (Aagaard et al., 2008). The internal velocity gradient was taken from the SCECs

Comunity Velocity Model (CVM-S, version 4.0) tailor-built to satisfy a minimum shear velocity of 200 m/s

and a maximum frequency of f
max

= 2 Hz. A fence diagram extracted from Version 2 of the SCEC 3D seismic

velocity model of southern California showing S -wave velocity variations along the most important basins
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Figure 4: Shear wave velocities for z = 0, z = 15, z = 30 and z = 45 m as read from the SCEC’s Comunity
Velocity Model (CVM-S, version 4.0)

covered by the model is presented in Fig. 3 after Field and the SCEC Phase III Working Group (2000). A

more detailed description of the internal velocity gradient is shown in Fig. 4. Here, the increasing stiffness

of the shallower sedimentary deposits in the top 60m becomes evident.

We simulate the 17 January 1994 Northridge Mw = 6.7 event because of the comprehensive amount of

strong ground motion data produced in addition to the evidence of important nonlinear sediment response

also associated with this event (Field and the SCEC Phase III Working Group, 2000), (Beresnev et al., 1998).

To model the earthquake’s source we used the kinematic representation of the fault rupture generated by

Graves and Pitarka (2010). The fault is 20 km long and has a down-dip width of 25km. The fault plane is

oriented with a strike and dip of 122°and 40°respectively, the average rake angle is 101°(Graves and Pitarka,

2010). In Fig. 2 and henceforth, the closest edge of the fault plane to the free surface is depicted with a solid

line, while dashed lines represent the surface projection of the fault, the yellow star is the epicenter of the

1994 Northridge event.
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3.2. Nonlinear Material Properties

To date, the number of advanced constitutive models that accurately describe the rheology of the soil at

different strain levels is abundant. In some cases however, these models appear to focus on predicting the

local nonlinear response by means of highly complex expressions based upon a large number of variables

that cannot be easily obtained from standard laboratory tests, and under the assumption that numerical

integration can be performed in an straightforward manner, even when it has been shown that they are

susceptible to numerical failure (Borja and Lee, 1990).

As previously indicated, we adopted a Drucker-Prager failure criterion as the nonlinear constitutive model in

our numerical simulations. The advantage of using such a model is twofold. In the first place, the integration

of the constitutive model can be solved directly by means of a quite simple, yet effective returning-map class

integration algorithm based upon the evaluation of just a single expression (38); second, the material variables

k and α in (11) and (12) can be characterized by two soil parameters, the cohesion c and the friction angle

φ if the the Drucker-Prager failure criterion is made to coincide either at the outer (46) or the inner edges

(47) of the so-called Mohr-Coulomb model (de Souza Neto et al., 2008).

α =
2 sin φ√

3 (3− sin φ)
, k =

6c cos φ√
3 (3− sin φ)

(46)

α =
2 sin φ√

3 (3 + sin φ)
, k =

6c cos φ√
3 (3 + sin φ)

(47)

Despite of important advances aimed at developing a unified tool for the characterization of internal variations

of soil properties in realistic domains as the SCEC CVM-S model, where the most up-to-date values of P -

wave velocity Vp, S -wave velocity Vs, and density ρ can be queried at any specific location in the southern

California region, these are limited to linear soil behavior. Therefore, a complete geotecnichal description

in terms of c and φ values needed in even simple constitutive models as ours is still lacking. An indirect

strategy focused on obtaining realistic cohesion values can, however, be followed as in Hartzell et al. (2004).

Here, making use of the effective mean stress σm = (σv/3)(1 + 2Ko), where σv and Ko are the vertical

effective stress and the coefficient of lateral stress at rest respectively, as well as the reference strain value

γref obtained as the value of strain from the modulus reduction curves when the ratio between the shear

modulus G and the maximum elastic shear modulus Gmax = ρVs
2 equals 0.5, i.e., G/Gmax = 0.5, Hartzell

et al. (2004) determined the c value for a column of soil with the same strength resistance as implied by

the modulus reduction curves (48). Values for the friction angle on the other hand, have traditionally been

assumed as φ = 30°.

c =
(γrefGmax − σmsin φ)

cos φ
(48)

In this study we followed a simpler approach and made a series of approximations regarding the specification

of the nonlinear parameters. In the first place, we artificially assumed that only soil deposits with Vs values

below 500 m/s were susceptible of plastic behavior while the remaining were kept linear; second, we directly

assigned values for the yielding limits k and α in (11) and (12). For the k soil parameters, we divided the

assumed nonlinear range into six discrete sub-ranges: 200 - 250 m/s, 250 - 300 m/s, . . . 450 - 500 m/s., and

computed over each interval the average value of the
√
J2avg

term from a reference linear simulation, then,

the final k values over each sub-range was set to 75% of its correspondent reference
√
J2avg

value. Values for

12
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Figure 5: Snapshots of the absolute amplitude of the EW and NS components of particle ground velocity
at different times for the linear (top), Von Mises (middle) and Drucker-Prager (bottom) simulations.

the parameter α were computed from (46) assuming φ = 30° and because we adopted associative plasticity,

β = α in (15). Finally, we set to 0 the value of s in (12) due to lack of information regarding this parameter.

3.3. Simulation Results

As is well known, a von Mises failure criterion can easily be obtained from (11) just by setting α = 0.

Because of this, in the following, we compare results obtained from considering these two nonlinear failure

criteria i.e., Drucker-Prager (DP) and von Mises (vM) with respect to the corresponding linear response.

As a starting point, we study the time evolution of the ground motion by comparing the magnitude of

the horizontal surface velocities of the nonlinear cases with respect to the corresponding linear response, as

shown in Fig. 5. Here, snapshots of particle ground velocity computed as the square root of the sum of the

squares of the EW and NS velocity components, show that at the first stages of the rupture process (t = 8s),

linear and DP results exhibit good agreement although a reduction in the DP response near to the epicenter

is evident as a result of the additional dissipation from the nonlinear behavior. VM results on the other

hand, present a much larger reduction, suggesting larger nonlinear effects. It is important to point out that

first wavelet packets appear unaffected by the presence of nonlinear behavior as can be seen from the two

13



3

2.5

2

1.5

1

0.5

0

2.0

1.6

1.2

0.8

0.4

0

Linear Von Mises Nonlinearity VonMises / Linear

(b)(a) (c)

m/s

Figure 6: Peak ground velocity values computed as the maximum absolute value of the EW and NS com-
ponents of particle ground velocity for the linear (a) and the Von Mises (b) simulations. Figure (c) depicts
the ratio of the Von Mises results over the linear PGV values.

3

2.5

2

1.5

1

0.5

0

2.0

1.6

1.2

0.8

0.4

0

Linear Drucker-Prager Nonlinearity Drucker-Prager / Linear

(b) (c)(a)

m/s

Figure 7: Peak ground velocity values computed as the maximum absolute value of the EW and NS com-
ponents of particle ground velocity for the linear (a) and the Drucker-Prager (b) simulations. Figure (c)
depicts the ratio of the Drucker-Prager results over the linear PGV values.

packets travelling south-east towards the Santa Monica region and south-west towards the Thousand Oaks

area.

As the rupture process advances (t = 10 s and t = 12 s), the response from the soil deposits becomes more

evident. Here, a clear amplification of the Thousand Oaks wavelet packet by basin local effects is shown

at t = 10 s. Surprisingly, shape and amplitude values of the packet are almost the same magnitude for all

three scenarios. As in the previous case, most of the differences between linear and nonlinear simulations

are concentrated inside the projected area of the fault plane with larger reductions still associated with von

Mises type nonlinearity. At t = 12 s a packet of waves of large energy is initiated at the north-west corner of

the fault plane presenting similar magnitude values in all three simulations but, with a noticeable change in

the spatial spreading, again, being larger for the linear response, minimum for the von Mises response and

in between for the Drucker-Prager nonlinearity type.
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Figure 8: Shapes of the von Mises (dotted line), and Drucker-Prager (solid line) failure criteria in the
meridional plane.

Late phases and basin reverberations are the common characteristics at t=20s. As in the previous cases,

these are larger for the linear simulation. In all cases, two major clusters of surface waves appear to be

localized at the north part of the domain and the south-east corner of the top edge of the fault plane.

3.3.1. Peak ground velocity PGV

A better evaluation of PGV variations is achieved by looking at Fig. 6 and Fig. 7. In the first, larger

amplitudes are located north from the epicenter and enclosed by the fault plane projection, with the highest

levels at the north-west corner of the top edge of the fault. As expected, linear simulations exhibit the larger

magnitudes in PGVs. Zones of larger response from the vM simulation are also located near the top left side

of the fault although distributed over a smaller area. Regions of maximum response within the interior of the

projected fault plane are greatly reduced in size by the nonlinear response. Differences between PGVs values

are highlighted in Fig. 6 (c) which shows the ratio between the nonlinear and the linear response. Red colors

depict areas where the vM results exhibited amplification and blue colors indicate deamplification. Black

on the other hand denotes no change. As can be readily seen, vM results present reductions throughout

the entire domain — black and blue colors in Fig. 6 (c) — with reductions as high 0.2 times the linear

response. Regions of maximum reductions concentrate around the epicenter area and following the the

alluvial sediments of the Santa Clara river.

On the other hand, Ducker-Prager results exhibit a closer agreement when compared with results from the

linear response Fig. 7 (a) and (b). Here, areas in blue, cyan and green depicting the far and intermediate

PGVs fields are basically preserved in both simulations. The shape of the region of maxima — yellow to red

colors — at the top left corner of the fault plane is also similar although a modest reduction of the DP results

is evident. Ratios between responses Fig. 7 (c) on the other hand, share a fairly close resemblance with its

counterpart in Fig. 6 (c). For instance, these still concentrate in the region enclosed by the projection of the

fault plane near the epicenter and following the Santa Clara riverbed, although with lower reductions.
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A possible explanation for the linear-like behavior displayed by the DP results could be related to an increase

of strength as a consequence of positive increments in the internal pressure p. As is known, a Drucker-

Prager failure criterion appears as an open cone in the principal-stress space, which expands as the pressure

p = −I1/3 increases, while the von Mises criterion, being pressure independent, is represented by a circular

cylinder. In the meridional space (I1−
√
J2 plane) they appear as two straight lines Fig. 8. As the meridional

representation shows, the gray area renders two different physical scenarios depending on the failure criterion

chosen, i.e. stress states inside the gray area exhibit a nonlinear behavior according to the von Misses model

and are forced to return onto the yielding surface, whereas the same stress state exhibits a linear behavior

and is allowed to stay as it is if a Drucker Prager failure criterion is used instead.

Positive pressure values are more likely to occur if an initial geostatic stress state is considered. In this

study, however, we did not consider any initial geostatic pressure. Therefore, only dynamic pressures were

measured. Focusing at checking the evolution of pressure and therefore a possible strength gain, Fig. 9

presents plots of I1 vs
√
J2 at selected locations throughout the region of interest. The strength increase

exhibited by the DP response at all stations is evident. The increase in strength for the DP model is as large

as ten times the the yield level from the vM simulations. In terms of the development of nonlinearity, it

appears that the onset of plasticity initiates at t=10s and extends until t=25s in almost all locations and for

both nonlinear criteria. There is a residual stress for both nonlinear conditions. For the DP model the large

residual stress state can be seen through the yellow-to-red points. For the vM model, permanent stresses are

also visible although in a lesser amount and with a marked tendency to reach the stress condition at rest.

3.3.2. Peak Ground Acceleration PGA and Peak Ground Displacement PGD

Another set of results is shown in Figs. 10 and 11. Here, comparisons between PGA values from the nonlinear

models with the linear results are presented. As expected, nonlinear results exhibit smaller values as a result

of the additional amount of energy dissipation capacity given by the nonlinear behavior. As for the PGV,

maxima are concentrated inside the fault’s projected area and, especially, at the north-west corner of the

along-strike top side of the fault. We associate these amplifications with strong rupture directivity effects

produced toward the north by the 1994 Northridge earthquake (Graves and Pitarka, 2010). The linear and

DP results exhibit values greater than 1g, as can be seen by the saturated scale in Fig. 11. Results from the

vM criterion present maximum PGA values of just 0.7g, again, as a result of larger reductions produced by

the lack of pressure dependence and the relatively low yielding limits assumed.

Permanent, or residual ground displacements RGD computed as the average value over the last 15s of

simulation of the square root of the sum of the squares of the EW and NS component of particle displacements,

are shown in Figs. 12 and 13. Although linear and nonlinear simulations share the same pattern, there are

some differences. For instance, linear results tend to exhibit a smoother and homogeneous spatial variability,

which follows the superposition of the radiation patterns from the asperities that make up the fault. By

contrast, nonlinear RGD values are heterogeneous and composed by very pronounced sharp variations,

particularly near to the region of maximum linear displacements which appears as the red strip shown in

Fig. 13 (b). These differences are also visible in terms of the final magnitudes. Contrary to the previous

cases, vM results exhibit the larger RGD values because of the larger plastic strain needed to accommodate

the low yield levels assumed. Linear results on the other hand present the lower values, and DP on average

shows intermediate values.
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The discrepancies between the two cases and influence of the plastic deformation in the nonlinear cases

can be appreciated in greater detail in Figs. 12 (c) and 13 (c) . Theses figures show the difference in

permanent displacements (nonlinear - linear) for the corresponding model. Warm (red) indicates that the

nonlinear permanent displacement was larger than the obtained under elastic soil conditions, cool (blue to

cyan) indicates that the permanent displacement observed in the nonlinear simulation was smaller than its

linear counterpart). For the most part, the nonlinear simulations present larger permanent displacements

than the linear one. The regions where this is not the case, however, call into question the common belief

that permanent plastic deformations are always expected to be larger than those from linear simulations and

may be an evidence of the presence of complex 3D basin effects. No, or little, difference is observed in the

near the top and to the right side of the domain.
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3.3.3. Local Respose

Figures 14 to 16 compare the synthetic waveforms at select locations throughout the region of interest.

Station location are shown in Fig. 2 (b). These stations were chosen such that there would be a complete

description of the nonlinear variations throughout the region.

We begin our observations by checking modifications produced by nonlinear effects over stations that are

supposed to have a fault-controlled response, that is, stations where strong rupture directivity effects may

be dominant. With this in mind, Fig. 14 presents ground-velocity and ground-acceleration waveforms for

three near-epicenter stations: S16, S20 and S25. Station S25 presents the expected pulselike arrival with

strongest response along the fault parallel component. Surprisingly, the waveform appears unaffected by

any nonlinear effects in both velocity and acceleration. This situation, may be a consequence of the stiffer

soil-deposits beneath station S25 rather than by directivity effects per se.
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Figure 14: Simulated ground waveforms for stations: S16, S20 and S25 for the Northridge earthquake.
Linear (red), Drucker-Prager (green) and von Mises (blue) lines, depict the parallel to fault (122°) and
normal to fault (212°) rotated components of velocity and acceleration.

Station 2

 Fault Parallel Fault Normal

Station 5

Fault Parallel Fault Normal

Velocity (m/s) Acceleration (m/s2)

Station 8

Time (s) Time (s) Time (s) Time (s)

0.1

0

0.2

-0.1

-0.2

0.5

0

1.0

-0.5

-1.0

0.1

0

0.2

-0.1

-0.2

0.5

0

1.0

-0.5

-1.0

0.1

0

0.2

-0.1

-0.2

0.5

0

1.0

-0.5

-1.0

0 15 30 45 60 0 15 30 45 60 0 15 30 45 600 15 30 45 60

Figure 15: Simulated ground waveforms for stations: S2, S5 and S8 for the Northridge earthquake. Linear
(red), Drucker-Prager (green) and von Mises (blue) lines, depict the parallel to fault (122°) and normal to
fault (212°) rotated components of velocity and acceleration.

Stations S16 and S20 also present a pulselike behavior with stronger response in the parallel fault direction,

although the waveforms suggest a modest interaction with the shallower soil deposits. Nonlinear effects

are clearly visible (which reinforces the idea of moderate local effects). As discussed previously, the ratios

between the von Mises and the linear results of velocity reach values as low as 20%.

Accelerations tend to be affected by the higher frequencies, while contributions from rupture directivity and

radiation pattern dominate the low-frequency velocity waveforms (Wald et al., 1996). With this in mind,

acceleration traces at stations S2, S5 and S8 Fig. 15, suggest the existence of pronounced effects from local

soil conditions. Here, late phases and interaction with basin surface waves dominate the ground shaking,

with larger response controlled by the fault normal component. The fault normal components of acceleration

at stations S2 and S5 present a marked reduction with respect to the vM results from the early stages of

the ground motion. However, results from the DP model show a similar response to that of the linear
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Figure 16: Simulated ground waveforms for stations: S55, S58 and S59 for the Northridge earthquake.
Linear (red), Drucker-Prager (green) and von Mises (blue) lines, depict the parallel to fault (122°) and
normal to fault (212°) rotated components of velocity and acceleration.

model, at least during the phase of intense ground shaking and up until 25s approximately. This suggests

that at these particular stations, DP nonlinearity presents a major effect over late phases and free surface

reverberations, than over the direct waves that make up the stronger early arrivals. Station S8 on the other

hand, exhibits more pronounced basin effects and larger nonlinear modifications from the early stages of

ground motion. This station is located in the vicinity of an area filled with hard soil deposits located at the

foot of the Verdugo mountains (Glendale, CA). Although a detailed analysis is still needed, we believe that

focusing effects caused by subsurface basin structure similar to those observed in Santa Monica during the

1994 Northridge earthquake (Graves et al., 1998) may be the source of important constructive interference

and the cause for the strong variability in the response at S8 as well as the early nonlinear response.

The Northridge earthquake produced strong rupture directivity towards the north (Graves and Pitarka,

2010). This is noticeable from the typical near-field pulse-like shape of the synthetics of velocity of stations

S55, S58 and S59 (Fig. 16). A modest interaction with the soil deposits is also perceptible. The comparison

in the time domain confirms the results presented earlier regarding the reductions observed in PGV and

PGA due to soil nonlinear behavior. Here, maximum von Mises over linear PGV ratios reach values of 70%

in both horizontal components of station S55. PGV values for station S58, on the other hand, attain the

same value for all three models. Drucker-Prager PGV results attain the same values than its linear counter

part except for the fault normal component, for which a small reduction of 15% occurred.

4. Concluding Remarks

We presented numerical results for the 17 January 1994 Northridge Mw = 6.7 earthquake rupture model over

a volume of the crustal structure in the Southern California region of size 81.9 km × 81.9 km × 40.9 km for

frequencies up to 2Hz, considering three different material models: 1) Linear anelastic, 2) pressure dependent

elasto-plastic Drucker-Prager yield criterion and 3) elastic-perfectly plastic von Mises nonlinear criterion.
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Nonlinear strategies showed, in general, reductions and spatial variations when compared with results from

the linear reference simulation. Our numerical findings showed that the level of reduction is strongly affected

by the type of constitutive model selected. Under elasto-perfectly plastic von Mises nonlinear behavior, the

PGV is reduced to as much as 20% of the linear reference. However, when some level of additional resistance

given by the internal pressure is considered, as in the Drucker-Prager failure criterion, those reductions

reached only 80% percent of the reference linear response. This strength increment with pressure, while in

agreement with the real behavior of geomaterials, does not exhibit an infinite value as the open Drucker-

Prager cone indicates. This suggests that under a more realistic model, such as a Drucker-Prager-Cap

criterion a larger level of nonlinear soil response would be expected.

We presented a comprehensive and fairly detailed formulation for the material update algorithm. We showed

that following an implicit scheme at the local level for the integration of the evolution equations in conjunction

with an explicit formulation at the global level, appears to be numerically stable, with no numerical artifacts

and leading to acceptable ground motion estimates.

Nonlinear simulations greatly depend upon the flexibility of the constitutive models for incorporating mean-

ingful and easy to obtain soil parameters. The Drucker-Prager failure criterion shares these properties and

despite its relative simplicity, it can lead to reasonable agreement between results of simulations and obser-

vations for problems that do not involve soil liquefaction (Xu et al., 2003). Our initial set of results, while

providing valuable knowledge on the effects of nonlinearity over seismic response, still require additional

work to properly account for realistic soil properties. We believe that the Hartzell’s approach presented

previously is a good starting point towards fulfilling this condition.
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Part II
Unified FEM for Elastic and Acoustic Media Wave Propagation

1. Introduction

The development of a unified formulation to model wave propagation in different media ranging from elastic

to acoustic with a robust finite element method has been the objective of research efforts for many years.

These efforts have been primarily aimed at fluid-structure interaction problems, including those encountered

in many earthquake and tsunami problems.

Early works in this area include the modeling of fluids as, incompressible elastic material (Hughes, 2000,

chapter 4). Remaining within the limits of linear elasticity, another path to model acoustic fluids has been

to take the shear modulus as zero (Olson and Bathe, 1983). Determining the appropriate boundary and

interface conditions (slip, no-slip) has also been the focus of attention. Discussions on this topic go back to

the early twentieth century (Prandtl, 1904).

In the traditional finite element method, the governing equations are expressed in terms of displacement

variables. However, the numerical results deteriorate badly as the Poisson’s ratio approaches 1/2. It has also

been observed that this formulation results in spurious modes (circulation modes) with non-zero frequencies

(Kiefling and Feng, 1976) for acoustic problems, thus, failing to be a general one. Introducing irrotationality

constraint, Hamdi et al. (1978) developed a formulation for which the frequencies of the circulation modes

increase with the constraint constant introduced. This solves the problem as long as the frequency range of

interest lies below the maximum frequency values of interest. However it does not mean that these modes

are completely eliminated.

Another approach has been to use the displacements as variables in the solid and pressure (or velocity

potentials) in the fluid (Zienkiewicz and Newton, 1969). However, these formulations include unsymmetric

matrices that render them difficult for programming purposes.

Another alternative is to use mixed finite element formulations, using both displacement and pressure. This

requires a stability condition generally referred to as inf-sup condition (Babuška, 1971; Brezzi, 1974) for

eliminating the spurious modes, which puts a limit on the type of elements that can be used.

In this work, we consider a unified approach that is robust within the entire range of an elastic solid with

moderate contrast between the P- and S-wave velocities up to the limiting case of an acoustic medium with

zero S-wave velocity. By solving a constrained variational problem that makes use of the Lagrange Multiplier

method, we develop a mixed formulation that is suitable for implementation in Hercules, our finite element

code. We illustrate the validity of the method by solving numerically a range of problems, from elastic with

moderate contrast of P- to S- wave velocity to the limiting case of an acoustic medium. We also discuss

the transition zones formed due to different boundary conditions (slip, no-slip) and the change in the wave

patterns.
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2. Theory

The motion in a linearly elastic continuous system is governed by the equations of elastodynamics (49).

Together with the natural, essential and interface boundary conditions given in (50a), (50b) and (50c) we

can define the problem presented in Fig. 17 completely.

ρüi − σij,j = bi (49)

ui = u∗i on Γ1 (50a)

σijnj − T ∗i on Γ2 (50b)

(σ1
ij − σ2

ij)n
∗
j = 0 on Γ∗ (50c)

In these equations, u,ρ,σ,b,n and T ∗ are the displacement field, density, stress tensor, body forces, surface

normal and the applied traction respectively. Dots stand for time derivatives and the subscript i stand for

the component in xi directon.

Constitutive equations for linear elastic systems are given in (51a), and additionally we define the hydostatic

pressure with equation (51b) in terms of bulk and shear moduluses, κ and µ respectively.

σij = κuk,kδij + µ(ui,j + uj,i −
2

3
uk,kδij) (51a)

p = −κuk,k (51b)

where δij is the Kronecker’s delta and subscripts following a comma mean partial derivatives in space with

respect to the xj coordinate.

The mixed finite element method can be formulated using the Galerkin method, in which the constraints are

introduced through Lagrange multipliers. Introducing (51b) as the side condition and choosing the pressure

as the Lagrange multiplier, we can derive the strong form as given in (52).

Ω1 Ω2

Γ1

Γ2

Γ∗

Τ∗

Figure 17: A continuous system
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∫
Ω1∪Ω2

(ρüi − σij,j − bi) δuidΩ +

∫
Γ2

(σijnj − T ∗i ) δuidΓ2

+

∫
Γ∗

(σ1
ij − σ2

ij)n
∗
j dΓ∗ +

∫
Ω1∪Ω2

δp
( p
κ

+ uk,k

)
dΩ = 0

(52)

Next, we derive the weak form in terms of u and p as given in (53).∫
Ω1∪Ω2

ρüiδuidΩ−
∫

Ω1∪Ω2

pδui,idΩ

+

∫
Ω1∪Ω2

(
1

2
µ(ui,j + uj,i)(δui,j + δuj,i)−

2

3
µuk,kδui,iδij

)
dΩ

−
∫

Ω1∪Ω2

biδuidΩ−
∫

Γ2

T ∗i δuidΓ2

+

∫
Ω1∪Ω2

δp(
p

κ
+ uk,k)dΩ = 0

(53)

Since we do not have a spatial derivative of the pressure variable p in the weak form, a wider range of

interpolation functions are permissible for it including discontinuous functions across element boundaries.

Pressure within the elastic material is in general discontinuous not only on the interfaces of different materials

but also within the same material. One exception to this is the case of zero shear modulus which corresponds

to the acoustic domain. In acoustic domain the traction consists only of pressure, making it continuous.

Thus, the choice of discontinuous pressure is more physical.

Spatial discretization through the finite element method with continuous displacement and discontinuous

pressure fields, allows one to derive a set of ordinary differential equations as stated in matrix form in (54).[
Muu 0

0 0

][
ü

p̈

]
+

[
µKuu −Kup

−KT
up

1
κKpp

][
u

p

]
=

[
f

0

]
(54)

A diagonally lumped mass matrix is used to decouple the system of equations with respect to Muu. We use

second order central differences to solve (54) step-by-step in time. Thus, the displacements and pressure for

any given node i in the mesh, can be evaluated explicitly by (55).

pe
t = −(κK−1

pp KT
up)

eue
t (55a)

uit+1 =
∆t2

mi
bit +

(
2uit − uit−1

)
− ∆t2

mi

∑
e

(µKe
uuu

e
t −Ke

upp
e
t ) (55b)

Here, mi and bi are the mass and body force associated with the i-th node of interest while the matrices

and the vectors with subscript e are the local matrices and vectors of the elements associated with node i.

Using discontinuous pressure field allows us to solve (55a) at the element level at each time step. Next, we

solve (55b) to get the displacement field for the following time step.
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H

5H

S2(0.1H,0.9H)

S4(4H,0.04H)

S3(3H,0.6H)

S1(2H,H)

P0

x

y

H 2H

(a) Slip Boundary Condition

H

H

5H

S2(0.1H,0.9H)

S4(4H,0.04H)

S3(3H,0.6H)

S1(2H,H)

P0

y

x

2H

(b) No-Slip Boundary Conditions

Figure 18: Problem geometry with slip (a) and no-slip (b) boundary conditions. Station locations are
marked with triangles and the coordinates are given in terms of ’x’ and ’y’ where the bottom left corner is
taken as the origin.

Although the procedure looks quite straight forward, the stability constraint puts a limitation on the available

element types. However, as stated by Bathe (2001) with the correct element types that satisfy the inf-sup

conditon as introduced by (Babuška, 1971) and (Brezzi, 1974), one can eliminate the spurious modes with

the mixed formulation. In our examples, we use the Q2-P1 element, which corresponds to a continuous

quadratic displacement field and discontinuous linear pressure field.

Within the limitations of linear elasticity, we can model any material extending from elastic to acoustic by

changing shear and bulk moduli. In the extreme case of an acoustic medium, the shear modulus becomes

zero. In this case the stiffness matrix µKuu in (54) vanishes.

3. Numerical Results

3.1. Problem Definition and Simulation Parameters

We have implemented and tested the methodology described in Chapter ?? by way of several specific two-

dimensional. These problems can be grouped into two categories with different boundary conditions, slip

and no-slip, on three sides ( left, right and bottom ) and free at the top with a normal traction acting on it

as shown in Fig. 18.

These problems with the acoustic domain characteristics ( zero S-wave velocity ) can be considered as extreme

cases of fluid-structure interaction problems ( rigid and frictionless solid-fluid interaction ) where the two

different models (slip and no slip) are tested and compared using the same mixed finite element formulation.

To observe the differences that occur over the transition from elastic to acoustic medium, we consider four

different S- to P-wave velocity ratios, ranging from a moderate value ( 0.5 ) to extreme ( 0 ). For the

intermediate cases we also considered the ratios Vs/Vp = 0.1, 0.01.

We used the same mesh for all the simulations as defined in Table 1. Using rectangular elements, higher

resolution is achieved in the horizontal direction compared to the vertical one. This is done so primarily
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Table 1: Mesh and simulation parameters in terms of normalized values for the problems worked on.

Mesh Properties

Element Dimensions

hx 0.005H

hy 0.02H

Number of Elements

N 50, 000

Simulation Characteristics

Vs/Vp 0, 0.01, 0.1, 0.5

f̄max 5 (See 19(b))

Time step(d̄t) 6.25× 10−4

Simulation Time(T̄) 30

0.5

0

0

-0.5

-1.0

0.6
t

1.2

R(t)

(a) Time History - Ricker Pulse

f

|F(jω)|

0 1 2 3 4 5 6

0.05

0.15

0.25

(b) Fourier Transform

1.0

-1.0

 0.5

 0.0

0.0
x

1.0

H(x)

(c) Spatial Distribution

Figure 19: Time history (a), spatial distribution (b) and the Fourier transform (c) of the normal traction

applied on the surface in terms of normalized values where the normalized frequency f̄ =
fH

Vp
.

to observe more clearly the shear wave propagation and the transition zone that forms close to vertical

boundaries. Tests with coarser and refined meshes with both rectangular and square elements justify the

choice of this particular mesh.

The governing equations of the problem and the constraint introduced in the methodology as described in

Chap. ?? are normalized as given in (56a) and (56b).

∂2ūi

∂t̄2
= − ∂ p̄

∂x̄i

+

(
Vs

Vp

)2∑
j

∂2ūi

∂x̄2
j

+ b̄i (56a)

p̄ = −

[(
Vp

Vs

)2

− 1

]∑
k

∂ ūk

∂x̄k

(56b)

where x̄i =
xi

H
, t̄ =

tVp

H
, ūi =

uiρV2
p

p0H
, p̄ =

p

p0
and b̄i =

biH

Vp
are the normalized variables corresponding to

spatial variable, time, displacement component, pressure and body force component respectively. Since we

do not have any body forces, the bi components are zero.

For the problems studied, the normal traction acting on the free surface is given in (57) and Fig. 19.

p(x̄, t̄) = p0R(t̄)H(x̄) (57a)
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H(x̄) =
1

4

[
1 + cos

(πx̄
H

)]2
(57b)

Here, R(t̄) is the Ricker Pulse, whose definition can be found in Ricker and Sorge (1951) or Bamberger and

Tran (1991).

3.2. Results of the Simulation

Figure 20 shows the absolute peak velocity over the domain, for different boundary conditions and material

properties. Comparing the first and the second rows corresponding to no-slip and slip condition problems

respectively, one can clearly see the effect of the boundary on the peak velocity values. This effect decreases

in size as we decrease the S- and P-wave velocity ratio, reducing the shear effect in the material. This effect

is confined to the surrounding boundaries. The propagation of the transition zone becomes more evident

by comparing Figure 21 with Figure 22, where we present snapshots of the absolute velocity values during

the simulations. The transition zone moves into the domain with decreasing velocity as we decrease the S-

to P-wave velocity ratio. For the rest of the domain, the results for slip and no-slip boundary conditions

essentially match each other.

The peak pressure values and the snapshots of the absolute pressure values are shown in Figures 23, 24 and

25. The transition zones formed due to the boundary conditions clearly affect the pressure values. This

effect decreases just like the transition zone size as the shear effect decreases.

The transition from elastic to acoustic case raises the question of how similar the results are for different

values of Vs/Vp. For the problems studied with no-slip boundary conditions, we have observed that the

shear effect is visible even for the S- and P-wave ratio of 0.1 which can be considered as a clay material.

Nevertheless, the difference between a ratio of 0.01 and the fully acoustic case is negligible.

For the slip-boundary condition problems, we can include the ratio of 0.1 to the class of materials for which

the results change only slightly with respect to the acoustic case.

To have a closer look at the points in the vicinity of the boundaries and away from them, we show the

components of velocity and pressure at various stations, in Figures 26 through 29. See Figure 18 for station

locations.

Station S1 is located directly under the loaded area. Its pressure output gives a clear idea about how similar

the material is to an acoustic case. The normal traction must be equal to the pressure for the acoustic

problem but not for the other cases. The similarity of the pressure to the applied traction serves to asses

the differences in the behavior.

For stations S2 and S4 located in the vicinity of the boundaries, the horizontal component of velocity best

illustrates the transition zone, which decreases as Vs/Vp gets smaller.

Finally, the station S3 located away from the boundaries is chosen to observe the behavior within the domain.

The arrival at this station of the waves generated at the no slip boundaries can clearly be seen from the

comparison of the no-slip and slip boundary condition problems.
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4. Conclusions

We modeled materials that range from elastic with moderate S- and P-wave velocity ratio to acoustic with

zero S-wave velocity (no shear). We implemented a mixed finite element formulation with displacement and

pressure as the primary variables to overcome the limitations of the displacement-based formulations.

We tested this unifying approach and the numerical method on two-dimensional dynamic problems. We also

compared different boundary conditions, namely, no-slip and slip boundary conditions. This is considered

as critical, since the mixed method allows displacement-based boundary conditions to be imposed. This is

not possible in a pressure-based formulation, as commonly used for acoustic media.

Since the displacements should be continuous across the fluid-solid interfaces even if the shear modulus is

extremely small, we focus on problems with no-slip condition. These tests represent solid-fluid interaction

problems where the fixed boundaries can be considered as a rigid solid and tangentially free-ones as a

frictionless solid.
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